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In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under

e®ect of electron–phonon interaction and a Gaussian acoustic pulse pumping. We describe
electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations

using standard classical physics. Solving numerical equations related to coupled quantum/

classical behavior of this system, we study electronic propagation properties. Our calculations

suggest that the acoustic pumping associated with the electron–lattice interaction promote a
sub-di®usive electronic dynamics.

Keywords: Sub-di®usive spreading; electron–phonon coupling; wave packet dynamcis;
nonlinearity.
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1. Introduction

The problem of electronic dynamics mediated by surface acoustic wave (SAW) has

attracted an intense interest.1–12 This research ¯eld, in broad terms, consists of a

combination of solid-state theories including, e.g. Anderson localization theory,13

electron–lattice interaction,14–16 piezoelectricity4 and general solid state physics.17–22

An interesting experimental investigation of electronic transport induced by

(SAW) was done in Ref. 1. The authors applied a surface acoustic wave through a

GaAsAlGaAs two-dimensional (2D) electron gas. Moreover, Ref. 2 also reported
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experimental investigation on the electronic °ux mediated by high frequency (SAW)

in GaAsAlGaAs heterostructures. In Ref. 4, the authors moved a single electron

along a wire in a kind of ping-pong game. Moreover, the possibility of using this

\controlled motion" in the framework of quantum computing was pointed at, for

example, to move a quantum `bit' between two distant places.4 This experimental

setup consisted of trapping a single electron in a quantum dot and moving that

particle along a channel by using a SAW. SAW usage in electron movement and in

the construction of quantum bits has attracted interest from some solid-state physics

specialists.5–11 More recently, the dynamics of an initially localized wave packet

in one-dimensional disordered harmonic chains under the e®ect of electron–lattice

interaction and an acoustic wave pumping were investigated by numerical calcula-

tion.12 They demonstrated the existence of sub-di®usive electronic transport

mediated by the acoustic pumping using that method for solving equations.

In this paper, we investigate the competition between intrinsic cubic nonlinearity,

on-site disorder and the pumping of an acoustic pulse. We consider noninteracting

electrons moving on a nonlinear Fermi–Pasta–Ulam disordered chain under the

e®ect of electron–phonon interaction and a Gaussian acoustic pulse's pumping. In

our theoretical formalism, we apply quantum mechanics treatment for electron

and classical physics for nonlinear atomic vibrations. The dynamics equations are

solved numerically: A Taylor formalism is used for electronic propagation and a

second-order Euler method is adopted to solve coupled quantum/classical equations.

Our calculations suggest that the acoustic pumping associated with the electron–

lattice interaction promotes a sub-di®usive electronic dynamics.

2. Model and Formalism

In our model, we consider a one-electron moving in a Fermi–Pasta–Ulam disordered

chain of N masses. As previously stated, electronic dynamics is described by quan-

tum Hamiltonian and the lattice vibrations characterized by classical mechanics.

Total Hamiltonian is written as H ¼ He þHlattice, where
12,15,23:

He ¼
X
n

f�nd†
ndn þ Vnþ1;nðd†

nþ1dn þ d†
ndnþ1Þg

Hlattice ¼
X
n

P 2
n

2mn

þ 1

4
½ðQnþ1 �QnÞ2 þ ðQn �Qn�1Þ2�

�

þ �

6
½ðQnþ1 �QnÞ3 þ ðQn �Qn�1Þ3�

�
;

ð1Þ

where d†
n and dn are the creation and annihilation operators for the electron at site n.

�n represents the on-site disorder distribution uniformly chosen within the interval

½�W=2;W=2�. Vnþ1;n represents the electron's kinetic energy (the hopping term). Pn

and Qn are the momentum and displacement of the mass at site ðnÞ, respectively.mn

is a disordered distribution of masses generated by the following procedure:

mn ¼ eð�nÞ, where �n are random numbers uniformly distributed within the interval

½�W=2;W=2�. � represents the strength of the cubic nonlinearity considered in our
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model. The hopping elements Vnþ1;n depend on the relative distance between two

consecutive molecules of the chain: Vnþ1;n ¼ �e½��ðQnþ1�QnÞ�.15 The quantity � de¯nes

the electron–lattice coupling strength. The time-dependent wave function j�ðtÞi ¼P
ncnðtÞjni is obtained by numerical solution of the time-dependent Schr€odinger

equation. The Wannier amplitudes (cnðtÞ) evolve in time as (} ¼ 1):

i
dcnðtÞ
dt

¼ �ncnðtÞ � e½��ðQnþ1�QnÞ�cnþ1ðtÞ � e½��ðQn�Qn�1Þ�cn�1ðtÞ: ð2Þ

Lattice equation is written as

mn

d2QnðtÞ
dt2

¼ ðQnþ1 �QnÞ � ðQn �Qn�1Þ� þ �½ðQnþ1 �QnÞ2 � ðQn �Qn�1Þ2�
þ �fðc�nþ1cn þ cnþ1c

�
nÞe½��ðQnþ1�QnÞ�

� ðc�ncn�1 þ cnc
�
n�1Þe½��ðQn�Qn�1Þ�g: ð3Þ

We consider the electron initially localized at site n ¼ 1, i.e. j�ðt ¼ 0Þi ¼P
ncnðt ¼ 0Þjni, where cnðt ¼ 0Þ ¼ �n;1. For t ¼ 0, we consider Qnðt ¼ 0Þ ¼

Q
:
nðt ¼ 0Þ ¼ 0, for n within the interval ½1;N �. In addition, we consider the pumping

of an acoustic Gaussian pulse at the extreme left side of chain (i.e. at the site n ¼ 0):

Q0ðtÞ ¼ eð�t2=2�t2Þ cosð!tÞ; ð4Þ
where ! represents the frequency of the gaussian acoustic pulse and�t ¼ 1=�! ¼ 10

is the width in time.

In order to solve numerically the quantum equations, we applied a Taylor ex-

pansion of time evolution operator Uð�tÞ ¼ expð�iHe�tÞ ¼ 1þPno

l¼1½ð�iHe�tÞl�
=ðl!Þ.24 The wave-function at time �t is j�ð�tÞi ¼ Uð�tÞj�ðt ¼ 0Þi. By employing

recursion, we obtain the wave-function at time t. For classical equations, we used

a prediction-correction second-order method.25 This method consists of two steps:

The ¯rst step consists of ¯nding a initial prediction Qnð�tÞ� at time �t, applying the

formula below:

Qnð�tÞ� � Qnðt ¼ 0Þ þ �t
dQn

dt

����t¼0: ð5Þ

In the second step, a correction formula is applied in order to get a better approxi-

mation to Qnð�tÞ

Qnð�tÞ � Qnðt ¼ 0Þ þ �t

2

dQn

dt t¼0 þ
dQ�

n

dt

����
�����t

� �
: ð6Þ

This method (Eqs. (5) and (6)) is used recursively to obtain QnðtÞ. Our main cal-

culations were carried out using �t ¼ 5� 10�3, and the sum of the Taylor expansion

of time evolution operator was truncated on no ¼ 12. It is worth mentioning that we

dealt with border e®ects by considering a self-expanded chain. This method can be

understood as follows: Whenever the probability of ¯nding the electron or the atomic

vibration at the right side of the chain exceeds 10�20, 10 new sites will be added
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to this position. Thus, we obtained the wave function norm with error j1�P
njcnðtÞj2j < 10�10 along the entire time interval. It is an important ¯rst check for

the accuracy of our numerical procedure. Traditionally, the classical equation

is solved by another method than the second-order Euler formalism (Eq. (3)).

In recognition of this fact, we decided to perform a second check for accuracy

employing a standard fourth-order Runge–Kutta (RK4)25 to solve Eqs. (2) and (3).

The results obtained using our numerical formalism showed no di®erence from those

obtained using (RK4), a widely used method.

The physical properties are obtained through the calculations of some typical

quantities, namely, mean position (centroid), mean square displacement and the

Shannon entropy de¯ned as 23,26

hnðtÞi ¼
X
n

ðnÞjcnðtÞj2; ð7Þ

�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

ðn� hnðtÞiÞ2jcnðtÞj2
r

ð8Þ

and

SðtÞ ¼ �
X
n

jcnðtÞj2 ln½jcnðtÞj2�; ð9Þ

respectively. The centroid for a given time t represents the mean position of

the electron. The mean square displacement and the Shannon entropy give some

estimates of the number of sites in which the wave packet is spread at time t.

For extended states in a chain with N sites, we have �ðt ! 1Þ / N and

Sðt ! 1Þ / lnðNÞ. For localized states, the situation changes drastically. In general,

localized eigenstates occur in systems with uncorrelated disorder. Therefore, within

the standard Anderson Localization theory �ðt ! 1Þ / l0 and Sðt ! 1Þ / lnðl0Þ
where l0 is close to the largest localization length. Due to the presence of disorder, l0
is of the order of a few sites and, therefore, both � and SðtÞ converge to small

constants.

3. Results and Discussion

We start the numerical integration using a small chain (about Nðt ¼ 0Þ ¼ 200 sites).

During the integration, the NðtÞ increases until 104 sites (or more). In our calcula-

tions, we will use W ¼ 2. We emphasize that the mean value of the electronic hop-

ping is about 1. Therefore,W ¼ 2 represents an amount of disorder at the same order

of the band width, i.e. an intermediate disorder in the one-dimensional (1D) model.

We also emphasize that we adopted pumping at low-frequencies ! � 1. High fre-

quencies do not propagate easily within disordered systems.27 A summary of our

calculations for all quantities is shown in Figs. 1(a)–1(f). In plots (a) and (b), we have

electronic Centroid, in ((c) and (d)) the mean Square displacement versus time t and
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Fig. 1. (a), (b) Electronic centroid, (c), (d) mean square displacement versus time t and (e), (f) Shannon
entropy versus lnðtÞ for W ¼ 2, ! ¼ 0:4; 0:8 and � ¼ 0:; 0:1; 0:2; 0:3.
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in ((e) and (f)) the Shannon Entropy versus lnðtÞ for W ¼ 2, ! ¼ 0:4; 0:8 and

� ¼ 0:; 0:1; 0:2; 0:3.

We observe that for � ¼ 0 all quantities saturate for a long time. It is a direct

consequence of the presence of disorder within our model. In 1D systems with un-

correlated disorder, all eigenstates are localized and therefore an initially localized

wave-packet evolves to a ¯nite region of the same order of the largest localization

length.13 The saturated behavior found in centroid, in mean square displacement and

in the Shannon entropy is in good agreement with the previous statements.

As the electron-lattice parameter � increases, we notice a radical change of our

results (see Figs. 1(e) and 1(f) for (� > 0). All quantities increase as the time evolves.

The time-dependent behavior of hni, � and SðtÞ suggests that acoustic pumping

interacts with electron-lattice coupling in a way to stimulate electronic transport

along the chain (acoustic wave produces lattice vibrations on a small number of

atoms in a short period of time, which seems to push electron to the right side of the

alloy). Within the time-scale computed here, our analysis suggests that the electronic

dynamics is sub-di®usive with hnðtÞi / t1=3 and � / t0:3 (the Shannon Entropy fol-

lows a similar sub-di®usive trend with SðtÞ � a0 þ 0:3 logðtÞ). In Figs. 2(a) and 2(b),

we plot the wave function jcnðtÞj2 versus n and t for W ¼ 2, ! ¼ 0:4 and � ¼ 0:0(a)

and � ¼ 0:4(b). This plot gives us a pedagogical overview of the electronic dynamics

along the lattice. In the absence of electron–lattice interaction (� ¼ 0), electron

remains trapped around the initial position (n ¼ 0). For � > 0, we observe that,

despite the presence of uncorrelated disorder within the chain, electronic wave

function gets spread. We emphasize that it is a clear breakdown of the standard

Anderson localization theory.

Aiming to understand the electronic dynamics and its relation with the

lattice dynamics better, we investigate some speci¯cities of the lattice deformation

in detail. So, we compute a kind of generalized probability of local deformation

fn. This quantity is obtained as follows: ¯rst, we compute the quantity:

xn ¼ ð1� e½�qnþqn�1�Þ.2 Second, we normalize xn to get generalized probability of local

deformation fn, i.e.:fn ¼ xn=
P

nðxnÞ. With this quantity, we can also compute the

mean position of the lattice vibration (hnvi ¼
P

nnfn) and also its dispersion

 0
 3000

 6000
 9000

 0
 50

 100
 150

 0
 0.1
 0.2
|cn(t)|2

tn

|cn(t)|2

(a) � ¼ 0:0, ! ¼ 0:4, � ¼ 0:2

 0
 3000

 6000
 9000

 0
 50

 100
 150

 0

 0.1

 0.2
|cn(t)|2

tn

|cn(t)|2

(b) � ¼ 0:4, ! ¼ 0:4, � ¼ 0:2

Fig. 2. (Color online) Wave function jcnðtÞj2 versus n and t forW ¼ 2, � ¼ 0:2, ! ¼ 0:4 and � ¼ 0 (a) and

� ¼ 0:4 (b). The presence of electron–lattice interaction promotes the spread of the electronic wave

function.
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(�v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

nðn� hnviÞ2fn
p

). In Figs. 3(a) and 3(b), we show our numerical analysis

about the vibrational energy propagation in this model succinctly. Figure 3(a) has a

plot of the generalized probability of local deformation fn versus n and t for a

chain with W ¼ 2, � ¼ 0:2, � ¼ 0:2 and ! ¼ 0:4. We see that acoustic pumping

clearly propagates along the chain in a similar trend, which was observed in Fig. 2(b).

The results for hnvi and �v are found in Fig. 3(b). Calculations were done for the

same case as in Fig. 3(a). We observed that the mean position of the lattice vibration

follows a di®usive dynamics. The mean square displacement of the energy wave-

packet has a super-di®usive behavior. These results about the energy dynamics de-

serve a more detailed discussion. By revisiting Ref. 27, we know that the evolution of

a initial localized momentum wave-packet within a classical disordered harmonic

chain (� ¼ 0) follows a similar super-di®usive trend.

First, we emphasize that the acoustic Gaussian pumping used here promotes a

kind of continuous injection of momentum for the lattice. Therefore, in spite of the

initial condition used here being formally distinct from the momentum injection used

in Ref. 27, however, both contain the same nature: injection of momentum. Another

important and new information in our calculations is the presence of super-di®usive

dynamics in disordered nonlinear chains. We emphasize that our calculations were

done for a classical lattice with quadratic and cubic (� > 0) interaction. Our results

suggest that the cubic potential does not change the kind of energy propagation in

the approximations used here.

Before the conclusion of our work, we show some brief results about nonlinearity

and disorder dependence. In Figs. 4(a) and 4(b), we show our calculations for the

mean position hni and the Shannon entropy SðtÞ versus time t for � ¼ 0:2, ! ¼ 0:4,

W ¼ 2 and � ¼ 0; 0:4; 0:8. Our initial analysis shows that the mean positions and

 0
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Fig. 3. (Color online) (a) The generalized probability of local deformation fn computed in a disordered

chain withW ¼ 2, ! ¼ 0:4 and � ¼ 0:2. (b) The mean position of the lattice vibration and its mean square

displacement for the same case as in (a).
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the Shannon entropy seem to decrease as the � is increased. Based on these calcu-

lations, the electron transport mediated by acoustic pumping seems to be more

e±cient in harmonic (� ¼ 0) chains. However, we recognize that the range of �, we

considered is not su±ciently wide to obtain, indeed, a more conclusive statement. We

stress that as the magnitude of the cubic potential is increased within disordered

chains, numerical instability increases and therefore it becomes complicated to solve

the di®erential equations. This numerical di±culty could be overcome by using high

order methods. However, computational time required to solve coupled equations

increases in a considerable manner. We stress that we have used the RK4 method in

order to ¯nd electronic dynamics. The computation time using RK4 was almost three

times the computation time required using the Euler-Taylor formalism. In Figs. 5(a)
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80
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(b)

Fig. 5. (a) Mean position hni versus t and (b) Shannon entropy SðtÞ versus lnðtÞ for � ¼ 0:2, ! ¼ 0:4,

� ¼ 0:4 and W ¼ 2; 4; 6.
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Fig. 4. (a) Mean position hni versus t and (b) Shannon entropy SðtÞ versus lnðtÞ for � ¼ 0:2, ! ¼ 0:4,

W ¼ 2 and � ¼ 0; 0:4; 0:8.
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and 5(b), we plot the mean position hni and the Shannon entropy SðtÞ versus time t

for � ¼ 0:4, ! ¼ 0:4, � ¼ 0:2 and W ¼ 2; 4; 6. We observe clearly that, in spite of the

decreasing the magnitude of hni and SðtÞ with the increasing of W , the main result

remains unchanged, i.e. a sub-di®usive dynamics is still obtained. We emphasize

again that the strength of disorder we are using here (W > electronic hopping) does

not represent a weak disordered regime. In fact, our model with W � 2 represents a

limit with intermediate/strong intrinsic disorder. Therefore, our calculations sug-

gests that the electron–phonon coupling and the pumping of gaussian acoustic pulses

can breakdown the Anderson localization in 1D systems even in the presence of an

intense amount of disorder.

4. Summary and Conclusions

In this work, we studied the problem of electronic dynamics in a disordered nonlinear

chain under e®ect of a Gaussian wave-packet pumping. By using a simpli¯ed model,

we had the opportunity to investigate the competition between intrinsic cubic mass–

mass interaction, on-site disorder and the pumping of an acoustic pulse. In our

model, the electron was restricted to move on a nonlinear Fermi–Pasta–Ulam dis-

ordered chain. The e®ect of electron–phonon interaction was considered by assuming

that the electronic hopping depends on the nearest-neighbor atomic distance. We

also assumed that the position of the atom at the extreme left side of chain vibrates in

a Gaussian pulse. Using this procedure, we simulated the pumping of a external

acoustic mode. In our theoretical formalism, the electronic dynamics and the non-

linear atomic vibrations had two distinct formalisms: the former had a quantum

mechanics treatment, while the latter was described by standard classic physics

framework. We studied the electronic propagation by numerical analysis of the

coupled quantum/classical equations. We applied a second-order Euler method to

solve the classical dynamics and a Taylor formalism to solve one-electron equations.

Our calculations showed that it is possible to move noninteracting electrons in 1D

models with nonlinearity and disorder using an external acoustic mode of atomic

vibration. We also investigated the vibrational energy dynamics within this mode.

Our results suggests a standard super-di®usive dynamics even at the presence of

nonlinear forces. We also did a brief comparison of our results with those obtained for

an harmonic lattice. In our calculations, nonlinearity brings di±culties to the elec-

tronic transport. We hope that these calculations would stimulate further progress in

the ¯eld of electronic transport mediated by acoustic wave pumping and electron–

phonon coupling.
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