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We investigate in detail the transference of quantum states in a disordered channel.

We consider a one-dimensional tight-binding model consisting of a source S connected

to a receiver R throughout a disordered channel. The disorder distribution contains a
single tunable spatial correlation length. We demonstrate that the disorder correlation

length plays a relevant role within the localization properties of the channel. The hopping

parameter between the sites S and R and the channel are also adjustable parameters. We
investigate the possibility of transference of quantum states along this quantum channel

model and describe the optimal conditions for the occurrence of a high fidelity process.
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1. Introduction

In recent years, theoretical and experimental research on quantum information pro-

cessing have become a very active field in physics.1–9 Among the many challenges

to be addressed in order to make quantum devices more practical, there is the de-

velopment of robust quantum-state transfer (QST) protocols between processing

units.10–12 Most of the existing communication protocols are based on photons due

to their weak interaction with the environment and groundbreak achievements in

fiber technology. On the other hand, when dealing with quantum devices it is not

always feasible to convert photons back and forth to stationary qubits.13

One of the ways to implement QST with minimum degree of control is by engi-

neering the quantum channel and dynamics beforehand on stationary qubits. The

goal is to prepare an arbitrary quantum state at one location and see whether the

natural temporal evolution of the system is capable of bringing it to another loca-

tion with good fidelity. A burst of QST schemes came forth after S. Bose proposed

the use of spin-1/2 chains as channels for short-distance communication.14 One so-

lution is to design the couplings of the spin chain so that quantum-state transfer

as well as generation of entanglement become size-independent.14,15 This can be

done upon considering long-range interactions. The idea is to create an optimiza-
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tion scheme to approximate the ideal behavior, which keeps the interaction strength

reasonably high while the sender and receiver are effectively detached from the rest

of the chain.13,16 Such a procedure is scalable with the size of the system as the

authors showed that both QST fidelity time becomes invariant and approach ideal

values.13,16

Recently, a single-qubit QST protocol was addressed on an anisotropic Heisen-

berg XXZ model in 1D, 2D, and 3D networks, where the couplings followed a power

law with a variable exponent.12 For regular networks, it is verified that the fidelity

increases with the dimensionality of the network for sufficiently large systems and

this becomes more evident in the case of 1D networks featuring long-range inter-

action. In addition, it has been shown that such class of systems are more robust

against temperature-induced disorder than those having short-range interactions.12

A high degree of resilience against disorder has also been reported in a QST

protocol defined on a Su-Schrieffer-Heeger (SSH) chain.17 This scheme combines

an immediate change in the state of the topological border with fine tuning of

interactions between nearest neighbors. It is shown that the presence of spatial

correlations in the disorder distribution aids to the robustness of the protocol.17 In

general, the role of disorder in QST protocols is something that cannot be ignored

and has been extensively investigated in recent years.18–20 An immediate result is

that most of the QST protocols are robust to uncorrelated disorder to some extent,

specially those involving weak links between the sender/receiver and the channel.21

However, things get more involved in the presence of correlated disorder, when its

degree of correlation can actually improve the QST performance.19

In this work we consider a disordered one-dimensional model featuring tunable

spatial correlations working as the communication channel between two parties S

and R. We seek to optimize their communication in the presence of such disorder

by adjusting the coupling strength between the channel and them. The paper is

organized as follows. In section 2, we introduce the Hamiltonian of the model, show

how to generate the correlated disorder potential and introduce the main quantities

we are going to use to analyze the localization and quantum state transfer process.

Section 3 contains our numerical results together with a detailed discussion of the

role played by the disorder correlation length on the localization and QST process.

A summary and conclusions is offered in Sec. 4.

2. Model and Methodology

In the following, we will consider a channel model that consists of a one-dimensional

chain of atoms, built from a source, |S〉, a main channel C with L atoms, and a

receiver |R〉. The full model contains L+ 2 atoms. The Hamiltonian is given by:

Ĥ = |S〉 〈S| εS + g(|S〉 〈2|+ |L+ 1〉 〈R|) + |R〉 〈R| εR + Ĥc, (1)

where g is the hopping amplitude between the atoms |s〉 and |2〉 and between |L+ 1〉
and |R〉. εS and εR are the on-site potentials on the source (S) and the receiver
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Fig. 1. Communication channel between Sender and Receiver sites. The channel is composed of
L sites with random on-site potentials with a typical disorder correlation length.

(R). The channel Hamiltonian Ĥc is given by:

Ĥc =

L+1∑
i=2

εi |i〉 〈i|+ T

L+1∑
i=2

(|i+ 1〉 〈i|+ h.c), (2)

where T = 1 is the hopping amplitude between the atoms within the chain. The set

{εi} is a series with correlated disorder generated following the procedure below.

Initially, we consider the correlated sequence defined as:

yi =

L∑
j=1

zj/(1 + |i− j|/A)2, (3)

where zj is a random number belonging to the range [−1, 1], and A is an adjustable

parameter that controls the correlation degree within the sequence of number {yi}.
Therefore, the on-site disorder distribution εi is constructed as follows:

εi = (yi − 〈yi〉)/
√
〈y2

i 〉 − 〈yi〉
2
. (4)

It is important to note that the procedure we are discussing is applicable only when

the value of A/L is finite. Our focus is on channels with correlated disorder. The

situation where A/L → ∞ is a limit that does not involve any disorder. There-

fore, we will not consider this scenario. The auto-correlation of the set {εi} can be

obtained by:

C(r) = 〈εiεi+r〉 − 〈εi〉 〈εi+r〉 , (5)

where 〈εiεi+r〉 is given by:

〈εiεi+r〉 =
1

L− r

L−r∑
i=1

εiεi+r

〈εi〉 =

L∑
i=1

εi/L

Figure 2 shows a graphical representation of the auto-correlation function versus

the distance, calculated for several values of A. Notice that the auto-correlation

function decreases rapidly with distance for small values of A. For larger values of

A, the correlation function exhibits a slower decay. In all cases, the auto-correlation

function decays exponentially, a characteristic of disordered correlated systems with
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Fig. 2. Auto-correlation function of the on-site potentials series for different values of A. The

typical exponential decay length is proportional to the disorder control parameter A.

a typical correlation length. In the present model, the adjustable parameter A acts

as this typical length scale of the disorder distribution. The diagonalization of the

Hamiltonian provides the eigenstates |Ψi〉 and the eigenvalues Ei. We can expand

the eigenstates on the orbital basis (|Ψi〉 =
∑L

n=1 f
i
n |n〉). Participation (P ) is a

number that measures the degree of the localization of all eigenstates. For the i− th
eigenstate the participation is given by:22–24

P i =
1∑

n

|f in|4
(6)

We emphasize that the participation number represents the typical number of sites

on which the quantum state is effectively distributed. For localized states, the par-

ticipation number remains finite (roughly independent of L). For extended states,

the participation number is proportional to L1 (considering the topological dimen-

sion d = 1). Another measure to obtain the degree of localization of the system is

the Shannon entropy, which is given by:25

Si = −
∑
n

|f in|2log(|f in|)2 (7)

At the logarithm scale, the Shannon entropy exhibits a finite-size scaling similar to

those obtained for the participation number. For extended states, S is proportional

to log (L) while S is roughly a constant for localized ones.

We also analyzed the transference of quantum states along this quantum channel

model. The procedure consists of solving the time-dependent Schrödinger equation

to obtain the time-dependent wave-function at the site L + 2. To obtain the time-

dependent wave-function |φ(t) >=
∑

nXn(t) |n〉 we used the evolution operator
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procedure |φ(t)〉 = e−iHt |φ(t = 0)〉. By applying the evolution operator,26 we obtain

the time-dependent wave-function components Xn(t) as:

Xn(t) =
∑
j

{Ajf
j
ne
−iEjt} (8)

where Aj =
∑

lXl(t = 0)f jl . To investigate the transfer of quantum states, we

calculate the concurrence and Fidelity. The concurrence27 between the source S

and receiver R is expressed as

C(t) = 2|X1(t)XL+2(t)|, (9)

which goes from 0 (no entanglement) to 1 (maximum entanglement). The Fidelity

function is defined as20

F (t) =
1

2
+
|XL+2(t)|

3
+
|XL+2(t)|2

6
, (10)

which measures how the quantum state at the Receiver is similar to the initial state

at the Sender. It becomes unity when state at the receiver reproduces the initial state

at the Sender, approaching 1/2 in the absence of fidelity. In the following, we will

focus on the maximum concurrence Cmax = max[C(t)] and the maximum fidelity

Fmax = max[F (t)] conditions. In our calculations, we have used a time interval

t > 6 × 105 and about 1000 distinct disorder realizations to compute Cmax and

Fmax. Whenever the transference of quantum states occurs with good efficiency,

the functions Cmax and Fmax become close to unity. However, if quantum state

transference does not succeed, Cmax ≈ 0 and Fmax ≈ 0.5.

3. Results

We start our analysis by showing a detailed study of the localization aspects of

eigenstates in the presently considered correlated disordered channel. We perform

an exact diagonalization of the complete Hamiltonian for several values of L and

A. We have performed the complete diagonalization using a Lapack routine called

SSTEDC28 in Fortran. Additionally, we have employed another Lapack routine

called SSTEGR28 to diagonalize around the band center partially. This last routine

enables considering large system sizes in less computational time. In figure 3 we

present the participation versus energy for different A values. When A assumes small

values, the participation has almost no dependency on L. However, as A becomes

larger, we notice that, around the band center, exists a more evident dependency

with L (see, for example, the curves for A = 80 and A = 160). To explicitly

evaluate the role played by the correlation length A, we study the behavior of the

maximum participation, in the center of the band, for several chain sizes and corre-

lation lengths A, as seen in figure 4(a). Our calculations averaged the participation

number using more than 200 distinct disorder samples. Therefore, the average par-

ticipation number is given by Pmax =
∑
|Ej |<∆E P

j/NE with ∆E = 0.05 and NE

the number of states with energy between −∆E and ∆E. Calculations were done
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Fig. 3. The participation number versus E for L = 500 up to 8000 and several values of A. For

large A values, the participation length scales with the chain size, a typical behavior of channels

presenting effectively delocalized eigenstates.
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Fig. 4. a) Maximum participation number (Pmax) versus L for A = 50 up to 1000. b) Data
collapse of all curves of (a) using a universal scaling function Pmax/A = f(L/A). The initial

linear growth accounts for the regime of effectively delocalized states. The saturation represents

the ultimate Anderson localization regime.

using L = 1000 up to 64000. and A = 50 up to 1000. Our results indicate that, inde-

pendent of the value of A considered here, the size dependence of the participation
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Fig. 5. Shannon entropy versus L for L = 1000 up to 64000 and A = 50 up to 1000. The main
trends are in good agreement with the results obtained for the participation number.

number suggest Anderson localization. We can observe that Pmax, even for large

A, is weakly dependent on L. To extract the universal character, we proceed with

a finite-size scaling analysis. We re-scale both axis (Pmax and L) by the value of A.

Using this re-scaled variables (Pmax/A and L/A) we collapse all curves in a unique

universal curve (see fig.4(b) ). Therefore the re-scaled participation number Pmax/A

exhibits a typical behavior : Pmax/A = f(L/A). The single branch within the data

collapse confirms the localized nature of the eigenstates. For L/A >> 1 (the regime

of short correlation length A << L), the participation becomes independent of the

system size, a typical behavior of localized states. Further, it becomes proportional

to the disorder correlation length A. On the opposite regime of L/A << 1 (long

correlation length A >> L), the participation becomes independent of A, scaling

proportionally to the channel size L, a characteristic of effectively extended states.

In fig. 5 we plot our results for the Shannon entropy (S) versus L considering L

from 1000 up to 64000 and A = 50 up to 1000. The main results are qualitatively

similar to those obtained using the participation number. Even for large A, the

Shannon entropy seems almost independent of L (in the limit of large L >> A).

Based on this analysis, we can conclude that this model does not contain truly

extended states in the thermodynamic limit. However, the effective localization

length of eigenstates around the band center increases until it reaches values of

the same order as the system size for large A. This regime favors the possibility of

transferring the quantum state from the Sender to the Receiver site.

Let us investigate investigate the transference of quantum states around ε = 0 in

more detail. We initially present some results for the normalized probability densities

P (Fmax) and P (Cmax). We emphasize that we calculate both quantities Fmax =

max(F (t)) and Cmax = max(C(t)) for times up to 6 × 105 for over 1000 distinct

disordered samples. We also emphasize that in our first numerical experiment, the
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Fig. 6. Normalized probability distributions P (Fmax) and P (Cmax) for A = 1, 40 and g = 0.01.
Calculations of Fmax = max(F (t)) and Cmax = max(C(t)) were done using time runs up to

6 × 105 and over 1000 distinct disorder realization.

on-site energy of the source (S) and the receiver (R) was chosen as εS = εR = ε = 0.

From (Fmax) and (Cmax) reached for each sample, we calculate the normalized

distribution P (Fmax) and P (Cmax) shown in fig .6 for A = 1 and A = 40. For A = 1,

the probability distribution suggests that the most frequent values of Fmax and

Cmax are roughly about 0.5 and 0. These results indicate the absence of quantum

transference from S up to R. For A = 40, our calculations indicate that an efficient

transference along the channel is possible. The probability distribution indicates

that Fmax ≈ 1 and Cmax ≈ 1 are frequently obtained in our numerical experiments.

We also investigate the dependence of (Fmax) and (Cmax) on the on-site energy

in the Sender and Receiver sites εS = εR = ε. In figure 7 on the left, we have the

representation of the average maximum fidelity versus ε. We calculate the fidelity

for various values of A. When A = 1, the fidelity is approximately 0.5, and the

system does not show a reliable QST. However, for higher values of A, the fidelity

approaches 0.9 around ε = 0 (the average on-site potential along the channel), offer-
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Fig. 7. Maximum Fidelity (left) and Concurrence (right) versus the Sender and Receiver on-site

potential εS = εR = ε for L = 60, g = 0.01, and A = 1 up to 80. We observe that both quantities
indicate the absence of quantum transference for A = 1. For large A, one reaches an effective

quantum state transference with good fidelity.
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Fig. 8. Maximum Fidelity and Concurrence for ε = 0 versus the strength g of the coupling

between the sender and receiver sites with the communication channel, for A = 40, L = 60 and

120. For g << 1, both quantities (Fmax and Cmax) approach unit, thus indicating the existence of
efficient quantum state transference. For g ≈ 1 no effective quantum transference can be realized.

ing a good QST. This same result can be seen in the concurrence versus ε depicted

in figure 7 on the right. For A = 1 we have the concurrence of approximately 0.2,

showing that the system does not present enough entanglement between S and R.

For higher values of A the entanglement grows, approaching maximum entangle-

ment around ε = 0. Therefore, when the system presents strong correlations within

the disorder distribution, the localization length of eigenstates within the channel

becomes large (in general, of the order of the system size used here). This feature
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Fig. 9. Pmax
t , fSR and fc versus g for ε = 0, A = 40, and L = 60. For small g, our calculations

indicate that the states remain localized between the source and the receiver (in good agreement

with the large values of Fmax and Cmax obtained previously). For large g the states remain roughly

trapped inside the channel and, therefore, the quantum state transference can not take place.

promotes the appearance of QST with good fidelity.

Finally, we exam how the QST depends on the coupling parameters g between

the edges S and R and the disordered channel. In figure 8, we take the case with

A = 40 and evaluate the QST around ε = 0. We investigate both Cmax and Fmax as

a function of g. We noticed that the concurrence and fidelity decrease as we increase

the coupling with the channel. We have obtained the same results for L = 60 and

120. However, for larger chains, Cmax and Fmax become smaller due to the effect

of disorder. We can see that the transference of quantum states within this model

is almost absent for g > 0.1 where both Fmax and Cmax decreases considerably.

We can build a deeper understanding of this behavior in light of the wave-function

topology and its dependence on the value of g. For this analysis, we calculate three

functions: the maximum participation number of the time-evolving wave-function;

the maximum wave-function on S and R : fSR = max[|f1(t)|2 + |fL+2(t)|2] and the

maximum wave-function within the channel: fc = max[
∑L+1

n=2 |fn(t)|2]. All max-

ima are computed on a long time interval after the initial transient. These three

quantities, for ε = 0, can be found in fig 9. In the absence of coupling, the initial

wave-function remains trapped at the sender site, as expected. We observe that the

maximum participation number increases as we increase the value of g. In the small

g regime, the wave-function remains more compact. It just slowly leaks towards the

channel, eventually focusing at the Receiver. This reasoning is consistent with the

large value of fSR and small value of fc. For stronger couplings, the leaking from

the Sender towards the channel is faster and the wave-function spreads over the

chain before reaching the receiver. Due to the random nature of the potential, the

wave-function looses its coherence and no efficient transfer to the Receiver can be
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realized. Maximum value of fSR is smaller than unit, which means that the initial

state is never recovered on a long-time run.

4. Conclusions

In summary, we studied the transference of quantum states from a source S to a

receiver R connected by a channel with correlated disorder. The correlated disorder

inside the channel was constructed here based on a characteristic effective correla-

tion length A. We showed that the localization length of the channel eigenstates,

quantified by the participation function, presents a universal finite-size scaling be-

havior when the system size is measured in units of the disorder correlation length.

The eigenstates around the band center are localized over a finite segment of the

channel for L >> A while they become effectively extended for L << A, thus open-

ing the possibility of the quantum state transfer from the Sender to the Receiver

mediated by such disordered channel. We showed that, in the regime of L << A, an

efficient QST process can take place when the coupling of the Sender and Receiver

sites with the channel is weak. This favors a slow leaking from the Sender to the

channel, which possibilities the wave-function to reach the Receiver before loosing

the coherence with the initial Sender state. For strong couplings, the state at the

Sender is fastly transferred to the channel and, due to the random character of

the on-site energies, looses coherence before reaching the channel which impairs the

QST process. The present results support the general picture that a proper engi-

neering of the on-site potentials and coupling along a disordered channel has to be

considered to reach an efficient quantum state transfer for quantum communication

protocols.
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