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We study the nature of collective excitations in classical anharmonic lattices with aperiodic and
pseudo-random harmonic spring constants. The aperiodicity was introduced in the harmonic

potential by using a sinusoidal function whose phase varies as a power-law, � / n� , where n

labels the positions along the chain. In the absence of anharmonicity, we numerically demon-
strate the existence of extended states and energy propagation for a su±ciently large degree of

aperiodicity. Calculations were done by using the transfer matrix formalism (TMF), exact

diagonalization and numerical solution of the Hamilton's equations. When nonlinearity is

switched on, we numerically obtain a rich framework involving stable and unstable solitons.
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1. Introduction

The localization of vibrational modes in random low-dimensional lattices is a quite

general well-known issue with direct connections with Anderson localization theory

for electrons.1 Within the context of disordered harmonic chains, it was shown that

there are about
ffiffiffiffiffi
N

p
low-frequency nonlocalized modes, where N is the number of

masses in the chain.1�3 Besides these low-frequency extended modes, short- or long-

range correlations in the disorder distribution (spring constants or masses) lead to a

new set of nonscattered modes.4�8 Another interesting class of low-dimensional

classical systems that displays high-frequency extended modes is composed by ape-

riodic harmonic systems. The role played by a speci¯c aperiodic structure on the

localization properties and/or energy transport in harmonic chains was studied in

Refs. 9�11. In Ref. 11, two-dimensional harmonic lattices with masses following a

distribution similar to that used in Refs. 12, 13 were studied using the transfer matrix
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method and direct solution of Hamilton's equations. It was numerically demon-

strated that, due to the aperiodicity of the mass array, low-frequency extended

vibrational modes can exist. The dynamics of an initially localized excitation has

shown that, associated with the emergence of a phase of delocalized modes, a ballistic

regime takes place. One of the properties of harmonic chains is the possibility to

decompose the heat °ux into the sum of independent contributions associated to the

various eigenmodes.14

Although the degree of nonperiodicity is a key ingredient to understand the

behavior of the thermal conductivity in classical lattices, the presence of nonlinearity

also plays an important role on the energy °ux.15�30 In fact, the heat °ux in low-

dimensional classical anharmonic systems has been targeted by recent intense

investigations.15�27 The main issue here is whether these systems display ¯nite

thermal conductivity in the thermodynamic limit, a question that remains

controversial.17�23 One of the most known properties of nonlinear chains is the

presence of kink-soliton solutions. It is well-known that the solitonic e®ect is damped

by the presence of disorder. In fact, the scattering of solitons by disorder can be

measured through the reduction of localized energy within the localization region,

the time dependent acceleration of energy °ux and long-time behavior of the di®u-

sion coe±cient. The competition between disorder and anharmonicity was studied in

detail in Ref. 29. It was numerically demonstrated that, while anharmonicity pro-

motes energy transport through ultrasonic solitons, disorder decreases the propa-

gation due to the well-known Anderson localization.29 The soliton dynamics in a

Toda lattice with randomly distributed masses was studied in Ref. 30. The disor-

dered Toda's model consists of a one-dimensional chain of disordered masses where

each mass interacts with the others through a nearest-neighbor exponential poten-

tial. By using the inverse scattering transform, it was derived the e®ective equations

for the decay of the soliton amplitude that take into account radiative losses. It was

shown that the soliton energy decays as / N3=2 for small-amplitude solitons and

/ expð2NÞ for large-amplitude solitons.30 Moreover, in a more general context, the

presence of nonlinearity in nonperiodic solids represents a general challenge with a

rich framework of nonintuitive phenomena.

In this work, we focus on the e®ect of anharmonicity on nonperiodic classical

lattices. We study numerically the competition between aperiodic harmonic spring

constants and nonlinear quartic potentials. To produce an aperiodic distribution of

spring constants, it was used a sinusoidal function whose phase varies as a power-law,

� / n�, where n labels the positions along the chain. In the absence of anharmonic

couplings, we numerically demonstrate the existence of extended states and energy

propagation for a su±ciently large degree of aperiodicity. Calculations were done by

using the transfer matrix formalism (TMF), exact diagonalization and numerical

solution of the Hamilton's equations. By using numerical solutions of Hamilton's

equations, we consider the e®ect of nonlinear terms in the Hamiltonian. Our results

indicate the presence of stable soliton solutions when � < 1. In the pseudo-random
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limit � > 1, our calculations indicated the presence of unstable solitonic behavior.

The energy °ux in both regimes are considered.

2. Model and Formalism

We consider a one-dimensional anharmonic lattice of N masses, for which the clas-

sical Hamiltonian can be written as H ¼ P
n hnðtÞ, where the energy hnðtÞ of the

mass at site ðnÞ is given by

hnðtÞ ¼
P 2

n

2mn

þ 1

4
½�nðQnþ1 �QnÞ2 þ �n�1ðQn �Qn�1Þ2�

þ �

8
½ðQnþ1 �QnÞ4 þ ðQn �Qn�1Þ4�: ð1Þ

Here Pn and Qn de¯ne the momentum and displacement of the mass at site ðnÞ. Here

we will consider all masses identical with mn ¼ 1. The harmonic elastic constants �n

will be considered to follow a deterministic rule given by

�n ¼ V0 þ ½cosð�n�Þ�; ð2Þ
with � being an arbitrary rational number (� ¼ 0:1 here) and � being a tunable

parameter.12,13 From this sinusoidal form, one can control the degree of aperiodicity

in the sequence of hopping couplings. In what follows, V0 ¼ 2 will be taken in order to

avoid negative or null elastic constants. The main motivation for considering this

speci¯c model we study in this manuscript is that from the sinusoidal form we can

control the degree of aperiodicity in the harmonic forces. Within the context of on-

site diagonal terms, the regime � > 1 was called \pseudo-random" at reference.31 It

was shown that one electron eigenstates become localized in the presence of an

aperiodic potential on this regime. In our calculations, we assume there is no disorder

in the anharmonic contribution. Following Wagner and co-workers29 � � 10 may be

physically reasonable to simulate realistic nonlinear e®ects. For �n ¼ const: the

Eq. (1) is the Fermi�Pasta�Ulam (FPU) � model.32 The Hamilton's equations were

solved by using the exact eigenmodes of the harmonic system as the initial condition.

The dynamics of energy was studied in detail and the manifestation of solitons was

pointed out. Besides having shown the complexity of nonlinear systems, the (FPU) �

model also emphasized the value of computer simulations in the context of theo-

retical physics.29,32

3. Numerical Calculation: Harmonic Limit (´ ¼ 0)

In the absence of nonlinearity (� ¼ 0), we inserted a solution of the form Qn ¼
qn expði!tÞ and the displacement of the masses is written as29

�nqnþ1 þ �n�1qn�1 ¼ ð�n þ �n�1 � !2Þqn: ð3Þ
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Equation (3) can be solved using the (TMF) that is obtained by using a matrix

recursive reformulation of the displacement equation. The matricial equation is

qnþ1

qn

� �
¼

�!2 þ �n þ �n�1

�n

� �n�1

�n

1 0

0
B@

1
CA qn

qn�1

� �
¼ Tn

qn
qn�1

� �
: ð4Þ

The wave amplitude of the complete one-dimensional system is given by the product

of the transfer matrices MN ¼ QN
n¼1 Tn. The logarithm of the smallest eigenvalue

of the limiting matrix � ¼ limN!1ðM †
NQNÞ1=2N de¯nes the Lyapunov exponent

(inverse of localization length � ¼ 1=�). Further details about the computation of

this parameter can be found in Refs. 33, 34.a The nature of the vibrational modes can

also be investigated by computing the participation ratio �, since it displays a linear

dependence on the chain size for extended states and is ¯nite for exponentially

localized ones. � is de¯ned as6,8,10 �ð!Þ ¼ ðPN
n¼1 q

2
nÞ=ð

PN
n¼1 q

4
nÞ, where the dis-

placements qn are those associated with an eigenmodes ! of a chain of N masses and

are obtained by direct diagonalization of the N �N secular matrix A de¯ned by

An;n ¼ ð�n þ �n�1Þ, An;nþ1 ¼ Anþ1;n ¼ �n, and all other An;m ¼ 0.6,8,10 In our cal-

culations we compute the average participation ratio de¯ned as h�i ¼ 1
Nf

P!¼1:5
!¼0:5 �ð!Þ

where Nf is the number of acoustic modes within the interval ½0:5; 1:5�. Let us stress
that the bottom of the band was avoided in this sum because the participation ratio

of a low-frequency acoustic wave is large even in the presence of strong uncorrelated

disorder.28,29 We are interested in the existence of extended states apart the bottom

of the band. Therefore, h�i=N does not depend on N for extended modes and goes to

zero for localized ones. In addition, we study the dynamics of an initially localized

energy pulse by solving numerically the Hamilton's equations.6,8,10

_PnðtÞ ¼ � @H

@Qn

¼ �nðQnþ1 �QnÞ � �n�1ðQn �Qn�1Þ;

_QnðtÞ ¼
@H

@Pn

¼ PnðtÞ:
ð5Þ

By considering an initial excitation at the site n0 at t ¼ 0, we solve the di®erential

equations for PnðtÞ and QnðtÞ and compute the fraction of the total energy H at the

site n (fn ¼ hnðtÞ=H). Therefore, we can de¯ne the following time dependent

quantity �ðtÞ ¼ 1=ðPN
n f 2

nÞ. The function � measures the number of masses that

participate of the energy transport. This function is similar to the participation

number for electrons.8 By considering a uniform energy packet spread on a pure

harmonic chain with N masses, we have fn � 1=N, it means, � / N . Therefore we

conclude that �ðtÞ / t for the energy transport in a periodic harmonic chain.6,10

Moreover, we can extract information about the range of eigenmodes that partici-

pate of the energy dynamics through the spectral analysis of the momentum around

aFor a review see, e.g. Ref. 35.
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the chain end. We compute the Fourier transform of the displacement of the mass

at position nf (Að!Þ ¼ Qnfð!Þ). In our calculations nf � 0:9N . For transmitted

vibrational modes, Að!Þ > 0 and goes to zero for ¯ltered ones. We can obtain a

similar trend through the numerical calculation of the Fourier transform of the

fraction of the energy or momentum at mass nf (fnfð!Þ or Pnfð!Þ). When nonlin-

earity is turned on (� 6¼ 0), our goal is to understand the time evolution of originally

localized excitations. Therefore, in the anharmonic limit, we will consider an initially

localized impulse excitation (i.e. Pn ¼ �n;n0
andQn ¼ 0) and compute the spatial and

temporal evolution of the energy inside the lattice. We will basically compute the

amount of the total energy H at the site n (hnðtÞ).

4. Numerical Calculation: Anharmonic Limit (´ 6¼ 0)

In the presence of nonlinear terms (i.e. � 6¼ 0), our numerical formalism shall be

based on the numerical solution of the nonlinear Hamilton's equation:

_PnðtÞ ¼ �nðQnþ1 �QnÞ � �n�1ðQn �Qn�1Þ
þ �½ðQnþ1 �QnÞ3 þ ðQn �Qn�1Þ3�;

_QnðtÞ ¼ PnðtÞ:
ð6Þ

The spatial and temporal evolution of the energy of lattice vibrations will be described

by the energy hnðtÞ of the mass at site ðnÞ. The spatio-temporal shape of hnðtÞ was
previously used, both from the analytical and numerical point of view, to detect the

presence of solitonic waves in anharmonic periodic and disordered systems.28,29

5. Results

Lyapunov exponents of the eigenmodes were computed by using the transfer-matrix

technique for a long chain with N � 5� 106. In this method, the self-averaging e®ect

automatically takes care of statistical °uctuations. We estimate and control these

°uctuations following the deviation of the calculated eigenvalues of two adjacent

iterations. The ¯nally obtained data have statistical errors less than 5%. Eigenmodes

and eigenfrequencies were obtained by direct diagonalization of the N �N secular

matrix A with N up to 32 000. In addition we solved the Hamilton's equations for Qn

and Pn by using a standard fourth-order Runge�Kutta method36,37 with time step

dt � 10�3. Energy conservation was used to check the numerical accuracy at every

time step.

5.1. Harmonic limit

In Fig. 1 we plot the Lyapunov exponent 	 as a function of frequency ! for � ¼ 0:5,

� ¼ 3 and � ¼ 0. For � ¼ 3 the Lyapunov exponent vanishes close to the low-

frequency region (! ! 0) and it is ¯nite in the high-frequency region, as expected for

low-dimensional nonperiodic harmonic systems. For � ¼ 0:5 the Lyapunov is of the
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order of 1=N for ! < !c � 2. Therefore, our calculations indicate that in the absence

of anharmonic terms, this aperiodic lattice can support extended vibrational modes.

In Fig. 1(b) we show, in the absence of nonlinearity, the scaled average participation

number h�i=N versus the number of masses N for � ¼ 0:5 up to � ¼ 3. We numer-

ically demonstrate that there are extended vibrational modes with a divergent

participation number (� / N) for � < 1. In Fig. 2(a) we plot the time-dependent

participation function �ðtÞ as a function of time for an aperiodic harmonic lattice

with � ¼ 0:5 (solid line), and � ¼ 3:0 (dotted). The initial excitation was Pn ¼ �n;n0

with n0 ¼ N=2 andQn ¼ 0. For � smaller than 1, a ballistic energy spread � / t2 was

obtained. However, when the degree of aperiodicity exceeds 1 a localized energy

transport takes place. In Fig. 2(b) we collect data from the spectral intensity of the

mass displacement nf (Að!Þ ¼ Qnfð!Þ) as a function of frequency ! for � ¼ 0:5,

� ¼ 3 and � ¼ 0. For � ¼ 0:5 all vibrational modes with ! > !c decay, and the

medium behaves as a ¯lter to transmit only the modes below frequency !c � 2. For

� ¼ 3, only the modes close to the low-frequency region (! ! 0) propagate along the

chain.

5.2. Anharmonic regime

We start considering the case of pseudo-random harmonic spring constants (� > 1)

and anharmonic interaction � ¼ 10 and 20 (see Fig. 3). The initial excitation was

Pn ¼ �n;n0
with n0 ¼ N=2 and Qn ¼ 0. We can see that both Anderson localization

0 1 2 3 4 5 6
ω

10-6

10-4

10-2

100

Γ

ν = 0.5
ν = 3

η=0

(a)

0 10000 20000 30000
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10-3

10-2

10-1

100

<
ξ>

/Ν

ν=0.5
ν=0.75
ν=1.5
ν=2
ν=3

(b)

Fig. 1. (a) Lyapunov exponent 	 as a function of frequency ! for � ¼ 0:5, � ¼ 3 and � ¼ 0. For � ¼ 3

the Lyapunov exponent vanishes close to the low-frequency region (! ! 0) and it is ¯nite in the high-
frequency region, as expected for low-dimensional nonperiodic harmonic systems. For � ¼ 0:5 the

Lyapunov exponent is about 1=N for ! < !c � 2. Therefore, our calculations indicate that in the absence

of anharmonic terms, this aperiodic lattice can support extended vibrational modes. (b) Scaled average
participation number h�i=N versus the number of masses N. As it can be noticed, we obtain extended

states with h�i / N for � < 1.
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and soliton-like solution for short times are present. For long times, a ¯nite fraction

of initial energy pulse remains trapped at the initial site n0. We observe that the

soliton-like modes appearing for initial times are not stable and disappear at long

time. We can also see that the anharmonicity reduces the intensity of the energy
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Ξ

ν=0.5
ν=3

t1

(a)

0 1 2 3 4
ω

0

2

4

6

8
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12

A
(ω

) ν=0.5
ν=3.0

(b)

Fig. 2. (a) Time-dependent participation function �ðtÞ as a function of time for an aperiodic harmonic

lattice with � ¼ 0:5 (solid line), and �y ¼ 3:0 (dotted line). For � < 1, a ballistic energy spread � / t2 was

obtained. However, when the degree of aperiodicity exceeds 1 a localized energy transport takes place.
(b) Spectral intensity of the displacement of the mass nf (Að!Þ ¼ Qnfð!Þ) as a function of frequency ! for

� ¼ 0:5, � ¼ 3 and � ¼ 0. For � ¼ 0:5 all vibrational modes with ! > !c decay, and the medium behaves

as a ¯lter to transmit only the modes below frequency !c � 2. For � ¼ 3, only the modes close to the

low-frequency region (! ! 0) propagates along the chain.

(a) (b)

Fig. 3. (Color online) The amount of the total energy H at the site n (hnðtÞ) for a pseudo-random

anharmonic chain with � ¼ 3 and � ¼ 10 and 20. The initial excitation was Pn ¼ �n;n0
with n0 ¼ N=2 and

Qn ¼ 0. We can see that both Anderson localization and soliton-like solution for short times are present.
For long time, a ¯nite fraction of initial energy pulse remains trapped at the initial site n0. The soliton-like

modes that appear for initial times are not stable and disappear at long times.
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trapped on the initial site. The results obtained for � > 1 are in perfect agreement

with those obtained for disordered anharmonic chains.29 In Fig. 4 we collect data of

hnðtÞ times t and n for an aperiodic anharmonic chain with � ¼ 0:5 and � ¼ 10 and

20. We have used an initial impulse excitation located at site n0 ¼ N=2. Our results

have shown that the initial excitation splits in two soliton-like modes that propagates

along the chain. Within our numerical precision, the energy intensity of both soliton-

like modes seems to remain constant. These results indicate that the energy

dynamics found on this aperiodic chain signals the presence of stable soliton solu-

tions. In addition we compute numerically the distance ds between the solitons (see

Fig. 5). Calculations were done for the same chain of Fig. 4. Our results indicate that

the solitons display a ballistic dynamics with ds / t. Due to the ¯nite fraction of

(a) (b)

Fig. 4. (Color online) hnðtÞ times t and n for an aperiodic anharmonic chain with � ¼ 0:5 and � ¼ 10 and

20. The initial excitation was Pn ¼ �n;n0
with n0 ¼ N=2 and Qn ¼ 0. Our results have shown that the

initial excitation splits in two stable soliton modes that propagates along the chain.

101 102 103

t

101

102

103

104

ds

k4 = 10

k4 = 20

ν = 0.5

ds ~t1

Fig. 5. The distance ds between the solitons reveals the ballistic energy °ux inside the anharmonic chain

(ds / t). Calculations were done for the same chain of Fig. 4.
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energy that both solitons carry, the linear behavior of ds indicate a ballistic °ux of

energy along the chain. Within the main literature of solitons it is well-known that

solitary waves do not obey the principle of superposition, and instead of interacting

through interference and simple addition, they collide in a nonlinear and complex

manner.29,32,38 In general lines, solitons collide with each other without change in

their shapes. In Fig. 6 we analyze this speci¯city for the solitary waves found here. To

promote the collision, we started with an initial excitation such that Pn and Qn are

null except PN=4 ¼ 1 and P3N=4 ¼ 1. Therefore we obtain the solitonic propagations

from the initial pointsN=4 and 3N=4 (see Fig. 6). We can see that the solitary waves

found in our aperiodic FPU model displays also the most famous signature of stable

soliton solution: collision without deformation.

6. Summary and Conclusions

In summary, we studied the e®ect of anharmonicity on nonperiodic classical lattices.

We considered numerically a classical chain with aperiodic harmonic spring con-

stants and nonlinear quartic potentials. To produce an aperiodic distribution of

spring constants, it was used as sinusoidal function whose phase varies as a power-

law, � / n�, where n labels the positions along the chain. In the absence of anhar-

monic couplings, we numerically demonstrated the existence of extended states and

energy propagation for large degrees of aperiodicity � < 1. For � < 1 the extended

vibrational phase and also the ballistic energy dynamics can be understood following

simple heuristic arguments. For large n, �n is very slowly varying and can be

regarded as a constant �0 locally. In this case, the eigenmode equation becomes

qnþ1 þ qn�1 ¼ ð2� !2=�0Þqn. Therefore, for � < 1 and in the absence of anharmonic

couplings the system shall behave as an ordered harmonic chain with extended

vibrational modes and ballistic transport. We also considered the e®ect of nonlinear

terms in the Hamiltonian. Our results indicated the presence of stable soliton

(a) (b)

Fig. 6. (Color online) Numerical experiment of soliton collision. We solve the Hamilton equation with an
initial excitation such that Pnðt ¼ 0Þ and Qnðt ¼ 0Þ are null except PN=4ðt ¼ 0Þ ¼ 1 and P3N=4ðt ¼ 0Þ ¼ 1.

The solitonic forms propagate from the initial points N=4 and 3N=4 and collide without changing their

shape, a clear signature of stable solitonic solutions.
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solutions in the aperiodicity regime with � < 1. The stability of solitary waves found

here was studied numerically following the amount of energy trapped and also

considering the soliton�soliton collision behavior. Within our numerical precision,

we found that the soliton waves found here can ballistically transport a ¯nite fraction

of the total energy and also collide without deterioration of their shape. In the

pseudo-random limit � > 1, our calculations indicated the presence of unstable

solitonic behavior. Our results on the existence of extended states and soliton like

waves for � < 1, despite having been obtained here for the speci¯c value of � ¼ 0:1,

are also valid for other rational values of �.
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