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In this paper we study the propagation of acoustic waves in a one-dimensional system with

nonstationary chaotic elasticity distribution. The elasticity distribution is assumed to have a
power spectrum Sðf Þ � 1=f ð2B�3Þ=ðB�1Þ for B � 1:5. By using a transfer-matrix method we solve

the discrete version of the scalar wave equation and compute the Lyapunov exponent. In

addition, we apply a second-order ¯nite-di®erence method for both the time and spatial vari-
ables and study the nature of the waves that propagate in the chain. Our numerical data

indicate the presence of weak localized acoustic waves for high degree of correlations (B > 2).
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1. Introduction

By considering a one-electron Hamiltonian, Anderson et al. have predicted the

absence of extended eigenstates in low-dimensional systems with uncorrelated dis-

order.1 Therefore, at the long time the width of the time-dependent wave-packet

saturates in a ¯nite region around the initial position. In a three-dimensional lattice,

the presence of weak disorder promotes the localization of the high-energy eigen-

modes.1,2 The prediction of exponential localization of all one-electron eigenfunctions

in one-dimensional (1D) systems can be violated when special short-range3�8 or long-

range9�11 correlations are present in the disorder distribution. From the exper-

imental point of view, these theoretical predictions were useful to explain transport

properties of semiconductor superlattices8 and microwave transmission spectra of a

single-mode waveguide with intentional correlated disorder.11

The localization theory applies also to the study of magnon localization in random

ferromagnets,12 collective vibrational motion of 1D disordered harmonic chains13,14

and acoustic waves in disordered media.15�24 In fact, the propagation of acoustic
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waves has attracted both theoretical15�23 and experimental24 interest. In general

lines, it was shown that such waves may be localized in media with uncorrelated

disorder. However, recent works point out the drastic e®ect of correlations within the

acoustic waves context.19�23 In Ref. 19 the propagation of acoustic waves in the

random-dimer chain was studied using the transfer-matrix method, exact analytical

analysis and direct numerical simulation of the scalar wave equation. The results

indicate that there exists a resonance frequency at which the localization length of

the acoustic wave diverges.19 It was also shown that only the resonance frequency

can propagate through the 1D media. Moreover, the wave propagation in random

system with power-law correlation function was investigated by using renormaliza-

tion group formalism as well as numerical methods.20�23 Calculations indicate that

there can be a disorder-induced transition from delocalized to localized states of

acoustic waves in any spatial dimension.

In this paper we study the propagation of acoustic waves in a 1D system with

nonstationary chaotic elasticity distribution. The elasticity distribution is generated

following the modi¯ed Bernoulli map.25 The map can generate a stationary and

nonstationary sequence by changing a single parameter B. For B � 1:5 the sequence

has a power spectrum Sðf Þ � 1=f ð2B�3Þ=ðB�1Þ. By using a transfer-matrix method we

solve the discrete version of the scalar wave equation and compute the Lyapunov

exponent. In addition, we apply a second-order ¯nite-di®erence (FD) method for

both the time and spatial variables and study the nature of the waves that propagate

in the chain. Our numerical data indicate the presence of weak localized acoustic

waves for high degree of correlations (B > 2).

2. Model and Formalism

Following Ref. 19, the acoustic wave equation in a random media is given by

@ 2

@t 2
 ðx; tÞ ¼ @

@x
�ðxÞ @ ðx; tÞ

@x

� �
; ð1Þ

where  ðx; tÞ is the wave amplitude, t is the time, and �ðxÞ ¼ eðxÞ=m is the ratio of

the sti®ness eðxÞ and the medium mean density m. We consider the wave amplitude

with a time-dependent harmonic form  ðx; tÞ ¼  ðxÞ expð�i!tÞ, where ! is the wave

frequency. We will use a FD method to write the acoustic wave equation in a dis-

cretized form. The spatial wave amplitude  ðxÞ is written as  i where x ¼ i�x. The

spatial derivative will be written as ð@ ðxÞÞ=ð@xÞ � ð i �  i�1Þ=�x. Following

Ref. 19 we will use m ¼ 1 and consider nearest-neighbor spacing �x ¼ 1. Therefore,

the right side of Eq. (1) can be written as

@

@x
�ðxÞ @ ðxÞ

@x

� �
� ½�ið iþ1 �  iÞ � �i�1ð i �  i�1Þ�: ð2Þ

Accordingly, the discrete 1D version of the wave equation can be obtained as

�ið iþ1 �  iÞ � �i�1ð i �  i�1Þ þ !2 i ¼ 0: ð3Þ
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The elastic constants �i will be generated following the modi¯ed Bernoulli map.25 We

brie°y introduce the modi¯ed Bernoulli map and the statistical properties of the

sequence. The map has been introduced to investigate the basic property of the

intermittent chaos and the Hamiltonian chaos by Aizawa et al.26:

Xiþ1 ¼ Xi þ 2B�1ð1� 2bÞX B
i þ b; 0 � Xi < 0:5;

Xiþ1 ¼ Xi � 2B�1ð1� 2bÞð1� XiÞB þ b; Xi � 0:5;
ð4Þ

where B is a bifurcation parameter which controls the correlation of the sequence and

b stands for the small perturbation which is set as b ¼ 10�13 in this paper. By

considering the map time scale as the number of iterations we can classify the map as

stationary for B < 2 and nonstationary for B > 2 (see Ref. 25). The stationary

property is recovered by the perturbation though the essential property remains

invariant for a long time i < ib, where ib � ð2bÞð1�BÞ=B (see Refs. 25 and 26). In the

following, we use �i ¼ 5þ 3ðXi � hXiiÞ. With the above procedure, the distribution

of �i has sharp edges for any value of B, which results on long-range correlated

sequences of strictly positive elastic constants even when very large chains are

considered.

3. Numerical Calculation

3.1. Lyapunov exponent

Equation (3) can be solved by using the transfer matrix formalism (TMF).13,19 The

TMF is obtained from a matrix recursive reformulation of Eq. (3). The matricial

equation is

 iþ1

 i

� �
¼

�!2 þ �i þ �i�1

�i
� �i�1

�i
1 0

0
@

1
A  i

 i�1

� �
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The wave amplitude of the complete 1D system is given by the product of the

transfer matrices QN ¼ QN
i¼1Ti. The logarithm of the smallest eigenvalues of the

limiting matrix � ¼ limN!1ðQ †
NQN Þ1=2N de¯ne the Lyapunov exponent � (inverse

of localization length � ¼ 1=�). Typically, we use up to N ¼ 223 transfer matrices to

compute the Lyapunov exponent. For extended states, � � 0 and is ¯nite for loca-

lized waves. A quantitative scaling analysis of the localization number can be derived

by using the average Lyapunov exponent h�i, de¯ned as

h�i ¼ 1

Nf

X!¼1:0

!¼0:5

�ð!Þ; ð6Þ

where Nf is the number of acoustic modes within the interval [0.5, 1.0]. To compute

the scaled average localization length, the bottom of the band was avoided because

the localization length of these low-frequency modes are large even in the absence of

correlated disorder.19 We are interested in the existence of extended states apart
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from the bottom of the band. Accordingly, h�i goes to zero extended modes and is

¯nite for localized ones. From the ¯nite-size scaling point of view, h�iN � constant

for extended states.

3.2. Dynamics

In addition, we apply the FD method with second-order discretization for both time

and spatial variables proposed in Ref. 19. Thus, in discretized form,  ðx; tÞ is written
as  n

i , where n denotes the time step number and i is the grid point number.19

Therefore, the second time derivative in Eq. (1) is given by19

@ 2

@t 2
 ðx; tÞ �  nþ1

i � 2 n
i þ  n�1

i

�t 2
; ð7Þ

where �t is the size of the time step. The spatial derivative will be written as

@
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�ðxÞ @ ðx; tÞ

@x

� �
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i�1Þ�: ð8Þ

In our calculations the spacing �x between two neighboring grid points was set

�x ¼ 1. In order to ensure the stability of the discretized equations we will use

�t < �x=100. We carry our dynamical analysis by sending a wave from one side of

the chain (L ¼ 0) and recording the transmitted wave close to the other side (pos-

ition L ¼ 20 000). We calculate the intensity spectrum of the transmitted wave at

position L, de¯ned as

Að!Þ ¼ 1

2

� �
j Lð!Þj2; ð9Þ

where  Lð!Þ is the Fourier transform of the transmitted wave  LðtÞ at position

L ¼ 20 000. For transmitted acoustic modes, Að!Þ > 0 and goes to zero for ¯ltered

ones. In our dynamical calculations the chain length was N ¼ 215.

4. Results

In Fig. 1 we show the Lyapunov exponent � versus ! computed for B ¼ 1:5 and 3,

and system size N ¼ 221. It should be stressed that the transfer-matrix method used

here automatically takes care of statistical °uctuations. The resulted data have

statistical errors less than 5%. We estimate and control these statistical °uctuations

following the deviations of the calculated eigenvalues of two adjacent iterations.2,19

For B ¼ 1:5 the Lyapunov exponent is vanishing only for ! ¼ 0. Therefore, for

! > 0, there are no truly delocalized states at this regime of weakly correlated

elasticity. However, for B ¼ 3, the Lyapunov exponent seems to be vanishing in a

wide region of low frequencies (�ð! < !c � 3Þ � 1=N). This calculation indicates the

possibility of a phase of low-frequency extended states for strongly correlated chaotic

elasticity distribution. To give further informations about this trend we plot in Fig. 2

the average Lyapunov exponent h�i versus B for N ¼ 221. In perfect agreements with
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Fig. 1, our numerical calculation of h�i indicates that h�i � 1=N for B > 2. In Fig. 3

we complete our analysis by solving numerically the wave equation for an initial

pulse �0ðtÞ ¼
P

!n<10 cosð!ntÞ and compute the intensity spectrum Að!Þ. As shown

in Fig. 3, all the modes with ! > !c decay, and the medium behaves as a ¯lter to

transmit only the modes below frequency !c � 3. We compute the intensity spec-

trum Að!Þ by using another kind of incident wave (e.g. �0ðtÞ ¼ exp½�ðt � t0Þ2=
2�2

t � cosð!tÞ with �t ¼ ð1=�!Þ ¼ 20 and ! within ½0; 10�) and no qualitative change in

the physical properties was found. Then the numerical evidence reported here,

obtained by using TMF and numerical solutions of wave equations, suggests that the

low-frequency modes in a 1D chaotic media with long-range correlations could be
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Fig. 1. Lyapunov exponent � versus ! computed for B ¼ 1:5 and 3, and system sizes N ¼ 221. For

B ¼ 1:5, only for ! ¼ 0, Lyapunov exponent is vanishing. For B ¼ 3, it seems that the Lyapunov is

vanishing for ! < !c � 2. This result suggests the possibility of a phase of low-frequency extended states
for strongly correlated limit.
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Fig. 2. Average Lyapunov exponent h�i versus B for N ¼ 221. For B > 2, h�i � 1=N indicating at least a

weak localization degree induced by long-range correlations.
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delocalized. However, we need to be careful about the nature extended/localized of

these acoustic waves. Both calculations presented until now were done using ¯nite

chains. Furthermore, we must note that the zero Lyapunov exponent does not

always mean the extended states. The power-law localized states also have the zero

Lyapunov exponents. Therefore we need to apply a ¯nite-size scaling procedure to

conclude about the nature of low-frequency modes. In Fig. 4 we plot the scaled

average Lyapunov exponent h�iN versus N for B ¼ 2:5 and 3. Let us stress that for

extended states h�iN should be proportional to a constant. From the other side,

h�iN / N for localized case. h�iN / N � with � < 1 signs power-law localized states.

Our calculations have clearly shown that the h�iN increase as the system size is
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Fig. 3. Intensity spectrum Að!Þ computed by solving numerically the wave equation for an initial pulse
�0ðtÞ ¼

P
!n<10 cosð!ntÞ. All acoustic modes with ! > !c decay, and the medium behaves as a ¯lter to

transmit only the modes below frequency !c � 3.
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Fig. 4. Scaled average Lyapunov exponent h�iN versus N for B ¼ 2:5 and 3. h�iN increases with the

system size thus indicating the absence of extended states at the thermodynamic limit.
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increased thus indicating the absence of extended states at the thermodynamic limit.

Within our numerical precision h�iN / N �ðBÞ where �ðBÞ decrease as B is increased.

In fact the chaotic distribution of elasticity weakens the degree of localization

however does not promote truly extended states.

5. Summary and Conclusion

We studied the propagation of acoustic waves in a 1D chaotic media with a long-

range correlated elasticity distribution. The elasticity distribution is generated fol-

lowing the modi¯ed Bernoulli map. The map can generate a sequence with a power

spectrum Sðf Þ � 1=f ð2B�3Þ=ðB�1Þ, where B is the single parameter that de¯nes the

Bernoulli map. By using a transfer-matrix method we computed the localization

length of the allowed acoustic waves. In addition, we have solved directly the scalar

wave equation for the propagation of an acoustic wave-packet. Our results have

shown that for B > 2, the localization length in the low-frequency region (! < !c)

becomes large, however not proportional to the system size. Therefore, the chaotic

distribution of elasticity weakens the degree of localization and can promote trans-

port in ¯nite systems. However, this model does not contain truly extended states.

We expect that the present work will stimulate further theoretical and experimental

investigations along this line.
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