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In this study, we will analyze how acoustic modes propagate within a rectangular system

exhibiting disorder in the compressibility term. Exponential correlations characterize the
distribution of disorder. Our main objective is to investigate the behavior and velocity

of harmonic mode packets as they traverse through this system. To achieve this, we will

use a high-order finite difference formalism. We will also examine how the propagation
is affected by the spectral structure of the incident pulse. We aim to understand better

the interdependence between the system’s correlations and the modes’ behavior.

Keywords: tight-binding model, correlated disorder, localization

PACS Nos.:

1. Introduction

In wave propagation, acoustic systems serve as quintessential models for under-

standing the intricate interplay between waves and the medium through which

they travel.1–7 While the behavior of sound waves in ordered, homogeneous media

has been extensively studied and understood, the dynamics in disordered systems

present a rich tapestry of complexity yet to be fully unraveled.8 In recent years,

exploring acoustic modes in disordered systems has emerged as a focal point, cap-

tivating researchers across disciplines ranging from physics to engineering and ma-

terials science.Disordered systems, characterized by irregularities or randomness in

their structure, pose unique challenges and opportunities for studying wave phenom-

ena. Unlike their ordered counterparts, where wave propagation follows predictable

paths and behaviors, disordered systems exhibit many intriguing phenomena such as

multiple scattering, Anderson localization, and mode hybridization.9,10 These phe-

nomena arise from the complex interplay between wave interference and disorder-

induced scattering, giving rise to rich and often unexpected wave dynamics.11 Un-

derstanding the behavior of acoustic modes in disordered systems holds significant
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implications across various fields. In materials science, for instance, the ability to

manipulate and control acoustic waves in disordered media opens new avenues for

designing novel materials with tailored acoustic properties, such as enhanced sound

insulation or wave guiding.12 In photonics and optoacoustics, disordered systems

offer platforms for developing robust and efficient light-matter interactions and de-

vices, promising advancements in areas like random lasers and optical communi-

cation.13 Moreover, studying acoustic modes in disordered systems extends beyond

fundamental research, with practical applications ranging from non-destructive test-

ing and medical imaging to seismic wave analysis and telecommunications.14,15 Re-

searchers aim to harness the inherent complexity of innovative technological solu-

tions and practical advancements by elucidating the intricate mechanisms governing

wave propagation in disordered media.

The problem of elastic waves in heterogeneous media characterized by off-

diagonal disorder and long-range correlations was investigated in ref.16 The authors

explore how these types of disorders and correlations affect the behavior of elastic

waves within the medium. In reference,17 researchers delved into the phenomenon

of acoustic wave localization within one-dimensional models with chaotic elasticity.

The authors scrutinized the behavior of localized modes within these chaotic sys-

tems through numerical calculations. Meanwhile, in ,18 authors explored the prop-

agation of acoustic waves in two-dimensional disordered media exhibiting specific

types of short- and long-range correlations. Our article embarked on a captivating

exploration of acoustic modes within disordered systems. This study investigates

the propagation of acoustic modes in a rectangular system afflicted by disorder in

the compressibility term. We will assume that the disorder distribution incorporates

exponential correlations in its composition. Our analysis will examine the propa-

gation of harmonic mode packets within this system. By employing a high-order

finite difference formalism, our investigation aims to discern the impact of these

correlations on mode propagation and velocity. Furthermore, we will explore how

this propagation correlates with the spectral structure of the incident pulse.

2. Model and Numerical calculation

The propagation of acoustic waves in two-dimensional N ×M disordered systems

with constant density at point ~r can be studied by solving the scalar wave equa-

tion.18

∂2φ(~r, t)

∂t2
= ~∇· [η(~r)~∇φ(~r, t)], (1)

where η(~r) represents the bulk compressibility of the medium at point ~r. The right

side of the previous equation can be expressed as:

~∇· [η(~r)~∇φ(~r, t)] = ∂xη(~r)∂xφ(~r, t) + ∂yη(~r)∂yφ(~r, t)

+ η(~r)[∂2xφ(~r, t) + ∂2xφ(~r, t)] (2)
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The acoustic wave equation in two dimensions can be discretized using finite dif-

ferences. Let’s define a rectangular mesh where the acoustic mode φ(~r, t) can be

represented as φni,j , where x = iδx, y = jδy, and t = nδt. The bulk compressibility

η(~r) will be also represented as ηi,j . We stres that i = 1, 2, 3, ..., N , j = 1, 2, 3, ...,M ,

δx = δy = 1 and δt ≈ 10−3. Utilizing fourth-order spatial and second-order tempo-

ral finite differences, the finite-difference equations can be written as:18–21

∂2φ(~r, t)

∂t2
≈
φn+1
i,j − 2φni,j + φn−1i,j

δt2
(3)

,

∂2xφ(~r, t) ≈
−φni+2,j + 16φni+1,j − 30φni,j + 16φni−1,j − φni−2,j

12(δx)2
(4)

and

∂xφ(~r, t) ≈
−φni+2,j + 8φni+1,j − 8φni−1,j + φni−2,j

12δx
(5)

We emphasize that we will use similar expressions for the partial derivatives with

respect to the y-direction:

∂2yφ(~r, t) ≈
−φni,j+2 + 16φni,j+1 − 30φni,j + 16φni,j−1 − φni,j−2

12(δy)2
(6)

and

∂yφ(~r, t) ≈
−φni,j+2 + 8φni,j+1 − 8φni,j−1 + φni,j−2

12δy
(7)

The partial derivatives of the bulk compressibility η(~r) can be written as:

∂xη(~r) ≈ −ηi+2,j + 8ηi+1,j − 8ηi−1,j + ηi−2,j
12δx

(8)

and

∂yη(~r) ≈ −ηi,j+2 + 8ηi,j+1 − 8ηi,j−1 + ηi,j−2
12δy

(9)

By combining equations 3 through 9 with equation 1, we can construct a recursive

finite-difference equation to obtain the acoustic wave φ(~r, t). In our model, the bulk

compressibility ηi,j will be distributed following a disorder distribution with intrinsic

exponential correlations. Initially, we will calculate the 2D distribution defined as:

ai,j =
∑
o,p

e−(
√

(i−o)2+(j−p)2/L0)[ρo,p] (10)

where ρo,p are N×M random numbers within the interval [−1, 1] and L0 represents

an effective intensity of the correlation degree inside the distribution. The summa-

tion over o, p indicated in the previous formula can be efficiently performed consid-

ering that, for a given pair i, j, only nearby terms are relevant; the exponential decay

eliminates terms for which |i−o| and |j−p| > 150. Thus, for each pair (i, j), we will
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sum the values of (o, p) while ensuring that |i−o| < 150 and |j−p| < 150. For values

of L0 ≤ 100, performing the summation using this technique does not alter the final

result in any significant manner. We emphasize that this formula is not defined for

L0 = 0. We normalize the 2D distribution ai,j such that 〈ai,j〉 = 0 and 〈a2i,j〉 = 1.

The bulk compressibility is then defined as ηi,j = tanh(ai,j)+2. This transformation

ensures that compressibility values remain positive and bounded, effectively avoiding

unphysical values such as zero or negative compressibility. Importantly, although the

hyperbolic tangent introduces nonlinearity, it is a smooth and monotonic function

that preserves the spatial structure of correlations originally present in ai,j. There-

fore, the exponential decay of correlations in the original disorder is maintained

in the transformed field ηi,j, ensuring that the essential features of the correlated

disorder are not lost. We would like to emphasize that exponentially correlated disor-

der is not only a theoretically convenient assumption, but also a physically relevant

feature in a wide range of real-world systems.22,23 In many disordered materials,

spatial fluctuations in physical properties such as stiffness, mass density, or re-

fractive index exhibit correlations over finite distances, resulting in an exponential

decay of spatial correlations. For instance, in porous media and composite materials,

structural heterogeneity is frequently modeled using exponentially correlated noise to

reflect the finite correlation length of material parameters.24 Similar behavior has

been reported in biological tissues and soft matter systems,25 as well as in models of

random elastic media.26,27 In seismology and geophysics, exponentially correlated

disorder is also employed to describe wave propagation in heterogeneous subsurface

structures.28 These examples highlight the physical significance and applicability of

exponentially correlated disorder when modeling acoustic or vibrational transport in

complex media.

We will evaluate the statistical properties of the distribution ηi,j by, for instance,

numerically computing the autocorrelation function defined as C(R = |~R|) = [<

η(~r)η(~r + ~R) > − < η(~r) >< η(~r + ~R) >]/[< η(~r)2 > − < η(~r) >2]. In addition to

autocorrelation, we will also calculate the probability distribution P (ηi,j) and the

average local disorder ∆. Local disorder is calculated as follows: we consider a sam-

ple of size N×M . We divide this sample into k boxes of size d0×d0 with d0 = 50. We

calculate the local disorder in each of these boxes as σk =
√
< η2i,j >k − < ηi,j >2

k

where <>k denotes an average within box k. The average local disorder is defined

as: ∆ =
∑

k σk/Nk where Nk is the number of boxes within the sample. In our cal-

culations, we will use N×M = 300×3000. In Figure 1, we present a brief summary

of the main results of this analysis. Figure 1(a) displays the autocorrelation function

C(R) × R for several values of the correlation length parameter L0 = 1, 10, 20, 30.

For L0 = 1, the autocorrelation decays very rapidly: even for small distances R > 0,

the values of C(R) drop close to zero, indicating that the disorder is essentially

uncorrelated beyond immediate neighbors. In contrast, for larger values of L0, the

decay of C(R) becomes slower, and the function maintains significantly positive

values over a broader range of distances. This behavior reflects the increased spatial
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coherence in the disorder: as L0 increases, the region over which the compressibility

remains positively correlated becomes larger. In other words, the spatial extent of

the correlated disorder grows with L0, as clearly illustrated by the widening of the

region where C(R) > 0. In Figure 1(b), we further visualize the local disorder of the

compressibility field, emphasizing how increasing L0 leads to smoother spatial fluc-

tuations and more extended correlated regions. It can be observed that ∆ decreases

as L0 increases. However, we notice a plateau in the region L0 > 50, indicating

that this type of correlated disorder still maintains effective local disorder. Finally,

in Figure 1(c), we present the probability distribution P (ηi,j) × ηi,j . Our results

suggest that, at least within the considered range, correlation does not drastically

alter the profile of the probability distribution. We have considered L0 ≤ 100 in our

calculations, and no significant changes were found in P (ηi,j). Within our study, it

makes little sense to consider L0 > 100 as we would have a system in which the

correlation length would be close to the sample dimensions.

3. Results

Our primary analysis of the eq. 1 involves a numerical experiment to directly mea-

sure a pulse’s propagation throughout the system. One side of our rectangular lattice

is coupled with oscillators that inject a pulse defined as φi,j=0(t) =
∑

ωn
Π cos(ωnt),

where Π represents a small amplitude (Π = 0.001), and ωn is a set of frequencies

within the interval [0.01, 5]. To analyze the propagation throughout the system,

we monitored the time evolution of the pulse by tracking the wave at position

[N/2,M/2]. Subsequently, we computed Z(ω) = |F (φN/2,M/2(t))|,19 where F (A)

represents the Fourier transform of function A. The quantity Z(ω) provides insights

into the frequencies propagating along the sample. If Z(ω) ≈ 0, the frequency ω

does not propagate along the lattice. Conversely, if Z(ω) > 0, our results demon-

strate numerically that acoustic modes with frequency ω evolve along the lattice

from one side to the other. We have used δt = 10−3 in our calculations. However,

we have also conducted some experiments with δt = 10−4 or 10−5 and the results

were the same. It is important to note that we do not apply our method directly

to the entire sample of size N × M . Instead, we will start with a size N × M0

system, where M0 = 100. As the wave reaches the right edge of the system, we will

increase the value of M0, which will be limited to a maximum value of M . The

final time we used in our study was around 2000 time units, during which the wave

at the final right edge was almost negligible. In fig. 2 we plot Z(ω) × ω consider-

ing L0 = 1, 10, 20, 30. We emphasize that we have monitored the acoustic wave at

position [N/2,M/2]; however, we start collecting data about φN/2,M/2(t) after the

wave arrives at this point, that is after the |φN/2,M/2(t)| becomes more significant

than 10−5. After this moment, we collected approximately 400 time units and then

performed the Fourier transform to calculate Z. We also utilize approximately 20

distinct samples to calculate averages and enhance the quality of curves. We can

observe in Figure 2 that the function Z for L0 = 1 becomes nonzero only in the
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Fig. 1. (a) Autocorrelation function C(R)×R for different correlation lengths L0. For L0 = 1,

correlations decay rapidly, while larger L0 values lead to broader regions where C(R) remains

significant, consistent with an exponential decay C(R) ∼ exp(−R/L0). (b) Average local disorder
amplitude as a function of L0, showing that spatial variability decreases as the correlation length

increases. (c) Probability distribution of the local compressibility ηi,j = tanh(ai,j) + 2, where ai,j
is a normalized random field with exponential correlations. The transformation ensures that ηi,j
remains positive and bounded, while preserving the original spatial correlations present in ai,j .

low-frequency region (ω < 0.5). This result is possibly a consequence of the An-

derson localization phenomenon. Low-frequency modes have long wavelengths and,

thus, are less sensitive to disorders present in the system. On the other hand, for

L0 > 1, a range of frequencies exists approximately in the region [0, 2] where Z is

nonzero. This result suggests that harmonic modes with frequencies in this range,

initially pumped along the sample, can propagate along the lattice. The function

Z becomes nearly zero again for ω >> 2 even for large L0. This result is similar

to previous findings in one-dimensional acoustic systems with correlated disorder.
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Fig. 2. Numerical calculations of Z(ω) × ω. We stress that Z(ω) is the modulus of the Fourier

transform of φN/2,M/2(t).

0 1 2 3 4 5

 ω

0

1

2

3

4

Z

 ω
0
=1

 ω
0
=1.5

 ω
0
=2

L
0
=50

a)

0 20 40 60 80

L
0

800

1000

1200

1400

t
0

 ω
0
=1

 ω
0
=1.5

 ω
0
=2

b)

Fig. 3. a) Z(ω) × ω for incident pulses with dominant frequencies ω0 = 1, 1.5, 2. We have con-
sidered a disordered sample with size 300× 3000 and correlation degree L0 = 50. b) We estimate
the time t0 that the pulses take to reach the position [150, 1500]. Our calculations indicate that

high-frequency modes are slightly slower. The velocity also increases as L0 is increased.

Generally, in 1D systems, acoustic modes become more propagative when correla-

tions are present in the disorder distribution.17 Here, we demonstrate that acoustic

modes, even those of high frequency, can propagate more freely in two-dimensional

systems with correlated disorder.

We will now investigate the dispersive properties of this model. We will change

the pumping term on the left-hand side of the lattice to a superposition of harmonic
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Fig. 4. (a-c) The modulus of the acoustic wave |φi,j | versus i and j for L0 = 50. The frequencies
considered are: a) ω0 = 1, b) ω0 = 1.5, and c) ω0 = 2. Additionally, we perform the same

calculations as in (a-c) but with a dominant frequency of ω0 = 1.5 and consider a sample with

uncorrelated disorder.

modes with frequencies around a given value ω0, meaning the pumping pulse will be

provided by φi,j=0(t) =
∑
|ωn−ω0|<0.05 Π cos (ωnt). In this manner, we will explore

the propagation of a narrow frequency pulse along this model. Let’s calculate the

Z function for this new pumping condition. Figure 3(a) shows the results of Z × ω
for L0 = 50 and ω0 = 1, 1.5, 2. The results clearly show that all three modes can

propagate along the system (in good agreements with results found in fig.2). This

type of experiment allows investigation into the propagation time scales for each

mode. For each value of L0 and ω0 under consideration, we will collect the time t0
for each mode to reach the observation position. The results can be found in Figure

3(b). The findings indicate that lower frequency modes are generally faster. Another

interesting observation is that the propagation speed increases slightly as the length

location increases; however, it appears to saturate for values of L0 > 20. There is

a slight decrease in the region with L0 > 20, but it is insignificant. Moreover, we

can see that, for L0 < 5 and ω0 = 2, the acoustic wave does not reach about the

middle of the sample, thus indicating robust localization at this limit. We would

like to provide an illustration of the acoustic wave profile for a long time before

concluding our study. In figures 4(a-c), we display the modulus of the acoustic wave

|φi,j | versus i and j for L0 = 50 and frequencies of ω0 = 1, 1.5, and 2, respectively. In

figure 4(d), we present the propagation of a high-frequency mode with a dominant

frequency of ω0 = 1.5 in a sample with uncorrelated disorder. To conduct the
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experiment shown in case (d), we generate a sequence of uncorrelated disordered

numbers gi,j with a Gaussian distribution having a mean of 0 and variance of 1.

We calculate the compressibility as ηi,j = tanh (gi,j) + 2. These calculations of

fig. 4 were performed for the final time approximately at tmax ≈ 800. We can see

that in the uncorrelated case, the mode becomes localized at the initial part of the

sample, with no propagation along the j direction. This is a direct consequence of

Anderson’s localization in disordered systems. In the case with correlation L0 = 50

(figs. 4(a-c)), we can observe that the acoustic pulse spreads out along the lattice.

4. Summary

Our study investigates the propagation characteristics of acoustic pulses in two-

dimensional systems with exponentially correlated disorder, as governed by equa-

tion 1. To probe wave propagation, we performed numerical simulations on a rect-

angular lattice with edge-driven boundary conditions. Pulses were injected along the

boundary through oscillators following the expression φi,j=0(t) =
∑

ωn
Π cos(ωnt),

where Π = 0.001 represents a small amplitude, and the excitation frequencies

ωn span the range [0.01, 5]. The dynamical response at the center of the system,

[N/2,M/2], was recorded to construct the spectral response function Z(ω), which

quantifies the amplitude of transmitted waves at each frequency. The spectral func-

tion Z(ω) serves as a diagnostic tool: values of Z(ω) ≈ 0 indicate frequency com-

ponents that are effectively blocked (non-propagating), while Z(ω) > 0 corresponds

to propagating acoustic modes. As shown in Figure 2, for uncorrelated disorder

(L0 = 1), the spectrum is sharply suppressed for ω & 0.5, consistent with strong

localization effects reminiscent of Anderson localization. In contrast, as the cor-

relation length L0 increases (L0 = 10, 20, 30), the range of frequencies capable of

propagation broadens substantially, reaching up to ω ≈ 2. This enhancement in

transport with increasing correlation length is consistent with previous findings in

1D disordered systems,5,21 and it underscores the fundamental role of spatial corre-

lations in shaping wave dynamics. Exponentially correlated disorder, in particular,

is not only analytically tractable but also physically realistic in a variety of complex

media, including porous materials, soft matter, biological tissues, and composite ma-

terials.22,24,28 These correlations introduce a finite memory scale into the system,

which can effectively suppress localization and restore partial wave coherence over

intermediate distances.

We further analyzed the system’s dispersive behavior by tuning the excitation to

harmonic modes centered around specific frequencies ω0 and monitoring the propa-

gation timescale across the lattice. Our simulations reveal that low-frequency modes

tend to propagate faster and more efficiently. Additionally, the propagation speed ex-

hibits a mild increase with L0, saturating for L0 & 20. For short correlation lengths

(L0 < 5) and higher excitation frequencies (ω0 = 2), the system enters a localized

regime, where waves are unable to reach the center of the lattice, further confirming

the suppressive effect of disorder in the absence of long-range correlations.
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Overall, our results highlight the importance of disorder correlations in control-

ling acoustic transport. The exponential correlation model, due to its physical rele-

vance and tunability, provides a powerful framework for understanding the transi-

tion between localized and extended vibrational states. Our findings are in qualitative

agreement with previous studies of vibrational and acoustic transport in disordered

systems,23,29,30 and they suggest new avenues for controlling wave propagation

through engineered disorder. We hope that the methodology and results presented

here inspire further research into wave dynamics in complex media with structured

randomness.
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