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We consider a square lattice with correlated random hopping terms under the effect of
an external electric field. We analyzed the dynamics of an initially localized electronic

wave-packet using a Taylor formalism to solve the Schrödinger dynamic equation. Our

calculations suggest that the correlated disorder promotes a fast electronic propagation
for intermediate times. When we switch on a static electric field, we observe an oscillatory

behavior similar to the well-known ”Bloch oscillations” phenomenology. We calculate the
frequency of these oscillations, and our results are in good agreement with those predicted

by the semi-classical approach used in crystalline lattices. Based on the local disorder

and in the absence of extended states in our model, we discussed the stability of these
apparent “Bloch oscillations”.
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1. Introduction

It is known that the eigenstates are extended in a pure periodic system. The nature

of an electron’s eigenstates is modified when lattice imperfections generate disor-

ders. The investigation of the dynamics of a particle in a quantum network becomes

more exciting with results from Anderson’s localization theory.1–21 In 1958, Ander-

son showed in his paper that disordered solids have localized electronic states for a

range of energy.4 It was demonstrated that in one-dimensional and two-dimensional

systems, for any degree of uncorrelated disorder, the electronic states are exponen-

tially localized.4,8 Localized and delocalized states can coexist in different energy

ranges for three-dimensional systems. But when dealing with low-dimensional sys-

tems, in which the disorder distribution presents intrinsic correlations, the eigen-

states can be delocalized. That is, the disorder correlation can create extended states

for some energy values .22–28 These studies aroused attention in investigating the

existence of a metal-insulator transition in low-dimensional systems that contain

the correlated disorder.
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One of the successful works considers a variant of the Anderson model with the

correlated disorder in the dimers distribution.23 For this model, the chain contains

hopping terms equal to t and two types of atoms with energies ε1 and ε2 (in units

of t). The results showed that there are extended states whenever one of the sites’

energies appears in pairs. In ref.24 it was demonstrated the possibility of mapping

polyaniline to a random dimer model. Furthermore, experimental investigations of

the effects of these dimer correlations on a GaAs-AlGaAs (SL) superlattice revealed

the emergence of extended states .25 The ref.26,27 theoretically demonstrated the

emergence of a band of extended state in the Anderson model with long-range

correlations without a characteristic length scale. Furthermore, experimental inves-

tigations, such as those performed on rectangular waveguides of microwave trans-

mission, helped prove the existence of extended states in low-dimensional systems

with scale-free correlated disorder.28 Some stochastic processes in nature, such as

the nucleotide sequence of DNA molecules, are known to generate long-range, free-

scale, correlated random sequences .29,31 Refs.30,31 pointed out the importance of

long-range underlying correlations for electronic transport in DNA. In ref.31 was

considered a one-dimensional Anderson model with long-range correlated disorder

distribution in hopping and on-site energies. The model assumes a binary alloy with

its nearest on-site and hopping energies mapped to two values. The results showed

that the localization length increases when the intrinsic correlations also increase.

Anderson’s localization model of non-interacting atomic gases in disordered opti-

cal lattices describes the effect of a simple cubic optical lattice with a superimposed

isotropic blue-detuned optical speckle field .32 The results showed a dependence

on the intensity of critical disorder, where the entire band becomes localized, with

the localization length .32 In ref.33 the phase diagram for the disorder-correlated

Hubbard model at half-filling in 1D is investigated. The model, without the dis-

order, presents a metallic phase and an insulating Mott phase. According to the

Anderson model, the metallic phase becomes unstable and localizes when an arbi-

trarily low degree of disorder is introduced. The identification and characterization

of these phases make the model attractive for optical networks and cold atoms in-

vestigations. It was observed in ref.,34 which considers a model of a one-dimensional

conductor with the correlated disorder, the appearance of extended states, and a

non-zero Landauer resistance in the limit of infinite size contrary to the predictions

of scale theory of Anderson’s localization. Also discussed is a possible construc-

tion of a delocalization structure by stacking films and a one-dimensional photonic

crystal to build a narrow-band light filter.

In ref.,40 the interaction between Anderson localization and nonlinear effects

was studied. Through a nonlinear transmission line carried out in the Toda lattice,

randomness is inserted in the inductance of the transmission line. Then, the stress

propagation dynamics are investigated. It was observed that voltage propagation

depends on the disorder and verifies that it promotes Anderson localization when

the disorder is sufficiently strong. It was also noted that non-linearity increases

localization. Experimental studies on Cu films have revealed the first evidence of
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charge transport involving weak Anderson localization.41 Furthermore, the results

verified that the localization phenomenon, expected by the quantum theory of re-

sistivity of nanometric metallic connectors, occurs when the electrons cross several

consecutive disordered grains. It was observed for the first time Anderson transverse

localization in an optical fiber with a random transverse refractive index profile.

This phenomenology promoted the emergence of a new class of unconventional op-

tical fibers that guide light, using Anderson localization, in which light can guide

anywhere via the random cross profile.42 This type of fiber is used to transport

high-quality endoscopic images quite successfully.

Our work investigates the electronic dynamics in a square lattice with corre-

lated random hopping terms and under the effect of an external electric field. We

analyzed the dynamics of an initial Gaussian electronic wave-packet using a Taylor

formalism to solve the Schrödinger dynamic equation. In the absence of an electric

field, our results suggest that the correlated disorder can promote a fast electronic

propagation for intermediate times. We analyze the effect of a static electric field

and observe the existence of an oscillatory behavior with a frequency equal to field

intensity ( i.e., the same framework of the Bloch oscillations theory). We investigate

the oscillations stability in light of the nature of the eigenstates and the topology

of the hopping distribution.

2. Model and Formalism

We consider a one-electron moving in an N ×N disordered lattice. We can written

the Hamiltonian of our model as:

H=
∑
n,m

εn,m|n,m >< n,m|

+
∑
〈n,m〉

(Tn,m|n,m >< n,m+ 1|+ Zn,m|n,m >< n+ 1,m|), (1)

where |n,m〉 is a Wannier state localized at site (n,m). In our work, there is an

electric field given by ~E = Ex~x + Ey~y. Therefore, the on-site energy εn,m is given

by εn,m = Ex(n − N/2) + Ey(m − N/2) (here we considered , e = a = 135). Tn,m
and Zn,m represents the longitudinal and transversal hopping terms , respectively.

The complete distribution of hopping terms (i.e N × 2N terms) will be generated

following a correlated profile (ui,j) as follows:

ui,j =
∑
k,o

Xk,o

(dij,ko/A+ 1)2
(2)

where Xk,o are N × 2N random numbers uniformly distributed on interval

[−0.5, 0.5]. The quantity dij,ko is given by dij,ko =
√

(i− k)2 + (j − o)2 and

0 < A ≤ N is a parameter that controls the degree of correlation within the profile

ui,j . In our model, the hopping energies are given by Tn,m = 0.5 tanh (un,2m) + 1

and Zn,m = 0.5 tanh (un,2m−1) + 1. We emphasize that this transformation is a



November 22, 2022 7:7 ijmpc2d

4 Charge transport in two-dimensional disordered systems with an external electric field

numerical trick that provides correlated random numbers in the off-diagonal dis-

tribution without any null hopping terms. In fig. 1(a-d) we plot the complete

hopping distribution hi,j = 0.5 tanh (ui,j) + 1 at the s (i, j) plane. We observe

that for A = 1 , the hopping exhibits a rough profile , while for A = 20, 40, 60

, we can note a smoothing of the hopping distribution. In 1(e) , we plot the in-

trinsic correlation function within the hopping distribution. We emphasize that

C(r) = [< hi,jhk,o > − < hi,j >< hk,o >]/[< h2i,j > − < hi,j >< hk,o >] , where

r =
√

(i− k)2 + (j − o)2. As the value of A is increased , the size of the correlated

region also increases.

The Wannier amplitudes evolve in time according to the time-dependent

Schrödinger equation as (~ = 1)35,36

i
dcn,m(t)

dt
= [Ex(n−N/2) + Ey(m−N/2)]cn,m

+Tn,m−1cn,m−1(t)+Tn,mcn,m+1(t)

+Zn−1,mcn−1,m(t)+Zn,mcn+1,m(t),

i,m = 1, 2, ..., N. (3)

In our calculations , we defined the initial state as a Gaussian packet with cn,m(t =

0) = (1/Π) exp (−K(n,m)/4), where K(n,m) = [(n−N/2)2 + (m−N/2)2] and Π

is a normalization constant. The above set of equations was solved numerically by

using a high-order method based on the Taylor expansion39 of the evolution operator

U(∆t) = exp (−iH∆t) = 1 +
∑zo

l=1[(−iH∆t)l]/l! where H is the Hamiltonian. The

wave-function at time ∆t is given by |Φ(∆t)〉 = U(∆t)|Φ(t = 0)〉. We can use this

method recursively to obtain the wave-function at time t.

The results without electric field can be taken adopting ∆t = 0.1 and the sum

was truncated at zo = 10. This cutoff was sufficient to keep the considered wave-

function norm conservation along the entire time interval. In the case of considering

an electric field , we have used ∆t = 0.01 and z0 = 12. In the absence of an electric

field , we will investigate the participation number defined as:

P (t) = 1/[

N∑
n=1

N∑
m=1

|cn,m(t)|4], (4)

Note that P (t) varies from 1, for a wave function confined to a single site, to N2,

for a wave uniformly extended over the whole lattice.35,36,38 In addition, we also

will investigate the temporal auto-correlation function Θ(t) defined as:

Θ(t) =
1

t

∫ t

0

J(t)dt (5)

where J(t) =
∑

i,j [ci,j(t = 0)ci,j(t)] works as a generalized return probability. For

Localized states, the temporal auto-correlation function Θ(t) is roughly a constant.

For extended states Θ(t) ∝ 1/t. In the presence of an external electric field, we will
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Fig. 1. a-d) The complete hopping profile hi,j = 0.5 tanh (ui,j) + 1 versus i and j for A = 1 up

to 60. e) The auto-correlation function C(r) versus r for the data found in (a-d).

analyze the electronic mean position defined as:

R(t)=
1√
2

(~x+ ~y) · (< n >(t)~x+ < m >(t)~y) (6)

where < n > (t) =
∑N

n=1

∑N
m=1 n|cn,m(t)|2 and < m > (t) =∑N

n=1

∑N
m=1m|cn,m(t)|2.

3. Results

We show our results without an electric field (i.e Ex = Ey = E = 0). We solve

the complete Schrödinger equation considering N = 300 up to 1200. We emphasize

that, for initial times, we did not solve the set of equations for all N × N sites.
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Fig. 2. a) The re-scaled long time participation number P∞/N2 = P (t → ∞)/N2 versus A for

N = 300 up to 1200. b) The temporal auto-correlation function Θ(t) versus t for A = 1, 20, 40.

c) The local variance ∆ of the hopping distribution. Calculations of ∆ were done using N = 100,
x0 = 10 and Nc = 200 and about 100 distinct disorder realizations. The local disorder decreases

as the value of A is increased.

We considered a finite fraction of size L0 × L0 around the lattice center. Then, we

monitored the wave-packet at the borders of this small region and expanded L0 until

it reached L0 = N . It is a numerical trick to speed up the calculations. We have

used about 100 distinct disorder realizations to compute all quantities. In figure 2

, we plot the re-scaled long time participation number defined as P∞/N
2 = P (t→

tmax)/N2. This quantity is roughly a constant independent of N , for extended

states. For localized states , P∞/N
2 goes to zero as the system size increases. For

all cases considered here in the absence of electric field, we have used tmax ≈
2N . We can see that the re-scaled long-time participation number P∞/N

2 goes

to zero as the N is increased. It is a clear signature of localized states at the

thermodynamic limit. We stress that the participation seems larger for A > 1.

Therefore, our results suggest that the participation number becomes bigger as

the A increases. We emphasize that P∞ does not scale proportional to the area
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Fig. 3. The mean position R(t) versus t for A = 1, 20, 40 and its Fourier transform R(ω) for

E = 0.25. We observe that the wave-packet remains trapped around the initial position and
exhibits oscillatory dynamics with a frequency of roughly ω = E. For A = 1, we observe that

the weak correlated disordered potential dampens the oscillatory dynamics , and the coherent
dynamics with a single frequency are absent.
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Fig. 4. The mean position R(t) versus t for A = 1, 20, 40 and it’s Fourier transform R(ω) for
E = 0.5. Similarly to the results obtained in fig. 3, the oscillatory dynamics here (A > 1) have
frequency of roughly ω = E = 0.5.

N2 ; however, its big values indeed suggest that some eigenstates contain great

localization lengths (for A >> 1). The temporal auto-correlation function Θ(t)
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Fig. 6. The mean position R(t) versus t for E = 0.1 and A = 1, 20, 40. For a long time, the

disorder promotes the decreasing of the oscillatory picture , and the dynamics converge for a
standard dynamics localization.

(see fig. 2(b)) also exhibits a non-usual behavior. The temporal auto-correlation

for small A is roughly a constant , thus suggesting localized states. However, for

A = 20, 40, we observe that the Θ(t) exhibits vanishing as 1/t0.9. This result suggests

that the generalized return probability (J(t)) exhibits some decrease with time (at

least within that time scale we are enabled to consider). This phenomenology is
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possibly related to the local topology of the hopping distribution. To understand

better this key point , we calculate the local variance ∆ of the hopping distribution.

We divide the hopping profile hi,j in cells of size x0 × x0. We calculate the local

variance ∆m within each cell (here m runs over all cells). The quantity ∆ is defined

as ∆ =
∑

m ∆m/Nc where Nc is the number of cells. In our calculations of ∆

we consider N = 100, x0 = 10 and Nc = 200 and about 100 distinct disorder

realizations. The plot of ∆ versus A can be found in fig. 2(c). We can see that as

the value of A increases, the quantity ∆ decreases. Therefore, as the degree of

correlations increases, the hopping distribution’s local disorder becomes weak. We

emphasize that this effect is related to the smoothing of the hopping profile observed

in fig. 1(a-d). Therefore, our results suggest that extended states are absent within

our model. However, our calculations of participation number and auto-correlation

function also indicate the presence of states with great localization lengths. The

correlated sequence considered here contains a weak local disorder that promotes

the appearance of weakly localized modes. In some cases, these states with great

localization lengths may actually be critical states.

In the presence of a static electric field parallel to the lattice (i.e. ~E = Ex~x+Ey~y

with Ex = Ey = E) our results can be summarized in figs. 3, 4, 5 and 6. We initially

emphasize that in crystalline lattices, a static electric field promotes the appearance

of oscillatory dynamics(also called ”Bloch Oscillations”) with frequency ωE = E.

Moreover, the region’s size in the wave-packet remains trapped increases as the

electric field is decreased.39 In figs. 3,4 we obtain more or less this behavior for

the cases A = 20, 40. We observe that the wave-packet remains trapped around the

initial position and exhibits oscillatory dynamics with a frequency of roughly ω = E.

For A = 1, the almost uncorrelated disordered potential dampens the oscillatory

dynamics , and the coherent dynamics with a single frequency are absent. Therefore,

our results for A = 20, 40 indicate that a “Bloch’s like oscillations” is induced by this

correlated disorder. However , it is necessary to be careful with the data to conclude

the analysis. We stress that even for A ≈ N the extended states are absent. For

A >> 1 , our previous calculations demonstrate that this model contains states

with big localization lengths but still localized states. We also show that the local

disorder decreases as the value of A increases. Therefore, the results obtained in

fig. 3,4 do not represent stable Bloch’s oscillations. The phenomenology obtained

in fig. 3,4 are valid only for initial times. For a long time, the disorder (even being

locally weak) will be dumping the oscillatory dynamics and promoting a dynamics

localization without coherence. In fig. 3,4, it is not so easy to observe this key point

due to the intensity of the electric field. For an intense electric field , the region’s size

where the wave-packet is oscillating decreases , and therefore the effect of disorder

is small (and the time to destruction of oscillation increases a lot). The analysis of

the region in which the electron remains trapped can be found in fig. 5. We plot the

normalized participation number P∞/N
2 = P (t→ tmax)/N2 versus E considering

a lattice with N = 1200 and A = 40. We can see clearly that the electron remains

localized in a tiny region with few sites for a strong electric field. By another side,
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the electron can move in a large region for a weak electric field. Therefore, for a

more weak field (e.g E = 0.1) (see fig. 6), we can see the duping of the oscillatory

phenomenology more clearly. For a long-time, the disorder promotes decreasing the

oscillatory picture, and the dynamics converge to a standard dynamics localization.

4. Conclusion

In summary, we investigate the dynamics of a wave-packet initially located in a

square lattice with correlated hopping terms. Using Taylor’s method, we find the

solutions to Schrödingers dynamic equation. The results show a clear signature of

localized states in the absence of an electric field. Furthermore, the participation

number and auto-correlation function calculations indicated the presence of states

with great localization lengths. Using numerical analysis of the disorder distribution,

we have shown that the appearance of these states with big localization lengths

is related to the smoothing of the local disorder. When a static electric field is

inserted in the system, an oscillatory behavior similar to the “Bloch oscillations”

is induced by this type of correlated disorder for an intermediate time interval. We

also calculated the frequencies of these oscillations and showed that they agree with

the results predicted by the semi-classical approach. We emphasize that the disorder

promotes a decrease in the amplitude of this oscillatory picture at the long time

limit. Consequently, the dynamics converge to a standard dynamics localization. We

have numerically shown that this correlated disorder in systems with d = 2 can not

promote the appearance of extended states or stable Bloch oscillations (at a long

time limit). The main point behind this phenomenology is the existence of a typical

effective correlation length (the quantity A) within the disorder distribution. As the

effective correlation length within the disorder distribution increases the localization

length also increases; however, this aspect is not enough to stabilize extended states.

We hope our work further stimulates the investigation of electron propagations in

low-dimensional systems with correlated disorder and electric fields.
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