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In this paper, we consider the effect of an aperiodic hopping distribution on a single
electron. The aperiodic sequence of hopping energies was generated by using a sinusoidal
function whose phase φ varies as a power-law, φ ∝ nν , where n labels the positions along
the chain. The exponent ν controls the degree of aperiodicity in the sequence hopping
terms. Using the transfer matrix method, we compute the localization length within
the band of allowed energies. Our numerical calculations indicate that, for an aperiodic
sequence of hopping energies with ν < 1, a new phase of extended states appears in
this model. For a pseudorandom hopping distribution with ν > 1, all eigenstates remain

localized. In addition, we study the electronic dynamics subjected to an electric field.
Our numerical calculations reveals perfect Bloch oscillations for ν < 1. The typical
frequency of these oscillations agree with the semiclassical predictions.
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1. Introduction

In pure periodic systems, the one-electron eigenstates are Bloch waves delocalized

in the thermodynamic limit. In the absence of scattering, the system behaves as a

perfect conductor whenever the Fermi energy falls into the conduction band. Disor-

der, originating from lattice imperfections, modifies the nature of the one-electron

eigenstates. For three-dimensional (3D) systems and a relatively weak disorder (of a

magnitude smaller than the bandwidth), the states at the band center may remain

extended.1–4 In lower dimensions the effect of disorder is much more dramatic. In

particular, uncorrelated disorder of any magnitude causes exponential localization

of all one-particle eigenstates in one dimension (1D) and weak localization in two

dimensions (2D).2–4

At the end of eighties it was realized, however, that extended states may sur-

vive in 1D systems when correlated disorder5–13 or deterministic nonperiodic po-

tentials14–22 are involved. In fact, models with deterministic potential which is
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incommensurate with the underlying lattice14–22 depicts features that are in be-

tween those of the random Anderson model and the periodic Bloch model. The

localized or extended nature of the eigenstates has been extensively investigated in

the physics literature14–18 and has been related to general characteristics of the ape-

riodic on-site distributions. The biased wave packet dynamics of a single electron

moving in a lattice with an aperiodic potential was investigated in Ref. 20. It was

numerically demonstrated that the electric field promotes sustained Bloch oscilla-

tions of an initial Gaussian wave packet whose amplitude reflects the bandwidth of

extended states. The frequency of these oscillations exhibit unique features, such

as a sensitivity to the initial wave packet position and a multimode structure for

weak fields, originating from the characteristics of the underlying aperiodic poten-

tial.20 In addition, the effect of aperiodicity in quantum Heisenberg ferromagnetic

systems20 and classical harmonic lattices22 was numerically investigated. In general

lines, the aperiodicity may induce the appearance of truly delocalized states.

In this work, we report further progress along this line. We consider a single

electron moving in a lattice with an aperiodic slowly varying hopping term. The

aperiodic sequence of hopping energies will be generated following the formalism

used in Ref. 14. It consists in use a sinusoidal function whose phase φ varies as

a power-law, φ ∝ nν , where n labels the positions along the chain. The exponent

ν controls the degree of aperiodicity in the sequence of exchange couplings. Using

the transfer matrix method, we compute the localization length within the band of

allowed energies. Our numerical calculations indicate that, for an aperiodic sequence

of hopping energies (ν < 1), a new phase of extended states appears in this model.

For a pseudorandom hopping distribution ν > 1, all eigenstates remain localized.

In addition we study, by integration of the time-dependent Schrödinger equation,

the electronic dynamics subjected to an electric field. The electric field promotes a

bias which localizes the electron states. The resulting wave packet dynamics reveals

perfect Bloch oscillations. The typical frequency of these oscillations agree with the

semiclassical predictions.

2. Model and Formalism

We consider a tight-binding Hamiltonian on a 1D open lattice of spacing a with

zero on-site energy, an aperiodic slowly varying hopping distribution and a uniform

static electric field20

H =

N
∑

n=1

(−eFan)|n〉〈n| +

N−1
∑

n=1

(Vn,n+1|n〉〈n+ 1|) , (1)

where |n〉 is a Wannier state localized at site n with energy ε̃n = 0, F is the external

uniform electric field and −e is the charge of the particle. The hopping couplings

Vn,n+1 = Vn will be considered to follow a deterministic rule given by

Vn = V0 + [cos(αnν)] , (2)
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with α being an arbitrary rational number and ν being a tunable parameter.14 From

this sinusoidal form, one can control the degree of aperiodicity in the sequence of

hopping couplings. In what follows, V0 = 2 will be taken in order to avoid negative

or null exchange interactions. In our calculations, we will use α = 0.5. The main

motivation for considering the specific model we study in this manuscript is that,

from the sinusoidal form we can control the degree of aperiodicity in the hopping

distribution. Within the context of on-site diagonal terms, the limit ν > 1 was called

“pseudorandom” at Ref. 16. It was shown that one-electron becomes localized at

the presence of an aperiodic potential at this limit. For ν = 1 this is just Harper’s

model, for which a rational α describes a crystalline solid, whereas an irrational α

results in an incommensurate potential. It was demonstrated that an on-site energy

distribution with 0 < ν < 1 induces a phase of extended states near the band center.

3. Numerical Calculation

3.1. Lyapunov exponent

The localization length of each eigenstate in the absence of electric field (F = 0) is

taken as the inverse of the Lyapunov exponent γ defined by Ref. 14

γ = lim
N→∞

1

N
log

|QNc(0)|

|c(0)|
, (3)

where c(0) =
(

u1

u0

)

is a generic initial condition and QN is the product of all transfer

matrices

QN =

N
∏

n=1





E

Vn

−
Vn−1

Vn

1 0



 . (4)

In our calculations we compute the average Lyapunov exponent 〈γ〉, defined by

〈γ〉 = (1/Nf )
∑E=1

E=−1
γ(E) where Nf is the number of eigenmodes within each

interval [−1, 1]. Let me stress that the center of band (E = 0) was avoided in this

sum because the localization length of this eigenstate is large even in the pseudo-

random hopping energy distribution (ν > 1). 〈γ〉 ≈ 0 for extended states and it is

finite for exponentially localized ones.

3.2. Biased dynamics

In order to investigate the physical properties of the one-electron subjected to an

external uniform electric field, we follow the time evolution of an initially local-

ized wave packet. The Wannier amplitudes evolve in time according to the time-

dependent Schrödinger equation as (~ = 1)20

iψ̇n = (−Fn)ψn + Vnψn+1 + Vn−1ψn−1 , (5)

where we introduced the dimensionless magnitude F = eFa/V0. Time is expressed

in units of ~/V0. We consider a wave packet initially localized at site n0 = N/2,
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i.e. |Φ(t = 0)〉 =
∑

n ψn(t = 0)|n〉 where ψn(t = 0) = δn,n0
. The above set of

equations were solved numerically by using a high-order method based on the Taylor

expansion of the evolution operator V (∆t):

V (∆t) = exp(−iH∆t) = 1 +

lo
∑

l=1

(−iH∆t)l

l!
(6)

where H is the Hamiltonian. The wave function at time ∆t is given by |Φ(∆t)〉 =

V (∆t)|Φ(t = 0)〉. The method can be used recursively to obtain the wave function

at time t. To obtain H l|Φ(t = 0)〉 we will use a recursive formula derived as follows.

Let us define H l|Φ(t = 0)〉 =
∑

n C
l
n|n〉. Using the Hamiltonian formula [Eq. (1)]

we can compute H1|Φ(t = 0)〉 and obtain C1
n as

C1
n = (−Fn)ψn(t = 0) + Vnψn+1(t = 0) + Vn−1ψn−1(t = 0) . (7)

Therefore, using that H l|Φ(t = 0)〉 = H
∑

n C
l−1
n |n〉, Cl

n can be obtained recursi-

vely as

Cl
n = (−Fn)C l−1

n (t = 0) + VnC
l−1

n+1(t = 0) + Vn−1C
l−1

n−1(t = 0) . (8)

The following results were taken by using ∆t = 0.01 and the sum was truncated

at lo = 15. This cutoff was sufficient to keep the wave function norm conservation

along the entire time interval considered (t ≤ 106). This formalism is faster than

high-order Runge–Kutta methods and it is easier to implement. The quantities that

we will use to characterize the dynamics of the electron wave packet is its mean

position (centroid)

x(t) =

N
∑

n=1

(n− 〈n(t)〉)|ψn(t)|2 , (9)

where 〈n(t)〉 =
∑N

n=1
n|ψn(t)|2. As the initial packet is assumed spatially narrow,

one has contributions to the wave packet dynamics, coming from a wide spectrum

of eigenstates of the Hamiltonian (1).

4. Results

In Fig. 1 we show the average Lyapunov exponent 〈γ〉 as a function of ν obtained

from the transfer matrix method. Calculations were done using F = 0,N = 2.5×106

and 5×106 sites. One can see that this exponent vanishes in the ν < 1 region. This

feature is a clean signature of extended states. Now we will consider the biased case.

In an ideal 1D system, a uniform field causes the electron wave packet to oscillate

in space and time. The period of these oscillations are estimated semiclassically

τB = 2π/F . Subsequently, the frequency of the harmonic motion is ω = F , for

the chosen units. In what follows, we will restrict our analysis to field strengths

producing oscillation amplitudes larger than the lattice spacing in order to be able

to use the semiclassical formalism. In Fig. 2(left panel) we plotted the centroids

of wave packets calculated for distinct field strengths for the initial position at the
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Fig. 1. Average Lyapunov exponent 〈γ〉 as a function of ν computed for F = 0, N = 2.5 × 106

and 5 × 106 sites. The average Lyapunov exponent vanishes in the ν < 1 region, thus indicating
extended states.
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Fig. 2. (Left panel) Time-domain dynamics of the centroid of a biased wave packet (n0 = N/2 at
t = 0) for two values of the applied electric field F = 0.25 and 0.5. (Right panel) Fourier transform
of the centroid.

chain center. It should be noticed that for ν < 1 the Bloch oscillations remain

sustained, i.e. no dephasing is taking place. Second, the oscillation amplitude is

proportional to 1/F as predicted semiclassically.20 To provide further confirmation

of the semiclassical picture, we calculated numerically the Fourier transform of the

centroid, x(ω), as shown in Fig. 2(right panel). Again, the estimated predominant

frequency of the Bloch oscillations ω = F is corroborated for ν < 1. In Fig. 2(left
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panel) one can see that there are no signatures of Bloch oscillations for ν > 1,

at least for a moderate field amplitude. Oscillations, which are present at the very

beginning, achieve in a short time a weakly fluctuating (stationary in average) value.

For ν > 1, the Fourier transform x(ω) is rather broad, confirming the absence of

Bloch oscillations in this regime. The initial site n0 was varied around the center

of the chain and no qualitative change in the physical properties was found.

5. Summary and Conclusions

We studied a biased tight-binding model where the hopping energy are determined

by a sinusoidal function whose phase φ varies as a power-law. By using a standard

numerical transfer matrix method we compute the localization length within the

band of allowed energies. Our numerical calculations indicate that, for aperiodic se-

quence of hopping energies (ν < 1), a new phase of extended states appears in this

model. Our main interest was the interplay between the delocalization effect, pre-

served by the aperiodicity, and the dynamic localization, caused by an electric field

acting on the system. We computed the behavior of an initial localized wave packet

in the presence of a uniform electric field solving numerically the 1D time-dependent

Schrödinger equation for the complete Hamiltonian. The numerical solutions was

done by using a high-order method based on the Taylor expansion of the evolution

operator. We found clear signatures of Bloch-like oscillations for ν < 1 and their

absence for ν > 1. The period of the oscillations agrees well with the period in an

ideal Bloch band. However, contrary to what occurs in disordered systems, where

scattering on site potential fluctuations gradually degrades the oscillations, these

remain sustained with no signature of depletion. Our findings indicate that Bloch

oscillations can indeed be observed in superlattices with slowly varying periodicity.

We hope that the present work will stimulate experimental activities along this

direction.
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Adame and R. Gómez-Alcalá, Phys. Rev. Lett. 82, 2159 (1999).

11. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998); Physica A

266, 465 (1999).
12. F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999).
13. U. Kuhl, F. M. Izrailev, A. A. Krokhin and H.-J. Stöckmann, Appl. Phys. Lett. 77,
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