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Abstract
In this work, we study a tight-binding Hamiltonian model system of a binary correlated ladder
with diluted disorder. We introduce intra-chain correlations between the on-site potentials by
imposing that εi,s = −εi,−s where s = ±1 indexes the two ladder chains. Further, we consider
each ladder chain as composed of inter-penetrating ordered and random sub-chains. We show
that the presence of a random on-site distribution in one of the inter-penetrating chains leads to
Anderson localization except at a specific symmetric pair of energy eigenmodes. Further, by
integrating the time-dependent Schroedinger equation, we follow the time-evolution of an
initially localized one-electron wavepacket. We report that the remaining delocalized resonant
modes are responsible for a super-diffusive spread of the wavepacket dispersion while the
wavepacket participation function remains finite. A scaling analysis of the wavepacket
distribution shows that it obeys a universal scaling form with the development of a power-law
tail followed by a super-diffusively evolving cutoff. We obtain three exponents characterizing
this super-diffusive dynamics and show that they satisfy a simple scaling relation.

1. Introduction

The scaling theory of Anderson localization predicts that
all one-electron eigenstates shall be exponentially localized
in one-dimensional and quasi-one-dimensional uncorrelated
random systems [1]. However, several models with
correlated disorder have been introduced in the literature
exhibiting a violation of the above scaling prediction to some
degree [2–15]. In particular, the presence of short-range dimer-
like correlations between the on-site potentials of neighboring
sites [2] or between the on-site potential and the transfer
integral [3] in one-dimensional systems have been shown to
exhibit a resonant energy eigenmode that remains delocalized
irrespective of the degree of disorder. The presence of
delocalized resonant modes was experimentally demonstrated
in dimer-like random semiconductor superstructures [11].
Further, one-dimensional systems with long-range and scale-
free disorder have been shown to support mobility edges with
a finite energy range of delocalized states [5], a prediction
experimentally observed in random microwave guides [14].

Among the low-dimensional models with correlated
disorder, a very unique system consists of the diluted Anderson
chain [16–22]. The diluted Anderson model was introduced by
Hilke [16] and consists of two inter-penetrating sub-lattices,

one composed of random potentials (Anderson lattice) and
the other composed of non-random segments of constant
potentials. Due to the underlying periodicity, special resonance
energies appear which are not affected by disorder. Resonant
extended modes have also been reported to appear in binary
semiconductor alloys with diluted disorder [17] as well as in
random harmonic chains with diluted disorder in the mass
distribution [21]. The diluted Anderson model has been
extended to include a general diluting function which defines
the on-site energies within each non-random segment [18]. The
number of resonant extended states was shown to strongly
depend on the length of the diluting segments and the
symmetries of the diluting function. The extension for a square
lattice geometry has shown that this model can exhibit a true
metal–insulator two-dimensional (2D) transition with mobility
edges delimiting a band of extended states [20].

More recently there has been a growing interest in
the study of correlated random systems with a ladder
topology [23–30]. Two-channel random ladders have been
considered as an interesting class of model systems on which
correlations can strongly influence the electronic wavepacket
dynamics [31, 32]. In particular, it has been shown that
inter-strand and intra-strand correlations favor the wavepacket
spreading over longer segments as compared with uncorrelated

0953-8984/11/135303+07$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA1

http://dx.doi.org/10.1088/0953-8984/23/13/135303
http://stacks.iop.org/JPhysCM/23/135303


J. Phys.: Condens. Matter 23 (2011) 135303 F A B F de Moura et al

random ladders [33, 34]. However, all electronic states
remain exponentially localized and, therefore, no long-
distance transport is enabled. A quadratic approximation
of the two-channel conductance also indicates that the
inter-strand correlations and coupling is not enough to
promote delocalization [35], although the localization length
differs considerably in coding and non-coding segments [36].
Advancing along this line, it has been very recently shown
that a quasi-periodic two-chain ladder presents metal/insulator
transitions at multiple values of the Fermi energy [37]. In
addition, a band of Bloch-like extended states has been
demonstrated to emerge when a particular correlation between
the on-site potentials and the transfer integral is introduced in
a random ladder model [38]. Such extended states co-exist
with exponentially localized states, a new scenario that leads
to unusual spectral and transport properties [39].

In the present work, we introduce a tight-binding
Hamiltonian model of a correlated random ladder. The model
incorporates intra-chain base-pairing correlations and diluted
inter-chain disorder. We will consider a binary distribution
of on-site energies which leads to a density of states with
two energy bands in the absence of disorder. Two symmetric
resonant delocalized energy states will be shown to persist in
the presence of disorder. Their positions will be demonstrated
to be related to the energy mismatch of the binary potential.
Further, we will show that, although these resonant extended
states appear at specific energies and correspond to a null set
of the total number of states in the limit of infinite ladders,
they lead to an anomalous dynamical behavior. While the
wavepacket dispersion displays a super-diffusive spread, its
participation function remains finite. This behavior will be
related to the emergence of power-law tails in the wavepacket
distribution with a super-diffusive cutoff. We report three
relevant power-law exponents involved in such super-diffusive
dynamics and show that they satisfy a scaling relation.

2. Model and formalism

We will consider a tight-binding model for one electron
restricted to move in a two-channel ladder with first-
neighbor hoppings. Considering a single orbital per site, the
Hamiltonian can be written as:

H =
∑

n

εnc†
ncn + V‖

∑

n

c†
ncn+1 + V‖

∑

n

c†
n+1cn, (1)

where

cn =
(

cn,+1

cn,−1

)
, (2)

with cn,s and c†
n,s being the usual fermionic creation and

annihilation operators acting at site n of the upper (s = +1)
and lower (s = −1) ladder chains. The coupling matrix within
each ladder pair is given by

εn =
(
εn,+1 V⊥
V⊥ εn,−1

)
, (3)

where εn,s is the on-site energy at the nth site in chain s. V⊥
corresponds to the inter-chain hopping amplitude between the

Figure 1. Illustrative representation of the present random ladder
model with inter-chain correlations and diluted intra-chain disorder.
Each ladder pair is composed of a dimer with distinct on-site
energies εA = +ε and εB = −ε. In the odd sub-lattice the dimers
have all the same orientation (site A in the upper chain and site B in
the lower chain). In the even sub-lattice, a fraction p of the dimers
has its orientation reversed (dimers 2 and 8 in this figure).

(This figure is in colour only in the electronic version)

pair of ladder sites at position n. The hopping amplitude along
each chain will be considered as site independent and can be
written in the form

V‖ =
(

V‖ 0
0 V‖

)
. (4)

We will restrict our numerical analysis for the particular
case of V‖ = V⊥ (equal inter- and intra-strand hopping
amplitudes). The general case of V‖ �= V⊥ does not bring
any new qualitative features in what concerns the stationary
and dynamical electronic properties. Further, we will use
energy units of V‖ = V⊥ = 1. The ladder base pair sites
will be considered to be composed of dimers with two distinct
site energies, which will be taken as ±ε without any loss of
generality. This feature introduce correlations in the energy
site distribution of each ladder chain (εn,+1 = −εn,−1) similar
to the inter-strand correlations found between the nucleotide
base pairs of synthetic poly(C)–poly(G) DNA-like molecules
when one considers the energy offset as the average ionization
potential of the guanine and cytosine nucleotides. Further,
we introduce a diluted disorder distribution of the on-site
energies along the ladder chains. In the odd positions along
the ladder (n = 2 j − 1, j = 1, 2, 3, . . .), the dimer pairs
will have the same orientation, with the site at the top chain
having ε2 j−1,+1 = ε and the site at the bottom chain having
ε2 j−1,−1 = −ε. Disorder will only be present in the sub-ladder
corresponding to the even positions (n = 2 j , j = 1, 2, 3, . . .).
In this sub-system, a fraction p of the ladder base pairs will
be chosen at random to have its orientation reversed in such
a way that ε2 j,+1 = −ε while ε2 j,−1 = ε. The remaining
(1 − p) fraction of base pairs will keep the same orientation of
the odd sub-system. Therefore, the model incorporates inter-
chain correlations and diluted disorder, ingredients that shall
strongly influence the Anderson localization and wavepacket
dynamical properties, as we will explore below. Figure 1
shows an illustrative representation of the present ladder model
topology on which two base pairs of the even sub-lattice had
their dimer orientation reversed.

In the particular case of p = 0 the ladder is composed
of dimer base pairs with the same orientation. On the other
hand, p = 1 corresponds to a ladder on which the dimer base
pairs have an alternate orientation along the ladder. In these
disorder-free limits, the dispersion relation and the resulting
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density of states (DOS) can be analytically computed. For the
intermediate values of p, the DOS can be numerically obtained
through the direct diagonalization of the ladder Hamiltonian.

The presence of disorder leads to the Anderson
localization of the energy eigenmodes of quasi-unidimensional
systems, except at eventual resonances due to special short-
range correlations in the disorder distribution such as dimer-
like pairing and dilution. A standard quantity used to quantify
the degree of localization is the Lyapunov exponent �, which
is the inverse of the localization length λ. The Lyapunov
exponent can be obtained by exploring the exponential decay
of the two-point Green’s function as:

� ≡ 1

λ
= − lim

N→∞
1

N
ln |G†

1,N (E)|2, (5)

where G†
1,N is the Green’s function operator between the first

and the last pairs of ladder sites. It can be numerically
obtained through a decimation process [40, 41]. The Lyapunov
exponent is finite for exponentially localized states as well
as outside the energy band. Delocalized or power-law
localized states have vanishing Lyapunov exponent in the
thermodynamic limit.

The localized/delocalized nature of one-electron eigen-
states also influences the electronic wavepacket dynamics. In
what follows, we are also going to study the time-evolution of
an initially localized wavepacket in the present ladder model.
The time-evolution of the wavefunction is obtained from the
action of the unitary time-evolution operator:

|ψ(�t)〉 = U(�t)|ψ(0)〉 = e−iH�t |ψ(0)〉, (6)

where |ψ(�t)〉 is the electron state at time �t , |ψ(0)〉 is the
initial state, and H is the Hamiltonian. We will use a high-
order Taylor expansion of the evolution operator

U(�t) = exp (−iH�t) = 1 +
no∑

l=1

(−iH�t)l

l! . (7)

The method can be used recursively to obtain the wavefunction
at time t . Our results were taken by using �t = 0.5
and the sum was truncated at no = 20. This cutoff was
sufficient to keep the wavefunction norm conservation along
the entire time interval considered (t � 106). This formalism
is faster than high-order Runge–Kutta methods. We will be
particularly interested in calculating the wavepacket dispersion
σ(t) defined as

σ(t) =
√√√√∑

s=±1

N∑

i=1

[(i − i0)2]|ci,s(t)|2, (8)

and the participation function P(t)

P(t) = 1∑
i,s |ci,s(t)|4 , (9)

where ci,ss are the coefficients of the wavevector expanded
in the basis of the Wannier states (|ψ(t)〉 = ∑

i,s ci,s |i, s〉).
Note that σ(t) varies from 0, for a wavefunction confined

to the initial base pair, to a maximum value proportional
to N , for a wavepacket uniformly extended over the whole
chain. The participation function P(t) varies from 1 to N
in these same limits [9, 42]. The dispersion is sensitive to
the tails of the wavepacket distribution while the participation
function measures the number of sites responsible for the
major contribution to the particle density. In section 3, we
will report our main results for the stationary and dynamical
properties of the ladder model with dimer-like correlations and
diluted disorder. We will show that the presence of resonant
delocalized states associated with the disorder dilution is
responsible for an unusual wavepacket dynamics on which
the wavepacket dispersion grows super-diffusively while the
participation function remains finite. A scaling analysis of
the wavepacket distribution will be provided to elucidate
the physical origin of the distinct time dependence of the
dispersion and participation functions.

3. Results

Let us start by reporting the DOS of the non-random limiting
cases of p = 0 and 1 together with the most disordered case
on which half of the dimers of the even sub-lattice have their
orientation reversed at random. In the cases p = 0 and 1, the
dispersion relation can be analytically computed. For p = 0
(all dimers with the same orientation), the mode with positive
energy is given by

E(k) = 2 cos k +
√
ε2 + 1, (10)

where k is the wavenumber along the ladder. For p =
1 (dimers having an alternate orientation), the unit cell is
composed of a pair of dimers and, therefore, there are two
branches of positive energies whose dispersion relations read

E(k) =
√
ε2 + 1 + 4 cos2 k ± 4 cos k. (11)

From these, the DOS can be directly obtained as g(E) =∑[1/(2π |dE/dk|)], where the sum extends over the
eventually degenerated modes. The resulting DOSs for these
two cases are shown in figure 2 for the particular value of
ε = 4. For p = 0 the gap between the positive and negative
energy bands is �E = 2

√
ε2 + 1 − 4 = 
4.25 while the

band width is δE = 4. For p = 1 the gap between the
bands becomes much larger �E = 2ε = 8 while the energy
band becomes narrower δE = √

ε2 + 9 − ε = 1. Actually,
the energy band is a superposition of bands originated from
distinct modes. An additional Van Hove singularity is present
at Er = √

ε2 + 1 
 4.12, which delimits the end of one
of the superposed bands. This singularity is associated with
the additional symmetry of the alternate dimer ladder. It is
interesting to notice that this singularity is exactly at the energy
corresponding to the band center of the fully oriented dimer
ladder (p = 0). For the diluted random dimer ladder we
obtained the energy eigenvalues by the direct diagonalization
of ladders with N = 10 000 base pairs. 100 distinct disorder
configurations were considered. The resulting DOS is also
reported in figure 2. It was obtained by making the histogram
of the energy eigenvalues taking small windows of size δE 
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Figure 2. DOS for the tight-binding ladder model with ε = 4. Top
panel: all base pair dimers have the same orientation ( p = 0).
Bottom panel: the base pair dimers follow an alternate orientation
along the ladder sequence. The case p = 1/2 corresponds to a ladder
with diluted disorder. Dimers at the odd sub-lattice have the same
orientation while a fraction p = 1/2 of the dimers at the even
sub-lattice are chosen at random to have the opposite orientation.
Notice that the band gap increases while the band width decreases
with p.

0.1. The large fluctuations in the DOS are typical of systems
exhibiting Anderson localization due to the effective absence
of level repulsion. The Van Hove singularities are rounded due
to the loss of translational symmetry introduced by disorder.

In figure 3 we report the spectrum of Lyapunov exponents
for the diluted random dimer ladder with p = 1/2 and distinct
mismatches between the dimer on-site energies. The Lyapunov
exponent is mainly finite all over the energy band. This
indicate that most of the energy eigenstates are exponentially
localized. The typical localization length (λ = 1/�)
is smaller than 102 base pairs. However, a vanishingly
small Lyapunov exponent is found at a pair of symmetric
resonant energies ±Er, signaled by a pronounced trough in
the Lyapunov exponent spectrum. These resonant modes thus
remain extended even in the presence of disorder. They are
located at the Van Hove singularities ±√

ε2 + 1, as shown in
figure 4. This feature can be understood by stressing that the
eigenfunctions corresponding to these resonant modes have
null amplitudes at the dimer sites of the random even sub-
lattice and, therefore, they are not affected by disorder [43].
Therefore their energies shall consist of the eigenenergies of
an isolated dimer, which are actually given by ±√

ε2 + 1.
We analyzed the vanishing of the Lyapunov exponent in the
vicinity of the resonant mode and found that it scales as
� ∝ |E − Er|1/2. It is interesting to notice that a distinct
behavior governs the vanishing of the Lyapunov exponent near
the resonant mode of the random dimer model on which � ∝
|E − E0|2 [2, 44–46].

The above results show that the extended modes of the
dimer ladder with diluted disorder are located at a pair of
symmetric resonant energies. This is in agreement with the
result of the one-dimensional counterpart tight-binding model
with diluted disorder which has a single resonance. The
number of resonances is equal to the number of coupled chains

Figure 3. Lyapunov exponent versus energy obtained from the
Green’s function decimation on ladders with N = 106 base pairs.
The data are for diluted random ladders with p = 1/2 and distinct
mismatches of the dimer on-site energies. The Lyapunov exponent
vanishes at a pair of symmetric energies, signaled by a dip in the log
scale. These correspond to resonant delocalized states that are not
sensitive to the underlying diluted disorder.

Figure 4. The positive resonant energy corresponding to a
delocalized state as a function of the mismatch in the dimer on-site
energy ε. Symbols were obtained from the numerical computation of
the Lyapunov exponent. The solid line gives the positive energy
eigenvalue of isolated dimers E = √

ε2 + 1.

with diluted disorder. A true band of extended state energies
only sets up in the 2D limit [20]. As such, the presence of
a finite number of resonances is not able to promote a true
metal–insulator transition. However, in what follows, we will
show that their presence leads to an unusual time-evolution of
a wavepacket initially localized at a single site, chosen to be
the central site on the upper leg of the non-random sub-lattice.

Figure 5 reports the time-evolution of the participation
function and the wavepacket dispersion. The run time was
large enough to surpass any initial transient. No boundary
effects are relevant within this run time scale. The participation
function saturates after the initial transient showing that the
main contribution for the particle probability density comes
from a number of sites of the order of 101. This feature

4



J. Phys.: Condens. Matter 23 (2011) 135303 F A B F de Moura et al

Figure 5. Time-evolution of the participation function and
wavepacket dispersion of an initial state localized in a single site of
the non-random sub-lattice. The diluted random ladder parameters
are ε = 4 and p = 1/2. The participation function saturates after an
initial transient, while the wavepacket dispersion continues to spread
super-diffusively. The straight line corresponds to the asymptotic
behavior σ ∝ t z , with z = 0.60(2).

is directly related to the exponentially localized nature of
the majority of the one-particle eigenmodes. On the other
hand, the wavepacket dispersion displays an asymptotic super-
diffusive growth σ ∝ t z , with z = 0.60(2). This
indicates that the wavepacket develops slowly decaying tails
that contribute to the dispersion but are not relevant to
the wavepacket participation function. The super-diffusive
wavepacket spreading in the present ladder model is slower
than the one taking place in the random dimer model for which
z = 3/4 [2, 45, 46]. These distinct super-diffusive spreading
laws are associated with the distinct scaling behavior of the
Lyapunov exponent on the random dimer and diluted disorder
model systems. Some exact results for the characteristic
exponents associated with the wavepacket spreading on the
random dimer model have been obtained in terms of a scaling
scenario [45, 46]. It would be interesting to develop an
analogous scaling scenario to provide a deeper understanding
of the wavepacket dynamics in the present diluted random
ladder model.

In order to have a clearer picture of the wavepacket
dynamics, we report in figure 6 the typical wavepacket
distribution after a long run. The main frame shows that
the main contribution to the wavepacket distribution (averaged
over 100 runs on distinct disorder distributions) is indeed
concentrated around a small segment of the ladder, in
agreement with the measured participation function. In the
inset, we show collapsed data of the wavepacket distribution
tail at distinct run times. It exhibits a power-law decay up
to a cutoff distance xm from the initial position after which
an exponential decay takes place. The cutoff xm actually
delimits the wavepacket front. The data collapse shows that
the wavepacket tail obeys the scaling form |�(t, x)|2 =
t−γφ f (x/xm), where xm ∝ tγ with γ = 0.80(2) and γφ =

Figure 6. Wavepacket distribution after a long time run averaged
over 100 distinct disorder configurations. The initial state was
located at the center of a chain with N = 70 000 base pairs. Ladder
parameters are the same as in figure 5. Notice that the main
contribution for the particle density comes from a narrow range of
sites around the initial position. The inset shows collapsed data of the
tail of the wavepacket distribution computed at different times. Here
x = i − i0. Data are consistent with a universal scaling form
�(x, t) = t−γφ f (x/xm), where the cutoff distance xm ∝ tγ with
γ = 0.80(2) and γ φ = 1.20(5). Prior to the ultimate exponential
decay, the wavepacket develops a power-law tail |�|2 ∝ x−φ . The
measured scaling exponents provide φ = 1.50(7).

1.20(5). Therefore, the wavefront advances super-diffusively.
The power-law tail of the wavepacket distribution is found to
scale as |�(x, t)|2 ∝ x−φ , with φ = 1.50(7).

The above spatial and temporal scaling behavior of
the wavepacket distribution is consistent with the distinct
dynamical behavior of the participation function and the
wavepacket dispersion. In the long time regime, the
participation function can be written as:

P(t) = P(x0)+
[

xm (t)∑

x0

[|�0|2x−φ]2

]−1

, (12)

where x0 is the characteristic distance after which the power-
law decay takes place (of the order of a few base pairs) and
|�0|2 is the coefficient of the asymptotic power-law decay of
the wavepacket density. Notice that P(t → ∞) is independent
of the cutoff xm for φ > 1/2. Therefore the power-law decay
of the wavepacket with an exponent φ = 3/2 is fast enough to
keep the participation function finite. On the other hand, the
wavepacket mean-square displacement can be estimated by

σ 2(t) = σ 2(x0)+
xm (t)∑

x0

x2
[|�0|2x−φ] . (13)

This series is convergent only for φ > 3. Therefore,
the dispersion in the present case will be sensitive to the
wavepacket cutoff. Actually it shall scale as σ ∝ x (3−φ)/2

m ∝ t z ,
with z = γ (3 − φ)/2. This scaling relation is indeed satisfied
by the numerically measured exponents.
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4. Summary and conclusions

In summary we introduced a tight-binding model of a
correlated dimer ladder with diluted disorder. Each ladder
base pair consists of two distinct sites with on-site energies
given by ±ε, measured in units of the first-neighbors’ hopping
amplitude that couples the dimer sites as well as the sites
along the ladder chains. The ladder is considered as being
composed of two inter-penetrating sub-lattices. In one of
them all dimers have the same orientation. In the other
sub-lattice, a fraction p of the dimers has the reversed
orientation. Therefore, the model combines features present
in DNA-like segments, such as base pairing, with those
present in low-dimensional systems with correlated disorder,
represented by the randomness presence only in a given sub-
lattice. We showed that most of the one-particle eigenstates
become exponentially localized, except for a pair of symmetric
resonant states which are insensitive to the underlying disorder.
These states have eigenfunctions with null amplitude at the
random sub-lattice and, therefore, their energies correspond to
the eigenenergies of an isolated dimer. Such truly delocalized
resonant states due to the diluted nature of the disorder are
responsible for the unique transport properties of the electronic
wavepacket not exhibited by models including just inter- or
intra-strand correlations [31, 32, 35, 36].

The resonant extended states were shown to play a relevant
role in the one-particle wavepacket dynamics. An initially
localized wavepacket evolves in time developing a power-law
tail with the wavefront advancing super-diffusively. We found
that the wavepacket distribution tail decays with the distance
x to the initial position as |�(x)|2 ∝ x−φ , with φ = 1.50(7).
Further, the wavefront super-diffusion is given by xm ∝ tγ ,
with γ = 0.60(2). The spatial and temporal scaling of
the wavepacket leads to distinct dynamical behaviors for the
participation function and the wavepacket dispersion. The
exponent φ is large enough to keep the asymptotic participation
function finite. Therefore this quantity, commonly used
to characterize the spatial extension of wavepackets, is not
sensitive to the presence of the resonant extended states. On
the other hand, the exponent φ is not large enough to keep the
wavepacket dispersion σ finite. As a consequence, it grows
super-diffusively as σ ∝ t z , with z = γ (3 − φ)/2 = 0.60. As
such, the wavepacket dispersion captures the existence of the
resonant extended modes.

It is interesting to notice that the wavepacket dynamics
in nonlinear disordered chains was previously reported to also
display a regime on which the wavepacket dispersion diverges
while the participation function remains finite [47, 48].
However, this effect has a different physical origin associated
with a partial self-trapping of the wavepacket due to the
nonlinearity. Here the non-simultaneous divergence of
the participation function and dispersion results from the
development of power-law tails in the wavepacket distribution.
As it is known that the wavefunction in the vicinity
of the Anderson transition depicts power-law multifractal
tails [49–51], it would be interesting to investigate the
possibility of having such non-simultaneous divergence of the
participation and dispersion functions at a disorder driven true
metal–insulator transition.
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