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We offer a comparative study of the self-trapping phenomenon in square and honeycomb lattices, showing
its dependence on the initial condition and lattice topology. In order to describe the dynamical behavior of
one-electron wave packets, we use a discrete nonlinear Schrödinger equation which effectively takes into
account the electron-phonon interaction in the limit of an adiabatic coupling. For narrow wave packets and
strong nonlinearities, the electron distribution becomes trapped irrespective to the lattice geometry. In the
opposite regime of wide wave packets and small nonlinearities, a delocalized regime takes place. There is an
intermediate regime for which self-trapping is attained in the honeycomb lattice while the wave packet remains
delocalized in square lattices. Further, we show that the critical nonlinear strength �c scales linearly with the
initial wave-packet participation function P�0� with the ratio �c / P�0� being on the order of the energy
bandwidth.
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I. INTRODUCTION

Within the context of fermions or bosons dynamics sub-
jected to interaction with lattice vibrations, the effective de-
scription based on a discrete nonlinear Schrödinger equation
�DNLSE� �Refs. 1–18� has attracted a wide interest. An ef-
fective cubic term in the time-dependent Schrödinger equa-
tion for the electron wave-packet dynamics arises after treat-
ing the phonon degrees of freedom within an adiabatic
approximation which assumes that the local site polarization
is much faster than the electron transfer between sites. The
nonlinearity present in the DNLSE captures some essential
features related to the electron-phonon dynamics,1–10 Bose-
Einstein condensates �BECs�,11,12 optical lattices,13,14 rogue
waves,15 and coupled optical waveguides.16,17

Within the electron-phonon dynamics context, the most
important property associated with the DNLSE is the emer-
gence of the so-called self-trapping phenomenon. In this
case, an initially localized electronic wave packet remains
localized in a finite region and there is a significant time-
averaged probability to find the particle at the initial site. In
Refs. 4 and 5, a very instructive amount of results about
nonlinearity and electronic dynamics was reported. In par-
ticular, it was shown that either linear hosts with the presence
of a nonlinear impurity or fully nonlinear lattices exhibit a
self-trapping transition with universal features which are not
affected by the lattice topology.5 Moreover, it was demon-
strated that the DNLSE can display a wide class of topologi-
cally stable solutions such as solitons, vortex rings, and
breathers �oscillatory solitonlike solutions�.6–8 The standing
or traveling nature of these solutions is associated to many
properties of nonlinear discrete systems as, for example, en-
ergy transfer in biological chains.7,8 In fact, the presence of
discrete solitons and breathers induced by nonlinearity has
been intensive studied within the context of �BEC� �Ref. 9�
waveguide arrays10,12 and general nonlinear systems.18

Recent experimental investigations using photoemission
spectra have been widely used to investigate effects of
electron-phonon interaction in pentacene films19 and
graphene structures.20 Graphene is a monolayer of carbon

atoms packed into a dense honeycomb crystal structure that
can be viewed as an individual atomic plane extracted from
graphite. Experimental developments have directed us closer
to graphene-based nanoelectronics with components or even
entire circuits formed from a graphene sheet. The graphene
could allow electronic devices since it can be the best pos-
sible metal for metallic transistor applications.21 Following a
description based on Dirac equations to graphene structures,
the effects of electron-phonon interaction was studied.22

Within the cubic nonlinear Schrödinger equation context, the
influence of the effective cubic nonlinearity arising from the
adiabatic electron-phonon coupling in the electron dynamics
was considered in two-dimensional lattices similar to
graphene structures.23,24 In Ref. 23 the existence and stability
of localized states in the discrete cubic nonlinear
Schrödinger equation on two-dimensional nonsquare lattices
was studied. The role played by nearest-neighbor as well as
long-range interactions was point out in detail.23 Further-
more, it was provided a systematic classification of the solu-
tions that arise in hexagonal and honeycomb lattices with
cubic nonlinearity.24 The dynamics reveals the emergence of
single-site solitary wave forms with a multisite breathing
structure.24

Motivated by the particular features of graphene,22 par-
ticularly its hexagonal geometry,23 we offer a comparative
study of the self-trapping phenomenon in square and honey-
comb lattices, showing its dependence on the initial condi-
tion �initial width of wave packets�. The self-trapping phe-
nomenon is associated with the underlying interaction
between electrons and lattice vibrations, responsible for a
nonlinear contribution to the electronic Schrödinger equa-
tion. We will show that it takes stronger nonlinearities to
promote self-trapping in square lattices than in honeycomb
lattices and that the critical nonlinear strength scales linearly
with the initial wave-packet distribution.

II. MODEL AND FORMALISM

In order to describe the dynamical behavior of an electron
wave packet within a tight-binding approach, we used a dis-
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crete nonlinear Schrödinger equation given by

i�ċn,m�t� = V �
�n�,m��

cn�,m��t� − ��cn,m�t��2cn,m�t� , �1�

where cn,m is the wave-packet amplitude at site �n ,m�, V is
the hopping amplitude between the nearest-neighbors sites
�n� ,m��, and � is a nonlinear parameter which is propor-
tional to the local electron-phonon coupling.4 In what fol-
lows we will consider the particular cases of square and hon-
eycomb geometries. Without any loss of generality, we are
considering the on-site energies �n,m=0 and will use units of
�=V=1.

To analyze the wave-packet propagation, we follow the
time evolution of an initially Gaussian wave packet of width
�,

cn,m�0� =
1

A���
exp�− �n − n0�2/�4�2��

�exp�− �m − m0�2/�4�2�� , �2�

localized at site �n0 ,m0�. We employ the fourth-order Runge-
Kutta method to numerically integrate Eq. �1�. The electron
will be considered to be initially located at the lattice center.

Aiming to characterize the dynamic behavior of the wave
packet, we computed two typical quantities that can bring
information about the possible self-trapping of the wave
packet and its spacial extension, namely, the return probabil-
ity and the participation function which are defined as

R�t� = �cn0,m0
�t��2 �3�

and

P�t� = 1/�
n,m

�cn,m�t��4. �4�

R�t� gives the probability of finding the electron in the posi-
tion corresponding to the center of the initial wave packet.
Thus, R�t	106�→0 means that the electronic wave function
escapes from its initial location. Conversely, the return prob-
ability saturates at a finite value for a localized or a self-
trapped wave packet. The participation function gives an es-
timate of the number of sites over which the wave packet is
spread at time t. In the long-time regime, P�t��N0 indicates
that the wave packet remains localized. On the other hand,
P�t��N2 corresponds to the regime where the wave packet is
distributed over the lattice.

III. SELF-TRAPPING IN HONEYCOMB AND
SQUARE LATTICES

In Figs. 1�a� and 1�b�, we show the time evolution of the
participation function P�t� computed for a wave packet with
an initial Gaussian profile with participation function P�t
=0�=4 spreading on �a� honeycomb and �b� square lattices
with N�N=1500�1500 sites and distinct strengths of the
nonlinear parameter �=25, 35, and 50. The wave-packet dy-
namics displays the same typical behavior for both lattices.
For small values of �, which represents a weak electron-
phonon coupling, the wave packet extends continuously over

the entire lattice. For strong nonlinearities, the electron re-
mains localized around its initial position. However, when
comparing Figs. 1�a� and 1�b�, we see that the electron is
more susceptible to the electron-phonon coupling in the hon-
eycomb than in the square lattice. Notice that the wave
packet is extended in the square lattice and localized in the
honeycomb lattice for the intermediate nonlinearity �=35.
Such localization of the wave packet is the so-called self-
trapping, on which the electron remains around its initial
position due to its coupling with the lattice vibrations. In the
delocalized regime, the growth of the participation function
ultimately saturates for long runs as the wave packet reaches
the lattice boundaries. This saturation is not reported in Fig.
1. In this case, the saturation value scales with the total num-
ber of lattice sites, in contrast with the size-independent
value of the asymptotic participation function observed for
self-trapped wave packets.

In order to better characterize the self-trapping phenom-
enon, we also report the time evolution of the return prob-
ability R�t� for a wave packet with initial participation func-
tion P�t=0�=4 on the honeycomb lattice �Fig. 1�c�� and on
the square lattice �Fig. 1�d��. When the electron-phonon in-
teraction is small, the electron becomes delocalized and the
probability of finding it in the initial wave-packet position
vanishes as t evolves. Conversely, the amplitude remains fi-
nite for a self-trapped wave packet, a phenomenon that takes
place in the strong-coupling regime.

Data for the normalized participation function in the
asymptotic regime P�t	106� /N2 versus the nonlinear pa-
rameter � are shown in Fig. 2�a� for wave packets with an
initial participation function of P�t=0�=4. In this case, the
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FIG. 1. Left panel: participation function P�t� computed for lat-
tices with N�N=1500�1500 sites and different values of the non-
linear coupling �=20, 35, and 50 in �a� honeycomb and �b� square
lattices. In all cases, the initial wave packet has a participation
function P�t=0�=4. The reported data show the self-trapping of the
wave packet as the strength of the electron-phonon coupling is in-
creased. This feature is less pronounced in the square than in the
honeycomb lattice. Right Panel: return probability R�t� for the same
values of lattice size, nonlinear couplings, and initial wave-packet
extension in �c� honeycomb and �d� square lattices. The probability
of return shows that, as we increase the nonlinear coupling, self-
trapping occurs in the honeycomb lattice at smaller values of the
nonlinearity than in the square lattice.
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wave packet was allowed to spread until reaching a station-
ary state due to either reflections at the lattice boundaries or
to self-trapping. A well defined self-trapping transition can
be observed in both honeycomb and square lattices. In the
delocalized phase, the participation function is on the order
of the number of lattice sites. It exhibits a pronounced de-
crease at the critical nonlinearity strength above which the
wave packet becomes trapped. These data show clearly that
there is a range of nonlinear strengths for which self-trapping
only takes place in the less connected honeycomb lattice. In
addition, we show the time-dependent participation number
versus time for wave packets with an initial participation
function of P�t=0�=4 in both honeycomb and square lat-
tices. Calculations were done considering nonlinearity de-
grees above the critical point. In Figs. 2�b� and 2�c�, we show
the time evolution of the participation function in the vicinity
of the self-trapping transition. The oscillatory behavior re-
flects the breathinglike character of the self-trapped
state.10,12,18,23 The oscillation amplitude decreases as one
goes deeper into the self-trapped phase.

In order to quantify this comparative study of the self-
trapping phenomenon is square and honeycomb lattices, we
plot the phase diagram in the P�t=0��� plane in Fig. 3. The
extended states were characterized using the criterion
R�t	106��1 /N2 and P�t	106��N2. The phase diagram de-
picts three main regions. The wave packet becomes delocal-
ized in both square and honeycomb lattices for wide initial
wave packets and small nonlinear strengths. In the opposite
region of narrow initial wave packets and large nonlinear
strengths, the wave-packet self-trapping predominates on
both lattices. There is an intermediate stripe of the phase
diagram in which self-trapping occurs in the less connected
honeycomb lattice but not in the more connected square lat-
tice. It is interesting to notice that the critical nonlinear
strength on both lattices is proportional to the initial partici-
pation number and that the ratio �c / P�0� is on the order of
the energy bandwidth. These results explicitly show the de-
pendency of the self-trapping phenomenon on the initial con-
dition �width of the wave packet� and that the local topology
of the lattice is a relevant ingredient. In the inset of Fig. 3,
we plot the critical nonlinear strength normalized by the lat-
tice coordination number. The curves from square and hon-
eycomb lattices collapse showing that the lattice coordina-
tion is actually the relevant topological parameter influencing
the self-trapping transition.

IV. SUMMARY AND CONCLUSIONS

In this work, we provided a detailed study of the one-
electron wave-packet self-trapping transition in square and
honeycomb lattices. Self-trapping results from a nonlinear
contribution to the Schrödinger time-dependent equation for
the wave-packet dynamics that arises from the adiabatic cou-
pling of the moving electron with the underlying lattice vi-
brations. For strong nonlinear couplings, the effective on-site
potential around which the electron is initially placed be-
comes well above the energy band. This leads to a decou-
pling of this energy level and, consequently, to the wave-
packet trapping. We provided a comparative study of the
self-trapping transition in typical two-dimensional lattices in
order to characterize the influence of the lattice topology, as
well as the influence of the initial wave-packet profile. We
showed that in the less connected honeycomb lattice, a
smaller nonlinear strength is required to promote self-
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FIG. 2. �Color online� �a� Normalized
asymptotic participation function P�t	106� /N2

versus the nonlinear coupling �. An initial wave
packet with P�t=0�=4 is considered. Notice a re-
gime of intermediate nonlinearities for which
self-trapping takes place in the honeycomb lattice
while the wave packet remains delocalized in the
square lattice. ��b� and �c�� The time evolution of
the participation function in the vicinity of the
self-trapping transition in �b� honeycomb and �c�
square lattices. The oscillatory behavior is related
to the breathing character of the self-trapped
wave packets.
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FIG. 3. �Color online� Phase diagram in the P�t=0��� param-
eter space showing the transition from the delocalized to the self-
trapped phase. The regime of delocalized wave packets was char-
acterized using the criterion R�t	106��1 /N2 and P�t	106��N2.
It takes stronger nonlinearities to promote self-trapping in square
lattices than in honeycomb lattices. In both cases, the critical non-
linearity scales linearly with the initial participation function. In the
inset, we report the critical nonlinearity normalized by the lattice
coordination number. The collapse of the curves indicates that the
lattice coordination is the relevant topological parameter for the
self-trapping transition.
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trapping. This feature is directly related to the fact that the
honeycomb lattice depicts a narrower energy band when
compared to the more connected square lattice. Therefore,
the lattice coordination is the relevant topological parameter
controlling the self-trapping transition. Further, we showed
that the critical nonlinear strength scales linearly with the
participation function of the initial wave packet. For both
lattices, the ratio between the critical nonlinear strength and
the initial participation function is on the order of the energy
bandwidth. Therefore, the self-trapping localization transi-
tion is strongly influenced by both lattice topology and wave-

packet initial distribution. It would be interesting to extend
the present scenario to more general models incorporating
electron-electron interactions, disorder, and nonlinearity, in
order to settle the relative role played by Mott, Anderson and
self-trapping localization in distinct lattice topologies.
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