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Abstract

In this study, we investigate the propagation of shear vibrations in a rectan-
gular system where disorder is introduced through the compressibility term,
exhibiting Lorentzian spatial correlations. Our primary objective is to under-
stand how these correlations influence the behavior and velocity of harmonic
mode packets as they travel through the system. To achieve this, we employ a
finite difference formalism to accurately capture the wave dynamics. Further-
more, we analyze how the spectral composition of the incident pulse affects wave
propagation, shedding light on the interplay between disorder correlations and
wave transport. By systematically exploring these factors, we aim to deepen
our understanding of the fundamental mechanisms governing shear vibration
propagation in disordered media.

1. Introduction

In wave propagation studies, acoustic systems, including shear vibrations,
serve as fundamental models for investigating the complex interactions between
waves and the medium they traverse.1,2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15 While the
behavior of sound waves in ordered and homogeneous media is well-understood,
wave dynamics in disordered systems introduce layers of complexity that remain
to be fully explored.16 In recent years, the study of acoustic modes in disordered
systems has gained attention, attracting researchers from fields such as physics,
engineering, and materials science.

Disordered systems, defined by structural randomness or irregularities, of-
fer both challenges and opportunities in the study of wave phenomena. Unlike
ordered systems, where wave propagation is predictable, disordered systems dis-
play phenomena such as multiple scattering, Anderson localization, and mode
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hybridization.17,18 These effects result from the interplay between wave inter-
ference and scattering induced by disorder, leading to complex and often sur-
prising wave behavior.19 Understanding acoustic modes in disordered systems
has important implications for various fields. In materials science, controlling
acoustic wave propagation in disordered media could lead to the design of new
materials with specific acoustic properties, such as enhanced sound insulation or
waveguiding capabilities.20 Disordered systems also hold promise in photonics
and optoacoustics, providing platforms for robust light-matter interactions and
paving the way for innovations in random lasers and optical communication.21

Moreover, the study of acoustic modes in disordered media has practical appli-
cations in areas such as non-destructive testing, medical imaging, seismic anal-
ysis, and telecommunications.22,23 By understanding the mechanisms behind
wave propagation in these media, researchers hope to leverage their inherent
complexity for technological innovations.

The behavior of elastic waves in heterogeneous media with off-diagonal disor-
der and long-range correlations was explored in,24 where the authors examined
how these factors influence wave dynamics. In,25 researchers studied acous-
tic wave localization in one-dimensional systems with chaotic elasticity, using
numerical methods to analyze localized modes. Additionally, the work in26

investigated the propagation of acoustic waves in two-dimensional disordered
media with both short- and long-range correlations. Reference27 provides a com-
prehensive analysis of how correlated disorder influences localization in certain
low-dimensional systems, resulting in anomalous (non-exponential) localization.
The study shows that long-range correlations can suppress or modify traditional
Anderson localization, significantly affecting wave transport properties.

In this work, we investigate the propagation of shear vibrations in disordered
systems, with a particular focus on a rectangular geometry where disorder is in-
troduced through the compressibility term. Specifically, we consider a system
in which the disorder exhibits Lorentzian spatial correlations, allowing us to
explore the impact of strong correlations on wave propagation. To achieve this,
we analyze the behavior of harmonic mode packets as they travel through the
system, employing a finite difference scheme to ensure accurate numerical mod-
eling of the wave dynamics. A key aspect of our study is to determine how
the presence of correlated disorder affects the dispersion and velocity of shear
modes. Additionally, we examine the influence of the spectral composition of
the incoming wave packet, investigating how different frequency components
interact with the disordered medium. By systematically varying the character-
istics of both the disorder and the excitation, we aim to gain insights into the
mechanisms governing shear wave transport in disordered environments.

2. Model

The propagation of shear vibrations in a two-dimensional disordered medium
of size L×N with uniform mass density at position ~r can be described by the
scalar wave equation,26,28 which governs the displacement field ψ(~r, t) in an
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elastic medium:
∂2ψ(~r, t)

∂t2
= ~∇ · [Π(~r)~∇ψ(~r, t)], (1)

where ψ(~r, t) represents the displacement field at position ~r and time t. This
scalar quantity describes the transverse displacement of the medium due to
shear vibrations, and it indicates how much each point of the material moves
in the direction perpendicular to the plane of propagation. In the case of shear
vibrations, ψ(~r, t) can be thought of as the amplitude of the deformation at any
point in space and time. The units of ψ are typically units of length. On the
other hand, Π(~r) represents the bulk stiffness or elastic modulus at position ~r.
It characterizes the resistance of the medium to deformation at a given point,
and it governs how the medium’s internal forces respond to the strain induced
by the displacement ψ(~r, t). Π(~r) can vary spatially, reflecting heterogeneities
in the material’s properties, such as varying stiffness or elasticity across the
medium. In a homogeneous material, Π(~r) would be a constant value, typically
the Young’s modulus E for a linear elastic material, but it can be position-
dependent in a disordered system. The units of Π(~r) are characteristic of force
per unit length or pressure per unit area. We assume a constant mass density of
1, independent of ~r. This simplifies the model by normalizing the mass density
in dimensionless units, ensuring consistency with the chosen scale of the prob-
lem.In this equation, the characteristic unit of time is given by ζ/

√
〈Π〉, where

ζ represents a relevant length scale (such as the lattice spacing in a discretized
version of the system), and 〈Π〉 is the average elastic modulus. This implies
that time is measured in units of the propagation time across a characteristic
length, which is determined by the medium’s stiffness. This equation describes
how mechanical perturbations evolve in time under the influence of spatially
varying stiffness, a characteristic of disordered elastic systems. The right-hand
side accounts for the inhomogeneous mechanical response due to spatial fluctu-
ations in Π(~r). To better understand the structure of Eq. (1), we expand the
term inside the divergence:

~∇ · [Π(~r)~∇ψ(~r, t)] = ∂xΠ(~r)∂xψ(~r, t) + ∂yΠ(~r)∂yψ(~r, t)

+ Π(~r)[∂2
xψ(~r, t) + ∂2

yψ(~r, t)]. (2)

This expansion explicitly shows that the wave propagation is affected both by
gradients of the stiffness field (first two terms) and by the local Laplacian of the
displacement field (last term). The presence of Π(~r) outside the Laplacian term
distinguishes this equation from the standard wave equation in homogeneous
media. The derivation of Eq. (1) follows from the fundamental principles of
wave motion in elastic continua, as discussed in Symon (1960, Mechanics, 2nd
ed.), particularly in Chapters 8-1 to 8-5.29 In this reference, the equation gov-
erning small oscillations in a nonuniform elastic medium is derived step by step,
providing a rigorous foundation for our model. A similar formulation has also
been applied in disordered lattice models.26 To numerically solve the wave equa-
tion in two dimensions, we apply the finite difference method on a rectangular
grid. The displacement function ψ(~r, t) is discretized as ψni,j , where the indices
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i, j correspond to the spatial positions x = iδx and y = jδy, while n denotes the
time steps t = nδt. The medium’s compressibility Π(~r) is discretized as Πi,j .
To ensure numerical stability, we adopt spatial discretization steps δx = δy = 1,
which define the typical lattice spacing in dimensionless units and correspond to
the characteristic length scale ζ previously introduced to describe the propaga-
tion time scale. A sufficiently small time step of δt ≈ 10−3 is employed to guar-
antee the accuracy and stability of the numerical integration. The second-order
time derivative is approximated using a central difference scheme:26,30,31,32

∂2ψ(~r, t)

∂t2
≈
ψn+1
i,j − 2ψni,j + ψn−1

i,j

δt2
. (3)

The spatial derivatives are approximated using higher-order finite difference
schemes to improve accuracy and reduce numerical dispersion:

∂2
xψ(~r, t) ≈

−ψni+2,j + 16ψni+1,j − 30ψni,j + 16ψni−1,j − ψni−2,j

12(δx)2
, (4)

∂xψ(~r, t) ≈
−ψni+2,j + 8ψni+1,j − 8ψni−1,j + ψni−2,j

12δx
. (5)

Similarly, for the y-direction:

∂2
yψ(~r, t) ≈

−ψni,j+2 + 16ψni,j+1 − 30ψni,j + 16ψni,j−1 − ψni,j−2

12(δy)2
, (6)

∂yψ(~r, t) ≈
−ψni,j+2 + 8ψni,j+1 − 8ψni,j−1 + ψni,j−2

12δy
. (7)

The derivatives of Π(~r) are approximated as:

∂xΠ(~r) ≈ −Πi+2,j + 8Πi+1,j − 8Πi−1,j + Πi−2,j

12δx
, (8)

∂yΠ(~r) ≈ −Πi,j+2 + 8Πi,j+1 − 8Πi,j−1 + Πi,j−2

12δy
. (9)

By substituting these approximations into the wave equation, we obtain the
recurrence relation:

ψn+1
i,j = 2ψni,j − ψn−1

i,j + δt2

( ∑
z=x,y

[
∂zΠ · ∂zψ + Π

(
∂2
xψ + ∂2

yψ
)])

. (10)

This recurrence relation is used in numerical algorithms to iteratively compute
wave propagation in disordered media. The finite difference method is widely
applied in fields such as acoustics, geophysics, and elasticity.33,34,35,36,37 The
choice of this formalism is justified by several factors, making it an efficient
and effective approach for this particular problem. The explicit time-stepping
scheme used in our approach is not computationally expensive and is well-suited
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for simulations. Furthermore, this method naturally fits structured Cartesian
grids, which helps reduce computational complexity when compared to unstruc-
tured mesh-based methods like the finite element method (FEM),38 typically
preferred for irregular geometries. The use of high-order finite difference sten-
cils, such as the fourth-order central difference approximations employed in our
formulation, improves the accuracy of spatial derivatives, minimizing numerical
dispersion and ensuring precise wave propagation. The time step δt ≈ 10−3 was
chosen based on numerical stability considerations. Tests with smaller values
(e.g., δt = 5 × 10−4 and 10−4) showed no significant differences in the results,
confirming that the chosen value ensures stability without incurring unnecessary
computational cost.

In this study, the bulk compressibility Πi,j is modeled as a disordered dis-
tribution exhibiting Lorentzian correlations. These correlations describe the
interaction between spatial points, decaying slowly as the distance between
them increases. To generate this disordered landscape, we first compute the
two-dimensional (2D) distribution Bi,j , defined as:

Bi,j =
∑
o,p

1

1 +

(√
(i−o)2+(j−p)2

Λ

)2 ζo,p, (11)

where ζo,p represents a random field consisting of L×N uniformly distributed
random values in the interval [−1, 1]. The term Λ represents the correlation
length, which determines how far the Lorentzian correlations extend within the
system. It measures the distance over which correlations remain significant.
The unit of Λ is distance (for example, the lattice spacing), and it quantifies
the spatial range of the correlations. The Lorentzian factor 1

1+(r/Λ)2 , where

r =
√

(i− o)2 + (j − p)2 represents the Euclidean distance between points (i, j)
and (o, p), acts as a spatial filter. This filter ensures that the influence of distant
points decays smoothly, with the decay rate controlled by Λ. In the summation
above, the term corresponding to r = 0 (i.e., i = o and j = p) should not be
considered. As the distance r increases beyond Λ, the contribution of distant
points to the sum diminishes rapidly, highlighting the importance of nearby
sites in determining the value of Bi,j . When Λ � L, the correlations are
weak (extremely short-range). In this regime, the influence of distant points
is negligible, and the system roughly behaves as if it contains an uncorrelated
disorder distribution. On the other hand, when Λ is comparable to L, the
system exhibits strong correlations, with distant points still showing significant
statistical dependence. The case Λ = 0, assuming r > 0, corresponds to the
pure system—one without disorder. In this case, it becomes meaningless to talk
about correlated disorder; therefore, it is an undesirable limit of this formula.
In summary, Λ represents the characteristic length over which correlations are
significant. Small values of Λ correspond to weak correlations, meaning that Λ is
small but not zero, while values of Λ on the order of the system size correspond
to strong correlations.

In practical computations, the summation over indices o and p can be lim-
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ited to points within a finite radius around (i, j) because the Lorentzian function
quickly decays. For instance, when |i− o| and |j − p| exceed a threshold of ap-
proximately 150 lattice sites, the influence of terms in the summation becomes
negligible. Thus, the summation is efficiently truncated, with only local neigh-
borhoods of size |i − o| < 150 and |j − p| < 150 being considered for each
Bi,j value. This truncation greatly reduces computational overhead without
significantly affecting the accuracy, especially when the correlation length Λ is
smaller than or on the order of 100. For small values of Λ, the disorder dis-
tribution becomes rougher, while for larger values of Λ, the correlations persist
over longer distances, resulting in a smoother disorder profile. After construct-
ing the 2D field Bi,j , it is necessary to normalize it so that the disorder has
desirable statistical properties. Specifically, we normalize the field such that the
mean value 〈Bi,j〉 =

∑
i,j Bi,j/(LN), representing the average value of the field

at position (i, j), is zero, and the term 〈B2
i,j〉 =

∑
i,j B

2
i,j/(LN), representing

the average second moment of the field, is normalized to unity. This ensures
that the disorder distribution is centered around zero, with fluctuations that are
statistically well-defined and bounded. Once the normalized distribution Bi,j is
obtained, the bulk compressibility at each point (i, j) is determined through the
following relation: Πi,j = tanh (Bi,j) + 2.. This transformation ensures that the
compressibility values remain physically meaningful. The hyperbolic tangent
function compresses the values of Bi,j , preventing Πi,j from becoming exces-
sively large, while the constant shift of +2 guarantees that the compressibility
remains strictly positive, avoiding any unphysical negative values. Moreover,
this method retains the inherent Lorentzian correlations in the original Bi,j
field, ensuring that the bulk compressibility Πi,j mirrors the desired spatial
structure of the disorder. This process thus allows for the generation of a well-
behaved, Lorentzian-correlated disordered medium where the compressibility
Πi,j exhibits controlled spatial variations.

Our investigation focuses on analyzing the propagation characteristics of
pulses in a system described by a specific mathematical framework. In partic-
ular, we performed a series of numerical simulations to study how these pulses
travel through a rectangular lattice structure, which serves as a model for various
physical systems. The left boundary of the lattice is connected to an oscillator
that plays a crucial role in injecting pulses into the system. These pulses are
mathematically represented by the expression

ψi,j=0(t) = exp

[
− t2

σT

]
cos(ωt), (12)

where ω denotes the frequency of the pulse (in units of
√
< Π >) and σT con-

trols the temporal width of the pulse envelope. The Gaussian factor exp
[
− t2

σT

]
ensures that the pulse is localized in time, while the cosine component intro-
duces oscillatory behavior, making it suitable for studying wave phenomena. To
capture the dynamics of pulse propagation, we monitored the pulse’s evolution
at specific coordinates given by [L/2+δk, N0]. Here, N0 denotes a fixed position
along the N -direction. The parameter δk varies within the range [−80, 80] in
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increments of 20 sites, allowing us to explore the effects of different spatial off-
sets on pulse behavior. We then calculated the spectral function F (ω), defined
as F (ω) = 1

Mk

∑
k f(ω)k, where f(ω)k represents the Fourier transform of the

wave pulse at the specified position [L/2+ δk, N0] and Mk indicates the number
of δk values utilized. Specifically, the calculation of f(ω)k was performed numer-
ically using the Fast Fourier Transform (FFT) procedure on a long time series
of the wave at position [L/2 + δk, N0]; we considered approximately 215 points
in this time series. This spectral analysis provides insights into the frequency
components of the propagating wave, enabling us to understand how different
frequencies contribute to the overall pulse dynamics. For our numerical exper-
iments, we set the parameters L = 240, N = 2800, and N0 = 1800. These
values allow for a comprehensive study of pulse behavior across a large lattice,
capturing a diverse range of interactions and propagation phenomena. We also
considered larger systems; however, within the limits of our computational re-
sources, these system sizes were the largest where we could maintain accurate
numerical integration. Additionally, we compute the function Φ, defined as:

Φ =

L∑
i=1

N∑
j=N0

|ψi,j(t→ tmax)|, (13)

with tmax ≈ 1800 time units. This function serves as an indication of wave prop-
agation, quantifying the total amount of wave packet that successfully traverses
the critical point N0 as time approaches its maximum value. A key observation
is that the absence of the wave on the right side of the lattice indicates that
propagation did not occur, while the presence of the wave suggests propagation.
Therefore, as Φ increases, it provides evidence of wave propagation through the
lattice. By summing over all relevant lattice sites, Φ provides a good indication
of whether propagation occurs or not, with its growth serving as a sign of suc-
cessful wave transmission. We will use this, in parallel with spectral analysis,
to detect the influence of correlation and other parameters on wave propaga-
tion. Through these investigations, we aim to gain an understanding of pulse
propagation in media with Lorentzian-correlated disorder.

We emphasize that to start the time integration, the displacement at t = 0 is
given by the initial condition (i.e., Eq. 12 at t = 0), while the displacement prior
to t = 0 is set to zero, representing a state of rest. This enables the first up-
date using the central-difference scheme. Subsequent time steps proceed without
difficulty, as displacements at previous time levels are known. The maximum
simulation time, tmax = 1800, was chosen for two reasons: first, it is suffi-
ciently long for the wave to propagate far from the initial excitation point (the
left boundary); second, it is chosen to ensure the wave does not reach the right
boundary of the sample, thus avoiding any undesired reflections.

3. Results

Before presenting our physical quantities, we first provide 3D visualizations
of the wave ψi,j using the i×j×ψi,j coordinates for a qualitative understanding
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Figure 1: 3D visualization of the wave ψi,j in the i × j × ψi,j space, for an incident pulse
with frequency ω = 0.5 and correlation lengths Λ = 100 and Λ = 1.
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Figure 2: The analysis of the function Φ shows that low-frequency pulses propagate efficiently
through highly correlated media (Λ � 1) with minimal energy loss. In contrast, in weakly
correlated media (Λ ≈ 1), high-frequency pulses experience significant energy dissipation and
distortion due to multiple reflections.

of the system’s behavior. We consider an incident pulse with frequency ω = 0.5
and correlation lengths Λ = 100 and Λ = 1. The corresponding results are
shown in Figure 1. The calculations were performed on a 240 × 2800 lattice,
considering 1200 time units purely for illustration purposes. The visualizations
reveal clear differences in wave propagation depending on the correlation length.
When Λ = 100, the pulse, initially inserted at j = 0, propagates through a sig-
nificant portion of the system, indicating enhanced transport. However, due to
the presence of disorder—even with strong correlations—some internal scatter-
ing occurs, leading to a gradual deformation of the initial pulse. Additionally,
the lateral boundaries introduce further perturbations in the propagation along

8



0 20 40 60 80 100

Λ

0.0e+00

5.0e-05

1.0e-04

1.5e-04

Φ

ω=0.5

ω=1.5

ω=2.5

Figure 3: The function Φ versus Λ is shown for ω = 0.5, 1.5, 2.5. For low frequencies (ω = 0.5
and 1.5), the function Φ increases with strong correlations (Λ� 1), while for higher frequencies
(ω = 2.5), even in highly correlated systems, Φ remains low, indicating poor transport.

0 1 2 3

ω

0

0.5

1

1.5

2

2.5

3

F
( 

ω
)  ω=0.5

ω=1

ω=2.5

Λ=40

0 1 2 3 4

ω

0

0.5

1

1.5

2

2.5

3

F
( 

ω
)  ω=0.5

ω=1

ω=2.5

Λ=80

Figure 4: Spectral analysis using the function F (ω) confirms that low-frequency modes prop-
agate efficiently with minimal distortion, while higher-frequency modes are broadened and
attenuated. These findings correlate well with the earlier observations from the function Φ.

the j-direction, influencing the wave’s overall shape. Despite these effects, a
substantial fraction of the pulse successfully traverses the system. In contrast,
for Λ = 1, the pulse exhibits a very different behavior: a significant portion re-
mains localized near the initial position, suggesting minimal propagation. This
highlights the role of correlation length in facilitating wave transport. These
visualizations are primarily illustrative, providing an initial qualitative assess-
ment. A more interesting analysis of wave propagation, or lack thereof, will be
conducted through measurements of Φ, wave velocity and spectral analysis.

We begin by presenting the main results, starting with the analysis of Figure
2, which illustrates the behavior of the function Φ (see Eq. 13) as a function
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Figure 5: We present the average velocity of the pulse as it propagates to a specific position
N0, calculated as V = N0

t0
(in units of

√
〈Πi,j〉), where t0 is the time required for the wave’s

amplitude to exceed a threshold of 10−10. The results show that lower frequencies generally
correspond to higher velocities, while higher frequencies lead to a reduction in velocity, partic-
ularly in weakly correlated systems (Λ ≈ 1). In contrast, highly correlated systems (Λ � 1)
exhibit a weaker frequency-velocity dependence at low frequencies but a more rapid decrease
in velocity at higher frequencies, indicating that correlation strength significantly influences
wave propagation dynamics.

of the frequency ω. In this study, we considered the incidence of pulses with
frequencies ranging from 0.25 to 2.5, covering a wide spectrum of values, and
examined how these pulses propagate in media with varying levels of correlation,
parametrized by Λ, ranging from 1 to 100. When examining the propagation for
low frequencies, such as 0.25 and 0.5, we observe a remarkable behavior of the
function Φ, especially when Λ takes on large values (Λ � 1). In this region of
strong correlations, Φ remains significantly high, indicating that the pulse prop-
agation is efficient. In other words, there is little energy dissipation as the pulse
travels through the medium, even over long distances within the sample. This
behavior highlights the crucial role that correlations play in preserving rougly
the structure of the shear pulses. As we decrease the value of Λ, approaching
Λ = 1, the scenario changes significantly. For this minimal correlation value,
only the pulses with very low frequencies, such as 0.25 and 0.5, manage to prop-
agate reasonably well to regions near the end of the sample. However, even
in these cases, the propagation is limited, suggesting that in media with weak
correlations, the dispersion and reflection of the pulses increase substantially,
hindering wave transmission. At the other extreme, when considering higher
frequencies, such as 2.0 and 2.5, the behavior of the function Φ changes drasti-
cally, especially for Λ = 1. In this low correlation scenario, the pulses manage
to reach the final region of the sample, but with significantly reduced intensity.
The function Φ shows low values, indicating that most of the pulse’s energy
is dissipated during propagation. Moreover, the shape of the pulse arriving
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Figure 6: Figure (a) shows how local disorder decreases as the correlation length Λ increases.
Figure (b) shows the probability distribution P (Πi,j) × Πi,j for Λ = 100. In Figure (c), the
propagation function Φ(ω = 2.5) is plotted as a function of Λ, now including the uncorrelated
case. We emphasize that in this figure, we place the results for the uncorrelated case at Λ = 0
for comparison; however, there is no connection to the non-existent limit of Λ = 0 in Eq. 11.
In the inset of Figure (b), we can observe that Φ decreases linearly with Λ.

at the end of the sample is severely distorted. This distortion arises from the
multiple reflections and dispersions the pulse encounters as it travels through
the disordered medium. This phenomenon is direct evidence of the effect that
disorder and lack of correlation have on the propagation of waves, especially
at high frequencies. The higher the frequencies, the more severe the effects of
multiple reflections, resulting in pulses that are highly deformed, reaching the
end of the sample with an unrecognizable shape and a very low amplitude. We
will present another figure ( fig. 3) that shows the behavior of the function Φ as
a function of the localization length Λ for three different frequencies: ω = 0.5,
ω = 1.5, and ω = 2.5. For the lower frequencies, ω = 0.5 and ω = 1.5, the
function Φ becomes significantly more intense as the correlation strength in-
creases, particularly when Λ� 1. This indicates that for low-frequency modes,
strong correlations in the system enhance wave propagation, leading to greater
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wave spreading throughout the medium. Essentially, as Λ grows, the system’s
disorder becomes more correlated over long ranges, allowing the waves to main-
tain their coherence and energy over larger distances, which is reflected in the
larger values of Φ. Another observation from this figure is that the function
Φ exhibits two distinct behaviors depending on the value of Λ. For Λ < 40, Φ
grows significantly as Λ increases, indicating that stronger correlations enhance
wave propagation. However, for Λ ≥ 40, the growth rate of Φ decreases con-
siderably, suggesting a tendency toward saturation (or near saturation). This
behavior indicates that Λ = 40 appears to act as a threshold where correlations
effectively enhance propagation in the system. That is, for Λ < 40, propa-
gation is not as intense, whereas for Λ > 40, the system seems to exhibit a
more pronounced propagation effect. Beyond this point, further increases in Λ
lead to only small improvements in Φ, suggesting a possible limit to the influ-
ence of strong correlations on transport efficiency. On the other hand, for the
higher frequency ω = 2.5, a very different behavior is observed. Even when Λ
reaches large values, such as Λ = 100, the function Φ remains small, indicating
low energy transport across the system. This suggests that for high-frequency
modes, strong correlations in the medium are not sufficient to sustain efficient
propagation. Instead, the higher frequency pulses undergo significant scattering
and attenuation, leading to poor transmission. This behavior aligns with previ-
ous observations that higher frequency waves are more susceptible to multiple
reflections and dispersion within disordered systems, even when the disorder
is strongly correlated. In summary, while strong correlations (Λ � 1) greatly
enhance the propagation of low-frequency modes, they do not have the same
effect on high-frequency modes, as evidenced by the consistently low values of Φ
for ω = 2.5. This highlights a frequency-dependent behavior in wave transport,
where low-frequency waves benefit from the system’s correlations, whereas high-
frequency waves do not propagate as effectively, even under the same conditions
of strong correlation.

Now, we will present the spectral analysis through the function F (ω) (see
fig. 4). We will showcase various calculations for Λ = 40 and Λ = 80. The
results clearly indicate that, in the low-frequency region, F (ω) exhibits well-
defined peaks at frequencies that precisely match the input frequencies applied
at the left boundary of the system. This strongly suggests the existence of
propagation across the sample with minimal destruction or dispersion of the
wave packet. In this low-frequency region, it is also worth noting that the func-
tion Φ demonstrated significantly high values, reinforcing this observation. The
combination of these findings — well-defined spectral peaks and high values
of the function Φ — provides strong evidence for the efficient propagation of
low-frequency modes throughout the system. On the other hand, for higher
frequencies, such as ω = 2.5, we observe a broadened spectral function with
considerably lower intensity. This is in good agreement with the reduction in
propagation efficiency, as already demonstrated by the function Φ in the previ-
ous figure. The broadening of the spectral peaks and the decrease in intensity
at higher frequencies indicate that the wave packet undergoes significant dis-
tortion and attenuation as it travels through the disordered medium, leading
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to reduced propagation in this regime. In summary, the spectral analysis con-
firms the earlier observations, highlighting a clear correlation between frequency
and wave propagation efficiency in the system. Low-frequency modes propagate
more efficiently with less distortion, while high-frequency modes are significantly
attenuated and broadened, aligning with the diminished propagation observed
in the function Φ.

In fig. 5 we present the results regarding the average velocity of the pulse
as it travels from the left side of the sample to a specific position N0. The
velocity, in this context, will be calculated as V = N0

t0
, where t0 represents the

time required for the modulus of the wave at position N0 to exceed a threshold
of 10−10. This criterion ensures that we are tracking when the pulse reaches a
detectable amplitude at N0. It is worth emphasizing that, since the characteris-
tic time scale is proportional to 1/

√
〈Π〉, the ratio N0/t0 has units proportional

to
√
〈Πi,j〉. The graph reveals interesting behavior concerning the relationship

between frequency and velocity. For lower frequencies, the velocity of the pulse
tends to be slightly higher compared to that of higher frequencies. This indi-
cates that, as the frequency increases, there is a small but noticeable reduction
in the velocity of the wave as it propagates through the medium. However, the
magnitude of this frequency-dependent behavior varies depending on the corre-
lation strength within the system. In highly correlated systems, where Λ � 1,
the frequency-velocity dependence is relatively weak for ω ≤ 1.5, with the ve-
locity remaining nearly constant across this frequency range. This suggests that
strong correlations in the medium help maintain the wave’s speed. However, for
ω > 1.5, the velocity starts to decrease more rapidly as the frequency increases,
indicating a slightly stronger influence of frequency on wave propagation in this
higher frequency regime, even in the presence of strong correlations. On the
other hand, in systems with weaker correlations (Λ close to 1), the relation-
ship between velocity and frequency becomes much more pronounced. In these
cases, the velocity decreases more significantly as the frequency increases, im-
plying that weaker correlations lead to more substantial interactions between
the pulse and the disordered medium, which in turn affects the wave’s ability
to maintain its speed. This strong frequency dependence in less correlated sys-
tems highlights the role of disorder in influencing the propagation dynamics of
waves. In summary, while the velocity of the pulses shows only slight frequency
dependence in highly correlated media, it exhibits a much stronger dependence
in weakly correlated systems, where the disorder in the medium has a more
significant impact on wave propagation. We would like to emphasize that
our results were not very satisfactory for ω > 2.5. Within the system sizes we
considered and the times we were able to integrate with reasonable accuracy,
the wave packet did not propagate macroscopically to positions near the end of
the lattice, and the velocity calculations were unsuccessful. Therefore, signifi-
cantly increasing either the simulation time or the system size (for example, to
avoid boundary effects along the L direction) was not feasible within our com-
putational limitations. We believe that the wave packet should still propagate
slowly at frequencies slightly higher than ω = 2.5, but, for now, we were unable
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to conduct an analysis at much higher frequencies. We regret this limitation.
Before concluding our work, we will analyze the propagation of high frequen-

cies, focusing on ω = 2.5 as an example, and compare this propagation at the
same frequency in systems without correlations. We will examine the behavior
of Φ in systems with strong correlations (i.e., Λ ≈ 100 ) and compare these
results with those obtained in systems without correlations (i.e., with uncorre-
lated disorder). To do this, we will generate samples with uncorrelated disorder,
ensuring that their statistical properties are similar to those of the correlated
case, particularly in situations with strong correlations. In summary, we will
compare the propagation of high-frequency shear waves in a correlated system
with the same propagation at high frequencies in a system that has uncorrelated
disorder, which exhibits statistical properties similar to those of the correlated
disorder. One of the interesting statistical properties that can classify a disorder
distribution is the local disorder ∆L. Local disorder is calculated by dividing
a sample of size L ×N into u boxes of size d0 × d0 = 40 × 40, and computing

σu =
√
〈Π2

i,j〉u − 〈Πi,j〉2u, where

〈Π2
i,j〉u =

1

Au

∑
〈i,j〉u

Π2
i,j and 〈Πi,j〉u =

1

Au

∑
〈i,j〉u

Πi,j , (14)

with Au = d2 representing the number of sites within each box u, and 〈i, j〉u
denoting a sum over the sites i, j within the box u. The local disorder is then
defined as ∆L = 1

Nu

∑
u σu, where Nu is the total number of boxes. It is

important to emphasize that as Λ increases, the local disorder ∆L decreases
(see results in Fig. 6(a) for reference). We can see that for Λ ≈ 1, the local
disorder is close to 0.61, while for Λ = 100, the local disorder is approximately
0.1. Therefore, since we wish to compare the propagation in the high-frequency
region in strongly correlated systems and in uncorrelated systems, we need to
generate uncorrelated samples with ∆L ≈ 0.1. Another relevant statistical point
is to respect the probability distribution for elasticity. Therefore, we need to
generate uncorrelated samples where the probability distribution exhibits the
same behavior as that found in the case with Λ = 100. In practical terms, we
measure the normalized distribution P (Πi,j)×Πi,j for Λ = 100 (see Fig. 6(b)).
The best fit (dashed line) yields the following parabolic equation: P (Πi,j) ≈
a0 + a1(Πi,j − 2)2 with a0 ≈ 0.37 and a1 ≈ 0.68. We then use this distribution
to generate uncorrelated samples, ensuring that the uncorrelated system we
consider follows the same probability distribution. Additionally, we normalize
the uncorrelated disorder distribution to maintain the same local disorder as in
the correlated profile with Λ = 100. Specifically, we set the uncorrelated disorder
to have an average of 2 and the local disorder approximately 0.1. In Fig. 6(c), we
compare Φ(ω = 2.5) as a function of Λ with Φ(α = 2.5) for the previously defined
uncorrelated disorder. Here, the data for the uncorrelated case is included at
Λ = 0. We emphasize that this point at Λ = 0 is presented solely for comparison
with the other results—there is no physical connection between this data point
at Λ = 0 and the irrelevant limit Λ = 0 in Eq. 11. Our results show that, when
considering an incident pulse with high frequency (ω = 2.5), the uncorrelated
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case (Λ = 0) exhibits more wave propagation than strongly correlated cases. In
other words, this correlation model, even in the strong correlation limit, is more
opaque to the transport of vibrational modes than an uncorrelated system with
the same local disorder magnitude—though this effect is observed only in the
high-frequency regime (i.e., for small wavelengths). In the works by Izrailev and
co-workers (see Ref.27 for an instructive review), it is shown, within the context
of the Anderson model, that in high-energy regions (i.e., for small wavelengths),
localization becomes stronger in systems with correlated disorder compared to
those with uncorrelated disorder. They explain this phenomenon by noting that
the presence of correlations in the disorder distribution creates more effective
barriers for wave propagation, leading to enhanced localization. Our results
suggest that, within the type of correlated disorder we are using and the lattice
vibration framework we are considering, this phenomenon also occurs.

4. Summary

This paper investigates shear wave propagation through disordered media
with varying levels of correlation, focusing on the analysis of the function Φ,
spectral behavior, and pulse velocity as functions of both frequency and correla-
tion length (Λ). The results show that at low frequencies and strong correlations
(Λ� 1), wave propagation becomes more efficient. In this regime, a significant
portion of the wave packet propagates over long distances, as indicated by the
increase in the function Φ, the higher velocity, and well-defined spectral peaks.
These characteristics suggest that the medium’s strong correlations play a cru-
cial role in facilitating more coherent wave transport. The correlations help
preserve the wave packet profile, reducing scattering and reflection, which are
typically observed in disordered systems. As the correlation length increases,
the system exhibits more robust wave propagation, with a higher degree of co-
herence and less dispersion, allowing the wave to maintain its shape over longer
distances. This behavior contrasts with cases of weak correlations (Λ � 1),
where scattering dominates, leading to slower propagation of the wave packet.

Conversely, at higher frequencies (ω ≥ 2.0), even under conditions of strong
correlation (Λ � 1), wave propagation is less efficient. In our calculations for
higher frequencies the function Φ remains small, indicating poor wave trans-
mission, while the spectral peaks become broadened and less intense, sug-
gesting a loss of coherence and significant pulse distortion. In weakly cor-
related systems (Λ ≈ 1), the situation is even more pronounced, with both
low and high-frequency waves exhibiting limited propagation. Here, disorder
dominates, leading to increased wave dispersion, reduced pulse velocity, and
highly distorted waveforms at the end of the sample. The velocity analysis
further supports these findings, showing a clear reduction in pulse speed with
increasing frequency, particularly in weakly correlated media. These results
highlight a frequency-dependent transport mechanism in disordered systems,
where low-frequency modes benefit significantly from strong correlations, while
high-frequency modes are heavily impeded by scattering effects. This behavior
underscores the importance of correlation length Λ in controlling the transport
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properties of the system. We emphasize that high-frequency modes (i.e., modes
with shorter wavelengths) are generally more susceptible to Anderson local-
ization and disorder effects.27 This is because shorter wavelengths are more
sensitive to the spatial irregularities and inhomogeneities in the system, lead-
ing to stronger scattering and localization. As a result, high-frequency modes
tend to become more localized, especially in disordered systems, where their
propagation is hindered by the disorder present in the medium. This behavior
has been increasingly demonstrated in the context of the Anderson electronic
model, where higher-frequency excitations are shown to exhibit stronger local-
ization due to disorder .27 Our results for the propagation of high-frequency
shear waves in two-dimensional systems with Lorentzian-correlated disorder are
consistent with those originally observed in the Anderson model. Furthermore,
the study suggests a near-saturation effect in wave transport efficiency at very
large Λ values (e.g., Λ ≥ 40), where further increases in correlation strength
lead to diminishing returns. For Λ > 40, both the function Φ and the velocity
become nearly constant, with only small increases observed. This behavior in-
dicates that, beyond a certain threshold, the influence of correlation strength on
wave propagation diminishes, and the system enters a regime where transport
is only slightly affected by further increases in Λ. Although there is a small
increase in the transport indicators, this increase is no longer as pronounced.
As a result, wave transport efficiency roughly stabilizes, suggesting that the
correlation effects reach their maximum impact at these Λ values.

Looking ahead, this research offers valuable insights into the design of engi-
neered materials with specific wave propagation properties. By carefully tuning
correlation strength, it is possible to enhance or suppress wave transmission for
targeted frequency ranges. This has practical applications in fields such as insu-
lation, wave-based information transfer, and the development of metamaterials
for manipulating sound waves in novel ways. Moreover, the study provides a
foundation for exploring more complex scenarios, such as nonlinear disordered
media, time-dependent correlations, or systems with a broader range of fre-
quencies. These extensions could lead to new technologies in controlling wave
propagation across a variety of disciplines, from telecommunications to medical
ultrasound imaging.
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