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Abstract. The phase distribution and phase correlation of two initially
coherent electromagnetic field modes copropagating through a lossless nonlinear
medium are investigated. We show that the number of distinguishable com-
ponents in the phase distribution depends on the set of nonlinear parameters
through a simple relation and that it is connected with the number of entangled
field states as well as the number of components that a single field state acquires
after propagating through the medium. The phase correlation between the two
field modes is shown to exhibit a rich pattern of collapses and revivals, similar
to those observed in the quantum inversion of several generalizations of the
Jaynes—Cummings model and is related to beats of the various eigenstates of
the total Hamiltonian.

1. Introduction

Exactly solvable models of interacting quantum systems have attracted a great
deal of interest for over two decades now as they have served as testing ground for
fundamental theories of the radiation—matter interaction. In particular, theoretical
studies have been centred on quantum systems displaying properties with no
classical counterpart. Recent progress in experimental techniques has further
enhanced the interest in simple solvable quantum systems once it has been made
possible to produce in laboratory idealized physical situations such as two-level
atoms [1] and one-photon states [2].

The Jaynes—Cummings [3] model of a two-level atom interacting with a
single-mode electromagnetic radiation field is one of the few models that can be
solved exactly and yet give non-trivial results, such as the phenomenon of periodic
collapses and revivals of the initial atomic population [4]. These collapses and
revivals are associated with beats between eigenstates of the total Hamiltonian that
oscillate with their respective Rabi frequencies. Between two consecutive revivals,
the field and the atom states become almost disentangled, with the field state being,
in the large-mean-photon-number limit, a linear superposition of two coherent
states [5, 6].

Generalizations of the Jaynes—Cummings model that consider, for example, the
interaction of the radiation field with a multilevel atom [7], the system embedded
in a nonlinear medium [8], a detuning between field and atom frequencies
[7-9], cavity effects [10, 11], and sub-Poissonian field distributions [12] have been
exhaustively studied in the literature and exhibit quite similar features. Besides
the standard collapse and revivals scenario, some of the generalizations of the
Jaynes—Cummings model, particularly those that present a nonlinear spectrum of
the Rabi frequencies [8, 9, 12], exhibit a rich structure of fractional revivals and
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super-revivals after long interaction time intervals, which are associated with the
beating of non-nearest-neighbour eigenstates of the system.

The nonlinear interaction of a single-mode radiation field with a Kerr medium
can be described, within the adiabatic approximation, by an effective Hamiltonian
containing only photon operators [13], whose dynamics can be exactly determined.
While preserving the photon number distributions, this effective interaction
Hamiltonian can generate a superposition of macroscopically distinguishable
coherent states once the interaction time is properly chosen [14,15]. The
generation of a linear superposition of coherent states has also been demonstrated
to occur when initially coherent light propagates through a nonlinear birefringent
optical medium {16]. Since it was first predicted, the possibility of generating
Schréodinger cat-like states using optical fibres has been exploited [17-20].
Miranowicz et al. [17] showed that, for an initially coherent field state, the output
signal quantum state is composed of m superposed coherent states whenever
t = 2n(n/m), where n/m is an irreducible fraction and 7 is a dimensionless fibre
length proportional to the third order nonlinear susceptibility. They also showed
that the maximum number of clearly distinguishable components scales as
Mpay € A2, where 1 is the mean photon number. In a realistic experiment, very
long interaction times or strong nonlinearities would be required in order to
observe these quantum superposition of states. In these cases, dissipative [21] and
saturation effects [22] compromise the coherence of the output field states.

The system composed of two single-mode electromagnetic fields copropagating
through a lossless Kerr medium is another exactly soluble model with very
interesting features. Although the photon statistics of both fields remain unchanged
during propagation, the phase dynamics and the squeezing properties are con-
siderable influenced by the coupling between the fields [23]. The entanglement
properties of two initially coherent field states were recently investigated [24]. It
was shown that the fields reach completely disentangled states whenever 4t = 2nn,
where ¢ is the interaction time interval and 4; a nonlinear interaction parameter.
Such disentangled states can be a well distinguishable Schrddinger cat-like state
with m components if 4,t/4 = n(n/m), where 1, is the nonlinear self-interaction
parameter, provided that n/m is an irreducible fraction and m < A2, Between two
consecutive disentanglements the fields reach partial disentanglements. The field
state during a partial disentangelement is not a Schrddinger cat-like state but
instead a statistical mixture of a number g of states whenever 4,z = 2n(p/q), where
p/q is an irreducible fraction and g, < A2, In the large-mean-photon-number
limit, the purity function is characterized by a multifractal measure whose
singularity spectrum exhibits unique features [24, 25].

In this work, we study the phase properties of two initially coherent field modes
copropagating in a lossless Kerr medium in the light of the partial disentanglement
picture. By using a quantum-mechanical phase distribution formalism to examine
the phase configuration of the field state after a finite interaction time interval, we
show that the number of distinguishable components in the phase distribution
obeys a simple relation between the number of entangled states and the number of
components that a single field mode state acquires after propagating through the
medium. Therefore the present work reveals the actual composition and degree of
coherence of the output field state as a result of self-phase modulation and the
two-mode Kerr interaction. Such characterization is an important step through
the understanding of interacting field modes as, for example, the field’s degree of



Downloaded by [York University Libraries] at 03:18 22 November 2014

Phase correlation of copropagating electromagnetic fields 1673

coherence controls the interference fringes pattern in the probability distribution
of a homodyne detector output current. Also, we show that, while the photon
number is a constant of motion, phase correlations build up as a signature of the
relative entanglement of the field modes. The phase correlation function exhibits
a rich pattern of collapses and revivals with superstructures in the long interaction
time intervals regime whose origin is the same as those appearing in some
generalizations of the Jaynes—Cummings model.

2. Phase distribution of entangled field modes

Within the adiabatic approximation, the effective Hamiltonian for two linearly
polarized field modes copropagating in a lossless nonlinear medium, interacting
through a quantum-optical four-wave mixing mechanism, may be expressed as

H =w,ata + ob’h + A, (1)
H, =32 (aTa)? + 14,(bT6)® + X;a'bTab, )

where we used i = 1. a (a') and b (b%) denote the annihilation (creation) operators
for the fields 4 and B respectively, 4, and 4, are related to the third-order nonlinear
susceptibility of the medium and A; represents the coupling between the two field
modes. Note that the mean photon number operators # = a'a and 7 = b'b are
constants of motion and hence there are no oscillations in the mean photon number
of each field mode.

Considering that at ¢ = 0 both fields are in coherent states |«,) and |&,), with

a, = A% exp (if,) and o = '/ exp (if,), the state of the system at time ¢ can be
written as
o
[P@)) = Y a.b,exp (i,  1)|n)|m), €))
n,m=0
with
o n
an=Wexp(_E)’ (4)
% _n
b, = ) exp < 2) (5)
and
O = Vg1 + Wym + §A,0 + ;2ym* + Anm. (6)

Describing phase properties has been a long-standing problem in quantum
mechanics [26—30], started by Dirac who attempted to define a phase operator via
polar decomposition of the annihilation operator [27]. Nowadays, a generalization
of Dirac’s ideas, introduced by Pegg and Barnett [26], has been used successfully.
The formalism consists of decomposing the annihilation operator in a truncated
Hilbert space and defining a Hermitian phase operator in this finite-dimensional
space. The limit of an infinite-dimensional Hilbert space is made only after all
physical quantities are calculated. Shapiro and Shepard [28] showed that the
Pegg—Barnett phase operator has the same measurement statistics as the probability
operator measure generated by the Susskind—Glogower [29] operator. An equiva-
lent and computationally advantageous method has been proposed by Agarwal et
al. [30], where, instead of trying to define a Hermitian phase operator, a phase
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distribution associated with a given density operator § = | ¥){¥| is introduced as
1
(2n)?

where |0,, 0,) is the tensor product of coherent phase states |8,)]6,>, whose
representation in number-ket states |n) is

P(6,, 0,) = <8a» 6515165, 65>, ™)

Q0

16> = Y. exp (inf)|n). (8)

n=0
The states |@) are the eigenstates of the Susskind—Glogower [29] phase
operator and generate the probability operator measure of maximum-likelihood
phase estimation [28]. Substituting equations (3)—(6) and (8) in equation (7), and
after a short algebraic manipulation, we may obtain the expression for the phase

distribution as
[+ 2]

P(ga) = Z ana:'bmb:l exp [l(n - n’)ea - i(wn,m - wn’,m)t]r (9)
nn,m=0

which gives the phase distribution of the optical field 4 by averaging over all the
possible phases of field B (P(8,) = (1/2r) | d6, P(6,, 8,)). For simplicity we have
used £, = &, = 0 such that the fields are in phase at the entrance of the nonlinear
medium. We shall not be interested in the fast free rotation of the phase
distribution. The net effect of the nonlinear interactions can then be analysed by
defining the phase 8 = 6, + w,t.

In what follows we investigate the relative role played by both linearly
superposed and statistically mixed components of the output field state on the
phase probability distribution. In figure 1 we plot some of the field 4 phase
distributions after a propagation time of 1,2/4 = /6. If the field 4 is solely
propagating through the medium, it is well known that its final output state is
composed, in this case by a linear superposition of six coherent states [17]
(figure 1(a)). Note that large phase uncertainties on each component give rise to
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Figure 1. Phase distribution in polar coordinates of an initially coherent electromagnetic
field mode with 7, = 3 after having propagated trough a Kerr medium over a time
interval of At = /6. The field mode copropagates with a second field mode of mean
photon number 7, = 10 with the interaction nonlinear parameter chosen in such a
way that (@) 4t =0, (b) A;t = 27n/3 and (¢) 4;¢ = n/3.

interference effects which distort the phase distribution. Such interference can
be detected as fringes in the probability distribution for a homodyne detector’s
output current [31]. In figure 1 (b) we introduced an interaction between the fields
(4,2 = 2m/3) in such a way that the output field state is composed of a statistical
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(incoherent) mixture of three states [24]. The phase distribution reveals in this
case the presence of six distinguishable components, indicating that each of the
three mixed states is composed of a linear superposition (coherent mixture) of two
coherent states, that is of a two-component cat-like state. As interference occurs
only between coherently mixed components, a less distorted distribution is
produced. In figure 1 (c) we choose 4;¢ = 21t/6 to have the output state as a six-state
incoherent mixture. The phase distribution also contains six distinguishable
components, indicating that each state in the mixture is a single-component
coherent state. Note that the distribution is symmetric as no interference effects
come into play among statistically mixed field components. Therefore, in this
particular case, the current distribution of a homodyne detector will not exhibit
any interference fringe. We further investigated the phase distribution dependence
on the set of nonlinear parameters. Our analysis revealed that the total number of
components of the output field state is the minimum common multiple (MCM)
of the number of statistically mixed states and the number of linearly superposed
components that a single field mode acquires after propagating through the Kerr
medium.

The maximum number of distinguishable components in the phase distribution
scales with 7#'/2 once it is intrinsically related to the variance on the phase of each
component ({8?)'/? cc 1/3"? and n,,, ~ 21/<8*)'/?). This property makes the above
rule for the total number of components difficult to observe numerically whenever
the number of predicted components is larger than #!/2. For large mean photon
numbers the phase uncertainty is reduced and the above rule is always precise.
Note that in the limit of a very large mean photon number many terms are relevant
in the series in equation (9) (of the order of 7). These terms will interfere
destructively and give rise to a vanishing probability unless the phase 8 is chosen
in such a way that the phase factor (@, ,, — @, )t + (n — n)0 satisfies periodic
conditions. If one takes A,t/4 = np/q, A;t = 2xnp’/q, the above condition is fulfilled
whenever 8 = 2na/f, with a/f an irreducible fraction and § the MCM of g and ¢'.

3. Phase correlation function

During the propagation along the Kerr medium, the electromagnetic fields
develop correlations between their phase distributions. These correlations vanish
whenever the fields are in completely disentangled states, once a measure over one
field cannot interfere in the state of the second field. However, in the general case
the field states are entangled and phase correlations are expected. The entanglement
between the field states could be measured by detecting photon correlations in a
counting experiment [32]. If a photon detector A is open at random, the
distribution of elapsed time until the first photon reaches the detector is always
flat. However, if the detector A is open just after a photon B is detected, the
distribution of elapsed time exhibits a characteristic delay time for phase correlated
fields. Among many definitions of the phase correlation, we choose the particular
definition

26(t) = <exp [i(8, + 6,)1> — <exp (i8,)> {exp (i6;)), (10)

as its terms can be easily obtained from equation (7) resulting in the following
expressions:

<exp [l(ea + 0b)]> = Z an+1an*bm+lbr: €xp [i(wn,m - wn+1,m+1)t]1 (11)

n,m=0
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and
o0
exp (6,)> = Y . a,41axb,by, exp [I(@,, ,, — @, 11, )] 12)
nm=
An analogous expression for {exp (if;)) is obtained from equation (12) after an
appropriate change in indexes.

The above correlation function exhibits a rich temporal evolution pattern. In
the following we discuss its behaviour only for the particular cases 4, = 4, and
n,=n,. Let us study just the behaviour of the function C(t) defined as
xo(2) = exp [—i(w, + ,)t]C(2), as it does not contain fast free oscillations. In
figure 2 we plot the real part of the correlation function C(z) for two distinct sets
of nonlinear parameters. We note that the phase correlation shows a periodic set
of collapses and revivals. For 1, = nl, the phase correlation is a periodic function
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Figure 2.  The real part of the correlation function C(t = 4,f) of copropagating field
modes with mean photon number 71, =, =1, 4, = 4;, and interaction parameter
values of (a) 4;/2, =1-0, and (b) 4;/4, = 2:0.
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Figure 3. Same as figure 2 with 4,/4, = 3. Note that the period is twice that obtained in
the cases shown in figure 2.

with period 4,T = 4, if n is a positive integer. Within each period the phase
correlation function has a series of collapses and revivals exhibiting, for small, n,
n intermediate revivals besides those at the beginning of each new period. If 4, is
not an integer multiple of A,, the period of the correlation function becomes
A, T = 4ng with p/g = 1,/A, being an irreducible fraction. The particular case of
g = 2 (4 = 34,) is shown in figure 3 in order to illustrate the doubling of the period.

A more spectacular series of collapses and revivals takes place whenever the
number of intermediate revivals within a period is too large (see figure 4). The
correlation function exhibits a very rich modulated structure of revivals, which we
shall name hereafter a superstructure owing to its similarity to those appearing
in the atomic population of some generalized Jaynes—Cummings models [8, 9, 12].
These superstructures originate from beatings of non-nearest-neighbour eigenstates
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Figure 4. Same as figure 2 but with the interaction parameter A;/1, = 0.01. The real part
of the correlation function exhibits a very long period and symmetric superstructures.
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Figure 5. The imaginary part of the correlation function C(r = A,t) for the same
parameter set as figure 4. Note that it exhibits an antisymmetric superstructure within
each period.

of the total Hamiltonian (see equation (11)). They are more evident in the limit of
small mean photon number. This is because, in this limit, only a small number
of modes can effectively take part in the evolution.

The main features of the phase correlation presented above remain unchanged
when the average photon number 7, # %, and 4, # 4;. The imaginary part of the
correlation function have similar patterns to those presented by the real part
(figure 5). The most significant difference is connected with the antisymmetry
presented by the imaginary part within a period [Im C(t) = —Im C(T —1)], in
contrast with the symmetry of the real part of the phase correlation.

4. Summary and conclusion

In this work we have studied the phase properties of copropagating electro-
magnetic fields interacting with a Kerr medium via an effective self-phase
modulation term and with each other via a cross-phase modulation mechanism.
We showed that the phase distribution of one field mode can be quite modified
by the presence of the second field mode. A detailed analysis of the phase
distribution indicated that the number of distinguishable components in the
phase distribution is the minimum common multiple between the number of
components that a single field mode state acquires after propagating through the
medium and the number of statistically mixed field states generated after its
interaction with the second field mode.

We have also shown that the phase correlation function exhibits a periodic
behaviour with a rich pattern of collapses and revivals, with superstructures in the
case of long period and small mean photon number. As in some generalized
Jaynes—Cummings models, the origin of the superstructures of collapses and
revivals comes from the nonlinearity of the spectrum of Rabi frequencies and from
the fact that only a small number of eigenstates are sufficiently populated to cause
non-negligible contributions in the temporal evolution of the phase correlation.

The effects predicted here can, at least in principle, be observed from the phase
correlation of electromagnetic fields copropagating in a Kerr medium such as an
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optical glass fibre, provided that the fibre is transparent for the input carrier
frequencies. However, typical values of the nonlinear third-order susceptibilities
require extremely long fibres in order to observe a series of revivals [33]. In this
case, dissipative effects become relevant and may destroy the coherence of the
output field state [21]. Semiconductor-doped glass fibres [34] and waveguides
[35], which have very strong nonlinearities and fast response times [36], would
be better suited. However, saturation effects cannot be disregarded in such
materials and it is also known that it degrades the field coherence [22]. As only
small field intensities are required for the appearance of superstructures, saturation
effects may not be relevant. In spite of all such experimental drawbacks which can
compromise and obscure the observation of the predicted behaviour, the present
results have their own value as they reveal the actual composition of the output
quantum state of two electromagnetic field modes due to self-phase modulation
effect and the two-mode nonlinear Kerr interaction.
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