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A B S T R A C T

We study a quantum-state transfer protocol across a 1D XY spin-1/2 channel featuring on-site magnetic field
distribution following the aperiodic Sarma potential. The scheme is based upon weakly connecting the sender
and receiver to the channel at each end. Our results show that such aperiodicity allows for high-fidelity per-
formance as a band of extended states near the band center is created and the outer parts of the system are
properly tuned with it. We also evaluate the generation of bipartite entanglement shared among the commu-
nicating parties.

1. Introduction

Transmitting quantum states (e.g. a qubit) and generating en-
tanglement at arbitrary distances are essential tasks in quantum net-
works and distributed quantum information processing [1,2]. In this
context, the idea of pre-engineered quantum spin chains as put forward
by Bose in [3] is based on having minimal control over the system
during realization of the protocol so as to avoid decoherence and other
forms of noise. The ke point is to set the network, its coupling patterns,
and local magnetic fields in advance, and then let it evolve following its
own Hamiltonian dynamics (for reviews, cf. [4,5]). Proper initialization
of the system and precise knowledge over the dynamics timescale are
also necessary and that is where one of the major drawbacks comes
about.

Static (e.g. fabrication errors) and/or dynamic fluctuations of the
system parameters may compromise our ability to predict when and
where the quantum state will be at a certain location [6]. Disorder, for
instance, may promote Anderson localization thereby affecting the
performance of the communication protocol [7,8]. While this happens
to be true for one- and twodimensional models with on-site uncorrelated
disorder (for any disorder strength), correlated fluctuations can break
this rule for they are capable of sustaining extended states in some parts
of the spectrum [9]. For instance, it was shown long time ago that long-
range-correlated disorder induces a metal–insulator transition with
sharp mobility edges [10,11]. This was confirmed by experiments
performed on waveguides [12,13]. Quite recently, a single-particle
mobility edge has also been reported [14] on a 1D quasiperiodic optical
lattice thereby setting the ground for further, more demanding physical
implementations.

Overall, although most of the coupling schemes for quantum-state

transfer (QST) protocols may hold against small amounts of disorder
[15–23], a particular one has been shown to be relatively robust against
it. Weak-coupling models [24,25] happen to hide those imperfections
away as the sender and receiver are perturbatively connected to the
channel. The communicating parties effectively get in touch via the few
channel modes they are mostly tuned with. One particular scenario is
the generation of a reduced two-level (or Rabi-like) dynamics, up to
second-order perturbation theory, between the sender and receiver
with renormalized coupling and on-site energies [25]. Such a class of
systems has also been addressed in the context of, e.g., entanglement
generation [15,26,27] and routing protocols [28].

Recent works have shown that various types of correlated disorder
allows for performance of Rabi-like QST with high fidelities [6,29]. One
of the crucial requirements for the channel is that it features a band of
extended states so as to induce an effective two-level resonance within
the perturbation framework [30]. Therefore, the search for models
displaying coexistence between localized and delocalized states is
paramount. In this work we are to unveil the capability of a XY spin
channel featuring an on-site magnetic field distribution following the
aperiodic slowly varying series introduced by Das Sarma et al. in
[31,32]. This is a special class of deterministic one-dimensional po-
tentials that exhibit mobility edges separating localized and extended
states. Several works have been devoted to study the electronic trans-
port properties in such aperiodic potential [33–43], including the onset
of Bloch oscillations under the action of a uniform external field [35],
topological states, and phase transitions [42,43]. Further, quantum
information measures have been shown to be able to capture the lo-
calization-delocalization transition in these systems [36–39]. However,
the actual capability of entanglement generation and QST protocols
through channels with engineered slowly varying aperiodic modulation
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of an external field are still open issues.
Considering the above, here we investigate the performance of the

standard QST scheme [3] as well as of end-to-end entanglement gen-
eration in the weak-coupling model [24,25]. We find that the channel
aperiodicity allows for high-quality performances for a wide range of
parameters, with a speed-fidelity tradeoff comparable to the uniform
case which is known to be optimal [30]. We relate such figure of merit
with the known localization-delocalization properties of the model.
Moreover, due to the finiteness of the channel, we report a regime
where even though localization would set about in the thermodynamic
limit, QST still succeeds with good fidelity.

2. Hamiltonian model

The system we consider here is a 1D isotropic spin− 1/2 chain
featuring exchange interactions of the XY-type among its +N 2 spins,
as described by the Hamiltonian ( =ℏ 1)
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where ̂σi
x y z, , are the Pauli spin operators for a spin residing at the i-th

site, ∊i is the local magnetic field strength, and Ji is the spin exchange
coupling strength, henceforth taken to be = =+J J gN1 1 and = ≡J J 1i
else, with ≪g J . That is to say the outer spins are weakly connected to
a spin channel with uniform couplings. We also set ∊ = ∊ =+ WN1 2 .

The protocol goes as follows [3]. Suppose the first spin (sender) is
prepared in an arbitrary state ∣ = ∣ + ∣ϕ a b0 11 1 1 — with ∣0 (∣1 ) de-
noting spin down (up) — with the remaining ones in the ferromagnetic
ground state, what makes the initial state of the whole system
∣ = ∣ ∣ ∣ +ϕ 0Ψ(0) 0 N1 channel 2, where ∣ = ∣ ⋯∣ +0 0 0 Nchannel 2 1. We then let
it evolve through its natural Hamiltonian dynamics so that at time t we
have ∣ = ∣−t eΨ( ) Ψ(0)iHt . It is immediate to see that only the ket fea-
turing a single excitation (spin up) will actually contribute to propa-
gation along the chain as the isotropic XY (or just XX) Hamiltonian
preserves the number of excitations. Thus the dynamics is restricted to
the subspace spanned by ∣ = ∣ ∣ ⋯∣ ⋯∣ +i 0 0 1 0i N1 2 2, denoting a single
spin flipped at the i-th site.

At some specific time τ , the ultimate goal is to find
∣ = ∣ ∣ ∣ +τ ϕ0Ψ( ) 0 N1 channel 2 (up to a global phase) in order to get the
fidelity = ∣ ∣+F ϕ ρ ϕϕ N 2 as high as possible, with

= ∣ ∣+ … +ρ τ τTr Ψ( ) Ψ( )N N2 1, , 1 . A proper function to measure the perfor-
mance of the protocol can be obtained from averaging over every
possible input combination a b( , ), that is over the Bloch sphere. It re-
sults in the so-called averaged fidelity [3]
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where = ∣ ∣−f t j e( ) 1j
iHt is the absolute value of the transition ampli-

tude and its associated phase ϑ can generally be ignored by a con-
venient choice of the local magnetic fields (we set =cosϑ 1 hereafter).
Note that outcomes of Eq. (2) are within [0.5, 1], only being maximum
when =+f t( ) 1N 2 .

At this point it is better to rewrite the system Hamiltonian as
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2 . By
coupling the outer (communicating) spins very weakly ( ≪g J ) to the
channel we expect them to be energetically detached from the rest of
the chain thereby generating their own subspace and behaving like an
effective two-level system. As a matter of fact, using second-order
perturbation theory in g, we can obtain [25]
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where ∈ν L R{ , }, ≡ ∣a λ2L k k, , ≡ + ∣a N λ1R k k, , with ∣λk and λk
being, respectively, the eigenstates and eigenvalues of Hchannel.

Once the conditions for generating the above effective two-level
system are set — that is ≠ ∀W λ kk and ≪g J — we still need to be
sure whether or not it allows for full, resonant end-to-end Rabi oscil-
lations. Straightforward diagonalization of Hamiltonian (4) yields
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where = + JΩ Δ 42
eff
2 , with = −h hΔ L R. The transition amplitude

then reaches its maximum at times = =t τ nπ/Ω for odd n and yields to
unit fidelity only when =Δ 0, leading to =τ nπ J/2 eff . Note that the
transfer time τ is −O g( )2 . It is also relevant to highlight that at half of the
QST time, one can obtain a Bell-type entangled state [24]:
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For this reason, here we are also interested in evaluating the con-
currence [44] between the sender and receiver spins which, in the
computational basis, is expressed as

= +C t f t f t( ) 2 ( ) ( ),N1 2 (9)

which goes from 0 (no entanglement) to 1 (maximum entanglement).
Using the expressions obtained via perturbation theory, we get
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If =Δ 0 then =C t t( ) sin(Ω ) and maximum entanglement can be
recorded at times =t nτ/2( = …n 1, 3, ), as expected.

In the case of asymmetries within the channel, such as in the pre-
sence of an aperiodic magnetic-field distribution, one should expect

≠Δ 0. In other words, these fluctuations become single-site defects in
the effective two-level description [Eq. (4)]. Still, the protocol is bound
to work if we somehow guarantee ≪ JΔ eff at least. It has been shown
that such condition holds even in the presence of disorder as long as it is
of special kinds [6].

Here, we set the local magnetic fields within the channel to follow
an aperiodic series of the form [31,32]

∊ = V παjcos(2 ),j
ν (11)

( = … +j N2, 3, , 1) where > >V ν0, 0, and α ultimately set the loca-
lization properties of the system. If α is rational and ν an integer, one
gets a periodic Bloch potential. For an irrational value of α with =ν 1,
Harper’s equation is obtained whereas for ⩾ν 2 it becomes statistically
equivalent to the random Anderson model. Keeping α irrational, for

< <ν0 1 and <V J2 , there is a phase of extended states near the band
center, bounded by two mobility edges located at = ± −E J V(2 )c , se-
parating them from localized states. All states are found to be localized
whenever >V J2 or < <ν1 2, although the Lyapunov exponent ap-
proaches zero slowly at the band center for the latter [31,32].

3. Results

Those ubiquitous channel properties allow us to perform high-fi-
delity QST as long as we tune the frequency of the outer spins, W, to the
band center to make use of the available extended states. An inspection
in Eqs. (5) and (6) tells us that, if aL k, and aR k, are well distributed
throughout the spectrum — mostly in the vicinity of W given each term
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in the sum − −λ W~( )k
1 — meaning that the sum runs over extended

states, it is very likely that ≪ JΔ eff , yielding ≈F τ( ) 1 and ≈C τ( /2) 1.
To see that, in Fig. 1 we plot the fidelity and concurrence against W

using the results obtained via perturbation theory, Eqs. (7) and (10). In
order to properly compare those to exact diagonalization of the full
Hamiltonian [Eq. (1)] and as we set a diverse parameter configurations
throughout our analysis, we choose to track the maximum fidelity Fmax
and maximum concurrence Cmax recorded over a wide time window.
For now, that will do the job in telling us whether or not the aperiodic
channel we consider fulfills the requirements for performing Rabi-like
communication protocols. Results are displayed in Figs. 2 and 3 for
various α values and fixed =V J1 . We readily see that it goes as pre-
dicted by perturbation theory (Fig. 1) for small enough g for it

ultimately prevents the excitation to populate the channel during rea-
lization of the protocol. Note that larger channels demands smaller g as
more modes spanned around W may cause further mixing with the
sender/receiver subspace. A significant performance loss is seen in
Figs. 2 and 3 for =g J0.1 upon going from =N 50 to =N 100. Another
detail is that, overall, α does not bring any significant difference as long
as it is kept irrational.

Those figures embody our most representative results for the QST
and entanglement generation protocols. They reveal that when W is set
around the center of the band, faithful quantum communication be-
tween spins 1 and +N 2 is made possible, as told out by the nearly unit
QST fidelity and the high degree of bipartite entanglement shared be-
tween the ends of the chain. This is valid for ∈ − + −W J V J V[ 2 , 2 ]

Fig. 1. Averaged fidelity F τ( ) and concurrence C τ( /2), evaluated for =τ π/Ω, obtained via second-order perturbation theory. We set = = =N ν πα100, 0.5, 0.5, and
=V J/ 0.5, 1, 1.5. Plots indicate that channel modes within − + −J V J V[ 2 , 2 ] indeed feature an extended character (given <ν 1).

Fig. 2. Maximum fidelity =F F tmax{ ( )}max over ∈tJ [0, 10 ]5 versus W for = = = =N g J V J ν50, 100, / 0.1, 0.01, / 1, 0.5, and =πα 0.5, 0.75, 1 obtained from exact
numerical diagonalization of the full Hamiltonian, Eq. (1). Plots show that high-fidelity QST occurs within the band of extended states as predicted for the aperiodic
channel, i.e, within − + −J V J V[ 2 , 2 ].
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which is the energy range contaning delocalized states for <ν 1
[31,32]. Fig. 1 indeed shows that the width of the region in which best-
quality performances are obtained gets narrower upon increasing V. To
provide with another point of view, in Fig. 4 we evaluate both figures of
merit versus W and V for =ν 0.5 and =g J0.01 via full exact numerical
diagonalization and confirm that such width decreases linearly.

Now, we fix both Fmax and Cmax to =W 0 and focus on the role of V
and ν [cf. Eq. (11)] on the performances in Fig. 5, therein also com-
paring results obtained via perturbation theory and exact numerical
diagonalization of the full spin Hamiltonian. We spot a interesting be-
havior surrounding ≈V J2 above which QST and entanglement

generation begin to fade [see Fig. 5(a) and (c)]. This is again in
agreement with the localization properties of the apperiodic potential
as for >V J2 all eigenstates within the channel are localized [31,32]. In
Fig. 5(b) and (d) we see that ≫ν 1 rules out the possibility of carrying
out faithful quantum communication, a expected feature since >ν 1
yields localization throughout the whole spectrum [31,32].

Curiously though, for ν slightly greater than 1 we can still observe
relatively good performances. We emphasize that the critical point

=ν 1 for the localization-delocalization transition in apperiodic models
was obtained in several works using distinct methods (see e.g. Refs.
[31,32,45,46]) and it is known that the localization length around the

Fig. 3. Maximum concurrence =C C tmax{ ( )}max over ∈tJ [0, 10 ]5 versus W for = = = =N g J V J ν50, 100, / 0.1, 0.01, / 1, 0.5, and =πα 0.5, 0.75, 1 obtained from
exact numerical diagonalization of the full Hamiltonian, Eq. (1). For − < <J W J1 1 the sender (spin 1) and receiver (spin +N 2) share nearly-maximum en-
tanglement thereby corroborating with the results seen in Fig. 2.

Fig. 4. Fmax and Cmax over ∈tJ [0, 10 ]5 versusW and V for = = =N ν g J100, 0.5, 0.01 , and =πα 0.5, obtained via exact numerical diagonalization of Hamiltonian (1).
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band center ( =W 0) is large, covering about 10 –103 4 sites. Therefore,
for ≈ν 1 and given that we are dealing with small channels ( =N 102)
the localization length is in general larger that N, what promotes re-
latively good outcomes for Fmax and Cmax.

So far we have been investigating the performance of the protocols
in a broad time window. In practice, though, one must know in advance
how long it takes, with reasonable precision, to transmit a quantum
state from one point to another or when entanglement will be estab-
lished between two nodes of a quantum network in order to carry on
with the computation (either measuring the state or routing it to
somewhere else).

A major issue with weak-coupling models is that the transfer time
scales as −τ g~ 2 and so, as the very onset of Rabi-like dynamics requires g
to be rather small, one should expect long times to get a nearly unit
fidelity. It was proved in Ref. [30] that channels with uniform coupling
strengths provide with the optimal speed-fidelity tradeoff given the on-
site energies are also on the same level (∊ = ∊i ). This means that the
homogeneous channel outperforms in terms of fidelity when comparing
with any other coupling scheme, both operating with the same QST
time. The homogeneous channel features = = −J g JΔ 0, /eff

2 and then
=τ πJ g/2 2 while the fidelity of the transfer scales as = −F O g N1 ( )2 ,

what demands ≪g N1/ [24]. In general, one may reduce the transfer
time with cost of compromising fidelity.

We now use the homogeneous channel as a reference and see about
the speed-fidelity tradeoff against the aperiodic channel for various
parameters. Let us first define ̃ = J gΩ Ω / 2, rendering ̃=τ πJ g/ Ω2 . Setting

̃=g δJ/ Ω for every channel, the expected transfer time becomes
=τ π Jδ/ 2. Having placed a configuration-independent τ , we are now in

position to evaluate the corresponding fidelities. Results are shown in
Fig. 6 and we readily see that, despite the asymmetry of the channel,
the aperiodic sequence of magnetic fields throughout the chain holds a
performance comparable to that of the homogeneous channel ( =V 0;
solid lines), albeit for some values of ν and especially for higher V, for it
is seen that the fidelity saturates to values <1 even as →δ 0, meaning

Fig. 5. Maximum fidelity Fmax and concurrence Cmax for fixed =W 0 (a,c) versus V for fixed =ν 0.5 and (b,d) versus ν for =V J1 . In all plots, =N 100 and =πα 0.1
and we display results obtained from exact numerical diagonalization of the full Hamiltonian, [Eq. (1)] for =g J0.01 (blue circles) and =g J0.1 (red squares),
recorded over ∈tJ [0, 10 ]5 , alongside the effective description via second-order perturbation theory (solid gray lines), that is ≡F F τ( )max and ≡C C τ( /2)max , with

=τ π/Ω, as evaluated from Eqs. (7) and (10).

Fig. 6. Input-averaged fidelity F τ( ) evaluated at =τ π Jδ/ 2 versus δ for several
channel configurations including =V 0 (homogeneous channel). Curves are
obtained via exact numerical diagonalization of the full Hamiltonian [Eq. (1)]

with ̃= = =g δJ πα W/ Ω , 0.1, 0, and =N 100. In most cases the speed-fide-
lity tradeoff for the channel featuring the Sarma aperiodic sequence resembles
that of the homogeneous channel (solid lines), with the fidelity scaling as

≈ −F O δ1 ( )2 .
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that there is significant residual Δ. Such instabilities can also be seen in
Fig. 5(a) and (b). Of course, the fidelities inevitably decay upon in-
creasing δ and the characteristic oscillatory pattern is due to fact that
the channel modes are taking part in the dynamics as higher-order in-
teractions among the sender, receiver, and channel are setting up (the
Rabi-like, two-level approximation becomes less reliable) [24,25,30].
Better fidelity outcomes, though, can still be obtained in the vicinity of
the prescribed time τ .

4. Conclusions

We studied a QST protocol through a spin channel featuring an
aperiodic distribution of local magnetic fields, what is able to induce a
localization-delocalization transition when the parameters are suitable.
By weakly attaching two more spins to act as sender and receiver at
each end of the channel we showed that it is still possible for them to
communicate with great fidelity as long as their energies match with
the center of the channel band, wherein extended states are available.
We also found that the channel features speed-fidelity tradeoff com-
parable to its fully homogeneous counterpart [30]. What is more, the
same protocol can be used for creating end-to-end bipartite entangle-
ment.

In general, weak-coupling models are versatile for they are also
useful in a variety of quantum information processing tasks. They can
be used, for instance, for spanning decoherence-free subpaces [47].
Different models and topologies have also been addressed for the sake
of generating long-distance entanglement [48,49,26] with some ex-
periments being carried out along (see, e.g. [50]). Further extensions of
this work may follow in that direction, possibly in view of state-of-the-
art technology [14].
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