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potentially useful particles for a variety of optical, electronic, and sensing

applications.5 For instance, investigations of electrical junctions, in which

single molecules or small molecular assemblies operate as conductors con-

necting traditional electrical components, such as metal or semiconductor

contacts, constitute a major part of what is nowadays known as molecular

electronics.6–8 Their diversity, versatility, and amenability to control and

manipulation, make them potentially important components in nanoelec-

tronic devices.9

For physicists, this continuing progress and the consequent need for

further size miniaturization, makes the Desoxyribo-Nucleic-Acid (DNA)

molecule, the basic building block of living species and carrier responsi-

ble of the genetic code,10 the best candidate to fulfill this place. Arguably,

one of the main challenging quest of nowadays science, the human DNA is

around 6 mm long, has about 2×108 nucleotides and is tightly packed in

a volume equal to 500 µm3.11 If a set of three nucleotides can be assumed

to be analogous to a byte, then these numbers represent either 1 Kb µm−1

(linear density) or 1.2 Mb µm−3 (volume density), an appreciation of how

densely information can be stored in the DNA molecule.

A complete DNA molecule is a chromossome, with protein components

present as structural support. The DNA of each gene carries a chemical

message which signals to the cell how to assemble the amino acids in the

correct sequence to produce the protein for which that gene is responsible.

The information is contained in the sequence of the monomers called nu-

cleotides, which make up the DNA molecule, whose structure consists of

a base together with a backbone of alternating sugar molecules and phos-

phate ions. There are four different nucleotides in DNA, differing in the

base components, linked together forming a backbone of alternating sugar-

phosphate residues with the bases that carries the information of the gene.

For practical reason these nucleotides can be considered as a symbolic se-

quence of a four letter alphabet, namely guanine (G), adenine (A), cytosine

(C) and thymine (T ).

Numerous algorithms have been introduced to characterize and graph-

ically represent the genetic information stored in the DNA nucleotide se-

quence. The goal of these methods is to generate representative pattern for

certain sequences, or groups of sequences. Notwithstanding, the design of

DNA-based devices for molecular nanoelectronics is not yet an easy task

since they are crucially dependent upon elucidation of the mechanism and

dynamics of electrons and hole transport in them. Besides, unlike proteins,

DNA is not primarily an electron/hole-transfer problem, and its suitabil-
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ity as a potential building block for molecular devices may not depend

only on long-distance transfer of electrons and holes through the molecule.

However, the discovery that DNA, like proteins, can conduct an electrical

current, has made it an interesting candidate for nanoelectronic devices,

which could help to overcome the limitations that classical silicon-based

electronics is facing presently. Indeed, individual DNA molecules are very

suitable for producing a new range of devices that are much smaller, faster

and more energy efficient than the present semiconductor-based ones.12

In fact, DNA offers a solution to many of the hurdles that need to be

overcome, since it has the capacity of self-assemblage and self-replication,

making possible to produce nanostructures with a precision that is not

achievable with the classical silicon-based technologies.13 On the other

hand, their conductivity properties are still under intense debate. Contro-

versial reports consider that DNA may be a good linear conductor, while

others have found that it is somewhat more effective than proteins, even

when the molecules had perfectly ordered base pairs.14 Recently measure-

ments of electrical transport through individual short DNA molecules in-

dicated that it has a wide-band-gap semiconductor behavior.15 Besides,

strongly deformed DNA molecules deposited on a substrate and connected

to metallic electrodes can behave as an insulator or a conductor depending,

among other things, on the ratio between the thickness of the substrate

and the molecule.16 On the other hand, it was recently shown, using the

density functional theory (DFT) framework, that anhydrous crystals of the

DNA bases are wide gap semiconductors.17 Guanine and cytosine (adenine

and thymine) anhydrous crystals were predicted to be a direct (indirect)

band gap semiconductors, with energy gap values equal to 2.68 eV and 3.30

eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated

band gaps measured were 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in

the same order. The obtained electronic effective masses at band extremes

showed that, at low temperatures, these anhydrous crystals of DNA bases

behave like wide gap semiconductors for electrons moving along the nucle-

obases stacking direction, while the hole transport are somewhat limited.

These seemingly contradictory theoretical and experimental results are

caused mainly by three factors:

(a) native DNA consists of a double helix with an aperiodic sequence,

sugar-phosphate side chains, and water as well as ions surrounding it;

(b) the topology of the double-helix, which is not a rigid object, with the

different constituents of DNA moving relative to each other;

(c) the works so far have been performed by using quite different theoretical
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methods and experimental techniques.

Within the above context, the purpose of this chapter is to present a

comprehensive and up-to-date account of the main electronics properties

of the DNA molecule within the context of quasiperiodicity of the bases

arrangement and the role played by short- and long-range correlation ef-

fects, looking for nano-size devices.18,19 The DNA is usually described as

a two-dimensional short-ranged correlated random chain, but nothing pre-

vents that the DNA chain can be grown following quasiperiodic sequences

as, for instance, the Fibonacci (FB) and Rudin-Shapiro (RS) ones. These

structures exhibit interesting properties, namely:

(a) they have a complex fractal spectra of energy, which can be considered

as their indelible mark;

(b) they also exhibit collective properties that are not shared by their con-

stituents.

These collective properties are due to the presence of long-range corre-

lations, which are expected to be reflected somehow in their various spectra

(electronic transmission, density of states, etc.) defining another description

of disorder (for up to date reviews, see Refs.20–22). Besides, the introduction

of long range correlations in aperiodic or genomic DNA sequences markedly

change their physics and can play a crucial role in their charge transfer ef-

ficiency, making a strong impact on their engineering biological processes

like gene regulation and cell division.23,24 Moreover, the nature of this long

range correlation has been the subject of intense investigation, whose pos-

sible applications on electronic delocalization in the one-dimensional An-

derson model have been recently discussed.25

It is well known that the DNAs electronic band structure is composed

of two main bands of allowed states separated by an energy gap, similar

to those of a solid-state semiconductors. At half filling the presence of the

energy gap gives to these molecules an intrinsic insulator character. The

introduction of defects may generate states within the gap and substantially

improve the conductance, specially of finite molecules. In single-strand DNA

molecules, defects may be originated within the own nucleotide sequence

or by laterally attaching new structures at random.26 However, disorder

modifies profoundly the nature of the electronic states in 1D systems. All

states usually become exponentially localized for any amount of disorder.

Such exponential localization competes with the above improvement on

the conductance associated with the presence of states within the gap.

Therefore, schemes for introducing defects that minimize the tendency of
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Fig. 1. Schematic representation of a ladder DNA molecule, including the sugar-
phosphate contribution.

exponential localization of the electronic states are essential to tailor the

electronic transport properties of DNA-based nanoelectronic devices.

We will not consider the possible influence of the environment, although

its effects may act as a source of disorder. However we do consider the

influence of the sugar-phosphate backbone, since it promotes the emergence

of a band gap of the order of the hopping integral.27 Recent results showed

that the hybridization of the overlapping p-orbital in the base-pair stack

coupled to the backbone is sufficient to predict the existence of a gap in

the nonequilibrium current-voltage characteristics, with a minimal number

of parameters.28

This work is structured as follows: we present in Section 2 our theoretical

model based on an electronic tight-binding Hamiltonian together with a

transfer-matrix approach to simplify the algebra, which can be otherwise

quite heavy, suitable to describe a finite DNA segment. Section 3 deals with

the conductivity of the DNA molecule through their electron transmittance

coefficient. Solving numerically a time-dependent Schrödinger equation, we

compute also the time dependence of the spread of the wave function, as

a function of time, for all DNA models considered here. In section 4 we

investigate the one-electron states in single-strand binary DNA-based finite

segments with diluted base pairing. Considering a framework in which the

DNA molecule is sandwiched by two electrodes (donnor-DN and acceptor-

AC, respectively), we discuss in section 5 some basic properties of their I-V

characteristics curves, following a Landauer-Büttiker formulation. Finally,

the conclusions of this work are presented in Section 6.
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2. Theoretical Model

Our Hamiltonian is an effective tight-binding model describing one elec-

tron moving in a double-strand DNA, including the contribution of the

sugar-phosphate (SP ) backbone. Considering a localized basis with a sin-

gle orbital per site and nearest-neighbor interactions, as it is depcticted in

Fig. 1, we have:29

H =
�

n

�
ωn
SP |n, 1��n, 1|+ ωn

α|n, 2��n, 2|+ ωn
β |n, 3��n, 3|+ ωn

SP |n, 4��n, 4|
�

+
�

n

�
V12(α → SP )[|n, 1��n, 2|+ |n, 2��n, 1|]

�

+
�

n

�
V23(α → β)[|n, 2��n, 3|+ |n, 3��n, 2|]

�

+
�

n

�
V34(β → SP )[|n, 3��n, 4|+ |n, 4��n, 3|] + VSS(|n, S��n, S|)

�

+
�

n

�
V11(SP → S)(|n, 1��n− 1, 1|) + V44(SP → SP )(|n, 4��n± 1, 4|)

�
,

(1)

where ωn
SP represents the single energy, in units of �, at site n of the sugar-

phosphate orbital, with ωn
α (α = G,C,A or T ) being the ionization energy

of the respective base α. Also V12(α → SP ), V23(α → β) and V34(β → SP )

are the inter-chain first-neighbor electronic overlaps (hopping amplitude),

with α, β = G,C,A or T , while VSS is the hopping term in the substrate.

Besides, V11(SP → S) = VS and V44(SP → SP ) = VSP are the intra-chain

hopping amplitudes. Here the letter S means the substrate (which here

will be considered as a platinum electrode), while SP means the sugar-

phosphate backbone.

The Dyson equation is

G(ω) = ω−1[I +HG(ω)], (2)

where I is the identity matrix and H is the Hamiltonian given by (1).

Within this framework, the electronic density of state (DOS) follows:

ρ(ω) = −(1/π)Im[Tr�n|G(ω)|n�], (3)

where Im means the imaginary part of the argument shown between brack-

ets. The energies ωα,β are chosen from the ionization potential of the re-

spective bases, i.e., ωG = 7.77, ωC = 8.87, ωA = 8.25, and ωT = 9.13,
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all units in eV, representing the guanine (G), cytosine (C), adenine (A),

and thymine (T ) molecules, respectively.30–32 Also, we use the energy of

the platinum electrode ωS = 5.36 eV, which is related to the work func-

tion of this metal,33 while the energy of the sugar-phosphate backbone is

ωSP = 12.27 eV.34 The hopping between the base pair is V23(α → β) = 0.90

eV.34 The potential at the interface DNA-substrate (platinum) is consid-

ered to be the difference between the Fermi’s level of the platinum and

the HOMO’s (Highest Occupied Molecular Orbital) of the sugar-phosphate,

giving us VS = 6.91 eV.34 The hopping potentials between the base and the

sugar-phosphate (SP ) backbone is V12(α → SP ) = V34(α → SP ) = 1.5 eV,

while in the substrate (a platinum electrode) is VSS = 12 eV.35 Finally, the

hopping potential between the sugar-phosphate backbone, is VSP = 0.02

eV.36

For the DNA sequence of the first sequenced human chromosome 22

(Ch 22), entitled NT011520, the number of letters of this sequence is about

3.4× 106 nucleotides.37 This sequence was retrieved from the internet page

of the National Center of Biotechnology Information. We will consider finite

segments of CH22 chromosome starting at the 1500-th nucleotide.

To setup a quasiperiodic chain of Rudin-Shapiro type, we consider the

nucleotide G (guanine) as seed. The sequence can then be built through

the inflation rules G → GC, C → GA, A → TC, and T → TA. The RS

sequence belongs to the family of the so-called substitutional sequences,

which are characterized by the nature of their Fourier spectrum. It ex-

hibits an absolutely continuous Fourier measure, a property which it shares

with the random sequence.38 It should be contrasted with the Fibonacci

sequence (another substitutional sequence) which displays a dense pure

point Fourier measure, characteristic of a true quasicrystal-like structure

(for a review of the physical properties of these and others quasiperiodic

structures see Ref.39). This important difference has been discussed in the

literature in connection with the localization properties of both elemen-

tary excitations40 and classical waves41 in the RS sequence, as compared

to other substitutional sequence.

Fig. 2 shows the DOS for several intra-strand nucleobases couplings

and for several inter-strands ones, taking into account the three different

sequences discussed in this paper: (a) Fibonacci (b) Rudin-Shapiro and

(c) human chromosome 22 (Ch 22).42 Rather than traces of bands, the

DOS profile for each structure is fragmented, showing a number of discrete

strongly localized bunches of states that are believed to reflect their 1D

band structure. Observe that the number of van Hove singularities is big-
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Fig. 2. The eletronic density of states (DOS) in arbitrary units plotted against the

energy E (in eV) for: (a) Fibonacci sequence; (b) Rudin-Shapiro sequence; (c) DNA
human chromosome 22 (Ch22).
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ger for the RS and Ch22 structures than for the simplest Fibonacci one.

Indeed, by inspecting Fig. 2, one can observe that for the Fibonacci case,

there are two well defined regions around ωG = 7.77 eV and ωC = 8.87

eV, respectively. On the other hand, the Rudin-Shapiro and Ch22 struc-

tures have four regions centered roughly at the ionization energies of their

nucleotides.

3. Conductivity and Wave Packet Dynamics

Consider now that the above sequences are further assumed to be connected

to two semi-infinite electrodes whose energies �m are adjusted to simulate a

resonance with the guanine highest occupied molecular orbital (G-HOMO)

energy level, i.e., �m = �G. The hopping integrals are chosen such that V23,

based on ab initio calculations, suggesting the hopping terms in the range

0.1 to 0.4 eV. For this system, the transmission coefficient TN (E), that gives

the transmission rate through the chain and is related with the Landauer

resistance, is defined by:43

TN (E) =
4−X2(E)

�
−X2(E)(P12P21 + 1) +X(E)(P11 − P22)(P12 − P21)

+
�

i,j=1,2 P
2
ij + 2

� , (4)

where X(E) = (E − ωm)/V23, and Pij are elements of the transfer-matrix

P (see Ref.43). For a given energy E, TN (E) measures the level of backscat-

tering events in the electrons (or hole) transport through the chain.

In Fig. 3 we plot the transmission coefficient TN (E), as given by Eq.

(4), as a function of the energy, in units of eV. We have considered the Fi-

bonacci sequence (Fig. 3a, with generation number NF = 12, corresponding

to nF = 233 nucleotides), the Rudin-Shapiro one (Fig. 3b, with generation

number NRS = 7, corresponding to nRS = 64 nucleotides), the random

case (Fig. 3c, with nRD = 64 nucleotides), and the human chromosome

Ch22 (Fig. 3d, with nCh22
= 64 nucleotides), respectively. Observe that the

transmission bands in all cases are fragmented, which is related to the lo-

calized nature of the electron’s eigenstates in disordered chains, and reflects

the number of passbands in each structure (when the localization factor is

zero, the corresponding frequency intervals are known as passbands). It is

relevant to stress that the presence of long-range correlations in the dis-

order distribution is a possible mechanism to induce delocalization in low

dimensional systems.44 However, the actual correlations in our model (hop-

ping mechanism) are not strong enough to produce this correlation-induced
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Fig. 3. Transmittance coefficient TN (E) as a function of the energy E, in units of

eV, for: (a) the Fibonacci sequence, with generation number NF = 12, corresponding
to nF = 233 nucleotides; (b) the Rudin-Shapiro structure, with generation number
NRS = 7, corresponding to nRS = 64 nucleotides; the random case, with nRD = 64
nucleotides; (d) the human chromosome Ch22, with nCh22

= 64 nucleotides. Notice that

the presence of correlations contributes to the survival of resonant transmission peaks
for sequences up to hundreds of nucleotides.

transition, and the stationary states remain all localized. Moreover, the

presence of long-range correlations enhances the localization length and,

therefore, transmission resonances survive in larger segments as compared

with a non-correlated random sequence (see, for instance, the Fibonacci

case). Observe also that the transmission coefficient for long-range corre-

lated Rudin-Shapiro sequences, depicts a trend similar to the one produced

by the genomic Ch22 sequence.

Focusing now on the wave packet dynamics in the above finite segments,

we solved numerically the time-dependent Schrödinger equation and com-

puted the time dependence of the spread of the wave function (square root

of the mean squared displacement), as a function of time, by using
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σ(t) =

�
�
�
�

N�

n=1

[n− �n(t)�]
2
|ψn(t)|2. (5)

The problem involving the spread of one electron wave-functions in low-

dimensional disordered systems is a well known issue with several connec-

tions with transport properties.45 In general lines, the wave function of an

electron moving in a perfectly periodic potential spreads linearly in time.

In the presence of uncorrelated disorder, the scaling theory predicts the ab-

sence of extended eigenstates46 in one-dimensional (1D) systems. Therefore,

the width of the time-dependent wave-function saturates in the long time

limit, i.e., the electron wave-function remains localized in a finite region

around the initial position. The scaling theory prediction of exponential lo-

calization of all one-electron eigenfunctions in 1D systems can be violated

when special short-range47 or long-range48 correlations are present in the

disorder distribution. The influence of scale-free disorder in the 3D Ander-

son transition has also been recently addressed.49 In particular, the presence

of dimer-like correlations on a N -site binary chain produces
√
N extended

states. These states have random phase changes when crossing the dimer

impurities which results in a finite coherence length. If the energy of the

resonant extended state is within the band of the allowed states of the un-

derlying pure chain, the electron wave-packet experiences a super-diffusive

spread.

To study the spread of one-electron wave function, we start from a wave-

packet localized at the guanine G site closer to the center of the single- and

double-strand segments. In order to avoid finite-size effects, we used larger

segments with N = 1500. For the Ch22, pair-correlated (PC) and random

sequences, an average over 20 distinct segments was employed, to account

for configurational variability. Typical results are depicted in Fig. 4. For the

wave-packet spread over a single-strand sequence (see Fig. 4a), the long-

range correlations in the RS sequence results in a wave-packet spread over a

segment which overpass the one achieved in the Ch22 strand by a factor of

the order of 1.5. On the other hand, the spread in a completely uncorrelated

sequence is just half of that in Ch22, pointing to the importance of the

nucleotide correlations. The fact that the spread in the PC sequence is

already 3/4 of the spread in the natural Ch22 sequence led to the conjecture

that the systematic inclusion of further short-range correlations might be

enough to capture the correct one-electron dynamics in DNA molecules.50

The above trend concerning the role played by short- and long-range cor-
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Fig. 4. (a) Spread of the wave function, defined by the time-dependent square root

of the mean-square displacement, as a function of time (t) for several kinds of single-
strand sequences. (b) The wave-packet spread in double-strand sequences. The long-range
correlations in the RS sequence induces a large wave-function spread as compared to the
Ch22 sequence. Short-range correlation of the random sequence matches nicely those of

the Ch22 human chromosome. Error bars at the long time-regime are of the order of
three base pairs.

relations is further strengthened when we analyze the wave-packet spread

in double-strand sequences, as shown in Fig. 4b. In this case, the spread

in the long-range correlated RS sequences becomes much larger when com-

pared to the single-strand one. This fact is associated to the larger values

achieved by the localization length of stationary states, as previously dis-

cussed. When compared to the spread in double-strand Ch22 sequences,

the RS one allows for the wave-packet spread over a segment which is twice

as large due to the excess of correlations. The coupling between strands

in Ch22 favored the electron spread which now reaches a segment almost

three times larger than in the single-strand sequences. It is instructive to

notice that the spread in an uncorrelated double-strand sequence is already

close to that in the Ch22, and the inclusion of first neighbors correlations

suffices to achieve the same wave-packet spread in Ch22. The above results

indicate that long-range correlations are not relevant for the one-electron

dynamics in DNA, and that the inclusion of just first-neighbors correlations

may be enough to have a quantitative description of the wave-packet spread

in double-strand sequences.51

4. DNA finite segments with diluted base-pairing

We now present a numerical investigation of the one-electron states in

single-strand binary DNA-based finite segments with diluted base pairing.

Our opting to consider single-strand molecules was mainly motivated by the
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In what follows, we will work within a tight-binding approach, whose

Hamiltonian describes one electron moving in a geometry composed of a

periodic chain of alternate bases (CG or CT sequences). Our model Hamil-

tonian is constructed considering only the essential ingredients responsible

for the quite distinct electronic transport properties of the poly(CG) and

poly(CT ) molecules with diluted base pairing. We are aware that more re-

alistic models for DNA based molecules shall include other contributions,

although these additional terms shall play a similar role in both poly(CG)

and poly(CT ) molecules.

In the tight-binding Hamiltonian model of electronic transport, the main

information taken from the underlying complex structure is the HOMO

level of its building blocks and the transfer integrals. However, this is a

general feature of single state tight-binding modeling and not a specific

aspect of our present model. Furthermore, we would like to stress that

previous tight-binding studies have correctly captured several features of

the electronic transport of DNA based molecules (for a review see Ref.53).

We assume that G bases are laterally attached to the C sites at random,

with probability p (see Fig. 5). We consider just a single orbital per site

and nearest-neighbor transfer integrals V (along the main chain) and V �

(among paired bases). The corresponding time-independent Schrödinger

equation for a poly(CG) sequence is given by:54

EψG
j = V (ψC

j−1 + ψC
j+1) + ωGψ

G
j for odd j, (6)

EψC
j = V (ψG

j−1 + ψG
j+1) + V �βjψ

G
j + ωCψ

C
j , for even j. (7)

For a poly(CT ) sequence one just has to replace G by T . Here, ωα (α = G,T

or C) represents the on-site potential at the bases G,T or C and ψα
j is the

wave-function coefficient in the single orbital basis, defined by

|Ψ� =
�

(j,α)

ψα
j |j, α�, (8)

where (j, α) runs over all base units. Also, βj = 1 with probability p and

βj = 0 with probability 1 − p, where p is the concentration of G sites

attached to the single stranded main periodic chain. At the sites where

βj = 1, we have an additional equation:

EψG
j = V �ψC

j + ωGψ
G
j , for even j and βj = 1. (9)
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A clear picture of the nature of the electronic states on the above model

can be achieved by performing a decimation procedure of the attached

base units. The above tight-binding model for a DNA-based molecule can

be mapped onto an effective one-dimensional diluted Anderson model.55–58

Such model contains a diagonal disorder diluted by an underlying peri-

odicity. The resulting sequence is composed of two inter-penetrating sub-

lattices, one composed of random potentials (Anderson chain), while the

other has non-random segments.

The degrees of freedom associated with the lateral DNA bases appearing

in the above equations can be removed by substituting59

ψG
j = [V �/(E − ωG)]ψ

C
j , for even j, (10)

into the equation for the coefficients ψC
j , yielding:

EψC
j = ω∗

Cψ
C
j + V (ψG

j−1 + ψG
n+1), (11)

where

�∗C = ωC + [V �2/(E − �G)] (12)

is the renormalized potential at the cytosine sites at which the G bases are

laterally attached. For those cytosine bases with no lateral attachment, the

potential remains the bare one.

Therefore, after having eliminated the coefficients associated with the

lateral G bases, the remaining set of equations expresses an alternate se-

quence of CG (or CT ). Most importantly, the C sites have now two pos-

sible values for the on-site potential, namely ω∗

C with probability p or ωC

with probability 1 − p, respectively. The remaining bases of the periodic

sequence have all the same potential: �G for poly(CG) or ωT for poly(CT ).

The random character of the diluted base-pairing is reflected in a random

sequence for the effective on-site energies of the cytosine sites. This kind

of sequence is similar to the structure so-called diluted Anderson model. It

consists of two inter-penetrating sequences: a periodic sequence containing

the guanine or thymine sites, for poly(CG) or poly(CT ) respectively, and

a random sequence containing bare and renormalized cytosine sites. Due

to the periodicity of the non-random sub-lattice, a special resonance en-

ergy E0 appears with vanishing wave-function amplitudes on the random

sub-lattice. Therefore, this mode is mainly insensitive to the presence of

disorder and may lead to a possible mechanism to induce conductance in

such DNA-based molecules.
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For the poly(CT ) molecule, the resonance energy is E0 = ωT . At this

energy, the renormalized cytosine potential remains finite, and a divergence

of the localization length of the one-electron eigenmodes, as the resonance

energy is approach, can be anticipated.55,57 On the other hand, the res-

onance energy for poly(CG) molecules is E0 = ωG. At this energy, the

renormalized cytosine potential diverges. This case corresponds to an effec-

tively infinite disorder which counteracts the delocalization effect. Within

such reasoning, one expects diluted base-pairing to induce a stronger local-

ization of the one-electron eigenfunctions in poly(CG) than in poly(CT )

chains.

Using a recursion method we can now obtain the electronic density of

states (DOS), which is depicted in Fig. 6a,b for three representative values

of the concentration of paired cytosine bases, namely:

(i) p = 0, corresponding to pure poly(CG) and poly(CT ) chains;

(ii) p = 1, describing the poly(CG) and poly(CT ) chains with guanine

bases laterally attached to all cytosine bases;

(iii) p = 0.5 representing a typical sequence of diluted base-pairing.

In Fig. 6(a) we display our results for the poly(CG) sequences. As one

can see, the electronic density of states has two main bands, which is typical

of binary sequences, with the gap for p = 1 being larger than for p = 0.

Such enhancement of the energy gap is a direct consequence of the base-

pairing. For p = 0.5 one notices that all van Hove singularities at the band

edges are rounded off by the presence of disorder. The fluctuations in the

DOS have been exploited in the literature to identify the nature of the

states.60,61 The variance in the number of states in a given energy window

shall scale linearly with the system size for localized states, while having

just a slow logarithmic scaling for extended states. These two regimes reflect

the distinct level spacing statistics of localized and extended states. As a

result, much smaller fluctuations are attained in the normalized DOS when

extended states are present as compared to the fluctuations observed in

the energy range corresponding to localized states. These fluctuations are

of the same magnitude in both bands, which indicate that these bands are

equally affected by disorder.

The DOS for poly(CT )-based chains are depicted in Fig. 6(b). For these

molecules, one can observe a series of relevant features not found in the

previous case. Firstly, one sees that the two band structure of the binary

p = 0 case evolves to a three band structure at p = 1, as expected for a

periodic structure with three distinct sites in the unit cell. It is important
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properties can be performed by measuring their I-V characteristics profiles,

being aware however, that the application of a voltage bias in the conducting

leads (donor-DN and acceptor-AC electrodes) contacting the DNA segment

has also some influence on the scattering properties inside the molecule, and

direct information on intrinsic effects of sequences on transmission should

thus be considered with care.

Taking into account the effective tight-binding Hamiltonian given above

(Eq. 1), one can evaluate the I-V characteristics curves by applying the

Landauer-Büttiker formulation:62,63

I(V ) =
2e

h

� +∞

−∞

TN (E)[fDN (E)− fAC(E)]dE, (13)

where fDN(AC) is the Fermi-Dirac distribution

fDN(AC) =
�
exp[(E − µDN(AC))/kBT ] + 1

�
−1

. (14)

Also, µDN(AC) is the electrochemical potential of the two leads (donor-DN

and acceptor-AC) fixed by the applied bias voltage V as64

|µDN − µAC | = eV. (15)

We are assuming the Fermi level energy equal to zero. The current onset is

crucially dependent on the electrochemical potentials of the leads that can

be altered by the coupling to molecules, which is another important issue

to be separetely considered. For simplicity, before bias voltage is applied,

the electrochemical potential of the whole system is taken to be zero. It is

important to emphasize that the transmittance TN (E) should be calculated

also for negative values of energy.

Current-voltage characteristics of double-strand DNA sequences are

plotted in Fig. 7 for Fibonacci (Fig. 7a), Rudin-Shapiro (Fig. 7b), the ran-

dom case (Fig. 7c) and the human chromosome Ch22 (Fig. 7d), respec-

tively.65 We are assuming a linear voltage drop across the DNA molecules

by means of the usual expression, numerically computed near zero temper-

ature, as given by Eq. (13). To reproduce the potential mismatch at zero

bias, the energy difference between the guanine HOMO energy level and

the metallic Fermi level of the electrode is set to 1.2 eV.66 As the voltage

drop is switched on, the transmission coefficient TN (E) becomes voltage-

dependent, resulting in transmission band shifts (shown in Fig. 7 for all

cases studied here), which in turn lead to a voltage threshold modulation.
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Fig. 7. Current-voltage characteristics of double-strand DNA sequences for (a) Fi-
bonacci; (b) Rudin-Shapiro; (c) the random case; (d) the human chromosome Ch22,
respectively.

To extract the main features of tunneling currents in DNA chains, let

us compare the behavior of the genomic Ch22 (Fig. 7d) with those charac-

terizing the quasiperiodic and random structures (Figs. 7a,b,c) under the

resonance condition given by the hopping term choice V23= 1 eV. In this

case, if the potential barrier between the metallic contacts and the DNA is

set to zero, a staircase in the plot I-V is found.67

As soon as a potential barrier between the DNA and the metals is in-

troduced (1.2 eV), the I-V characteristic curves show the profiles depicted

in Fig. 7. The current threshold at a given voltage scale is not sensitive

concerning the different structures considered here, mainly due to the elec-

tronic correlations presented by the structures. However, such correlations

shall depend strongly on the intra-chain coupling, and further studies con-

sidering more realistic model parameters would be needed in order to infer

about the actual relevance of this treshold enhancement in DNA molecules.

Observe the striking agreement between the I-V characteristic curves for the

random and the genomic Ch22 case. Such agreement can be accounted by
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the short-range pair correlations shared by them, suggesting that the inclu-

sion of just first-neighbors intra-strand pair correlations on the nucleotide

distribution can provide an adequate description of the DNA electronic

properties.

6. Conclusions

Over the past few years, bionanomaterial science has emerged as a new ex-

citing field in which theoretical and experimental studies of nanobiostruc-

tures have stimulating a broader interest in developing the field of

nanometer-scale electronic devices. In particular, intelligent composite bio-

logical materials have become a new interdisciplinary frontier in life science

and material science. Nevertheless, the construction of nanometer-scale cir-

cuits remains problematic, and the use of molecular recognition processes

and the self-assembly of molecules into supramolecular structures might

help overcome these difficulties. In this context, the ability to choose the

sequence of nucleotides, and hence provide the addressability during the

self-assembly processes, besides its inherent molecular recognition, makes

DNA an ideal molecule for these applications.

Aiming to further contribute to the present understanding of the role

played by correlations on the electronic properties of DNA segments, we

have studied here the electronic transport properties of finite sequences of

nucleotides within a tight binding approach of DNA sequences with pure

diagonal correlated disorder. In order to unreveal the actual relevance of

short and long range correlations, we compared the transmission spectra

and the wave packet spread on segments of the Ch22 human chromosome

with those resulting from the quasi-periodic (RS and FB) and randomic

structures. We obtained that the long-range correlations present in Ch22

and RS sequences are responsible for the slow vanishing of some transmis-

sion peaks as the segment size is increased, which may promote an effective

electronic transport at specific resonant energies of finite DNA segments.

On the other hand, much of the anomalous spread of an initially localized

electron wave packet can be accounted by short-range pair correlations on

DNA. This finding suggests that a systematic approach based on the in-

clusion of further short-range correlations on the nucleotide distribution

can provide an adequate description of the electronic properties of DNA

segments.

We also investigated the nature of the one-electron eigenstates within

a tight-binding model of DNA-based poly(CG) and poly(CT ) molecules

with diluted base-pairing. The model considers that guanine nucelotides
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are allowed to attach laterally to the cytosine bases of the main chain with

probability p. We demonstrated that this model can be exactly mapped

on the diluted Anderson model, consisting of two inter-penetrating chains.

One of these chains is composed by non-random units: guanine (G) sites for

poly(CG) or thymine (T ) sites for poly(CT ). The second chain is a random

sequence of bare cytosine sites with on-site potential �C and renormalized

cytosine sites with effective on-site potential.

Solving the time-dependent Schrödinger equation to follow the time-

evolution of an initially localized wave-packet, we found qualitatively

distinct influences of diluted base-pairing in each chain model. For the

poly(CG) case, the disorder introduced by the diluted base-pairing pro-

motes the exponential localization of all one-electron states. Furthermore,

it enhances the gap between the two main bands of allowed energy states.

These two factors reinforces the insulator character of this molecule. On

the other hand, for poly(CT ) molecules, there is a resonant mode with en-

ergy E0 = ωT which is not affected by the disorder and remains extended

with a Bloch-like character. Besides, the two energy bands, typical of the

pure poly(CT ) molecule, coalesce in a single band for intermediate dilution

before splitting in three bands. Therefore, when the Fermi energy coincides

with the resonance energy, we have a typical scenario favoring electronic

transport: a gap-less density of states with extended states near the Fermi

level. As one approaches the resonance energy from below, the localization

length of the one-electron modes diverges. Above E0 the localization length

remains finite. This feature implies that hole transport shall be predominant

over electron transport.

Regarding the I-V characteristic curve, it seems to be accounted by

the short-range pair correlations, suggesting that the inclusion of just first-

neighbors intra-strand pair correlations on the nucleotide distribution pro-

vides an adequate description of the DNA’s electronic properties. However,

as the electron transmissivity depends strongly on the intra-chain cou-

pling, further studies considering more realistic model parameters would

be needed in order to infer about the actual relevance of this behavior in

DNA molecules.

These latest developments have provided the motivation and focus for

the proposed review article. Due to the potential device applications of such

systems, our intention here was to provide a review text with up to date

information about the DNA’s unique physical properties, as highlighted

above. This includes experimental techniques of interest to experimental-

ists, keeping in mind that, since experimental reality is approaching the-
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oretical models and assumptions, detailed analysis and precise predictions

are being made possible nowadays.68–71
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71. E. Maciá, Rev. Adv. Mater. Sci. 10, 166 (2005).


