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Abstract We consider the problem of a harmonic lattice
in which masses’ distribution is a superposition of a ran-
dom and a periodic distribution. Classical equations for the
mass displacement and velocities are solved using a second-
order Euler formalism. Energy flow was investigated on two
distinct experiments: (i) We injected an initial wave-packet
with energy E0 and analyzed the dynamics of the resulting
energy pulse; (ii) we pumped one of the sides of the lattice
with a external signal and then we observed the propagation
of the pulse until the other side of chain. Our calcula-
tions suggest that the diluted disordered mass distribution
promotes energy dynamics at high frequency limit.

Keywords Localization · Diluted disorder · Propagation ·
Harmonic lattice

1 Introduction

According to Anderson localization theory, extended eigen-
states are absent in low-dimensional disordered systems
with uncorrelated disorder [1–3]. Exceptions were demon-
strated some years ago in case of correlated disorder
[4–24]. The localization theory can also be applied to
general phonons propagation. Most vibrational modes of
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one-dimensional (1D) harmonic chains with a random
sequence of masses are localized [25]. It was also demon-
strated that there are a few low-frequency modes not local-
ized, whose number is of the order of

√
N , N being

the number of masses in the chain [25–27]. Other stud-
ies about correlated disorder in classical one-dimensional
harmonic lattices were made in the past. In refs. [28, 29],
authors showed that short-range correlations promote the
appearance of new non-scattered vibrational modes.

Among the models with short-range correlation, 1D
chains with diluted disorder also support extended eigen-
states [30]. The diluted disorder consists of two interpen-
etrating sub-lattices, one composed of random masses and
the other being periodic. It was proved that special reso-
nant energies appear, giving rise to a set of extended states.
Harmonic chains with long-range correlated disorder were
investigated in ref. [31]. In that case, extended states exist in
the high frequency region.

Most part of literature related to vibrational modes in dis-
ordered harmonic systems, presents the dimensionality as a
big problem. In general, the authors prefer investigate one-
dimensional disordered chains. Two-dimensional harmonic
lattices with correlated disorder is an almost unknown field.
In ref. [32], the nature of the vibrational modes in a two-
dimensional harmonic lattice with long-range correlation
was investigated. The random masses distribution exhibited
a power-law spectral density S(k) ∼ 1/kα . Authors con-
sidered only longitudinal atomic displacements and com-
puted the participation number, its fluctuations and also the
local density of states. They showed numerical proof that
extended vibrational modes appear when α > αc and that
αc depends on the magnitude of disorder.

In this work, we consider the problem of a harmonic
2D lattice with diluted disorder. In our model, the distribu-
tion of masses is a generalization of the 1D diluted model
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considered in ref. [30], i.e., a superposition of a random and
a periodic mass distribution. Two distinct types of numeri-
cal simulations were performed in that system: (i) We inject
an initial wave-packet with energy E0 and then we observe
energy pulse’s dynamics; (ii) by pumping one of the sides
of the lattice with a external signal, we analyze the propa-
gation of this pulse until it reaches the other side of lattice.
Broadly, our procedure consists of solving classical equa-
tions for masses displacements and velocities. In the end, we
found evidence that intrinsic correlations which exist within
the diluted mass distribution play a relevant role in the
energy propagation. Our calculations also helped to predict
the frequency region that propagates along the lattice.

2 Model and Numerical Calculations

In our model, we consider a two-dimensional harmonic lat-
tice (see Fig. 1a). Each site (i, j ) represents an atom with
mass mi,j . When the system is at rest, the x and y coordi-
nates may be, respectively, set to xi,j = j e yi,j = i (in units
of the lattice spacing a = 1). Masses distributions which
were chosen for our studies in this paper are described
as follows: i) “Random case”: this kind of distribution is
defined as mi,j = 1 + ηi,j , where mi,j is a mass on site i, j

and ηi,j is a random number uniformly distributed within
the interval [0, 1]; ii) “Diluted case 1”: the mass distribution
of case i) is modified by the following the rule: mi,j = 1
for i = 1, . . . , N and j is odd. Therefore, the case (ii) rep-
resent a mass distribution with a line periodic (with value
mi,j = 1) alternating with random lines; iii) The “Diluted
case 2” is similar to “Diluted case 1” (case ii) except that
the position of periodic lines changes to : mi,j = 1 for
i = 1, . . . , N and j = 1, 4, 7, 10, 13, 16, . . .. Each mass
and its four neighbors are coupled through a harmonic force.
k = 1 represents the magnitude of the spring constant.
Whenever a given mass (mi,j ) has small displacement from
its initial position, the four springs related with the four first
nearest neighbors are deformed (see Fig. 1b a pedagogical
exhibition of this phenomenon). At rest, the mean distance
between each mass is 1. The distance between the site (i, j )
and its four first nearest neighbors after the deformation can
be measured as:

d
i,j

1 =
√

(xi,j − xi+1,j )2 − (yi,j − yi+1,j )2, (1)

d
i,j

2 =
√

(xi,j − xi,j+1)2 − (yi,j − yi,j+1)2, (2)

d
i,j

3 =
√

(xi,j − xi−1,j )2 − (yi,j − yi−1,j )2 (3)

and

d
i,j

4 =
√

(xi,j − xi,j−1)2 − (yi,j − yi,j−1)2. (4)

Fig. 1 a Two-dimensional harmonic lattice where each site (i, j )
represents an atom with mass mi,j . b Pedagogical exhibition of the
deformed harmonic lattice after a given mass (mi,j ) is moved from its
initial position

Therefore, the effective force on mass (mi,j ) can be com-

puted as Fi,j = Fi,j

1 + Fi,j

2 + Fi,j

3 + Fi,j

4 where Fi,j
z =

k|di,j
z −1|r̂z with z = 1, 2, 3, 4. r̂z is a unity vector along the

spring z. We emphasize that the direction of r̂z depends on
the distance d

i,j
z : if d

i,j
z > 1 the vector r̂z points to the direc-

tion of mass i, j ; on the contrary, if d
i,j
z < 1, then r̂z points

to the opposite direction of mass i, j . The vibrational energy
dynamics is obtained by solving the classical equations :

[Fi,j ]x = mi,j

d2xi,j

dt2
(5)

and

[Fi,j ]y = mi,j

d2yi,j

dt2
(6)

In general, (5) and (6) can be solved as follows: each second
order equation can be separated in two first order equations

(e.g. the (5) is written as : [Fi,j ]x = mi,j
dv

i,j
x

dt
and v

i,j
x =
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dxi,j

dt
; the same is done for the (6)). Therefore, we have a set

of four equations for each mass (i, j ) which can be solved
using a second order Euler method (2EM).

In order to explain the (2EM) method, we will use, as
example, the first-order equations for the x direction. Con-
sidering we know the initial value of xi,j (t = 0) and

v
i,j
x (t = 0), we find a first-order estimation for these quanti-

ties at time dt as: xi,j (t = dt)1 = xi,j (t = 0)+dt ∗v
i,j
x (t =

0) and v
i,j
x (t = dt)1 = v

i,j
x (t = 0) + dt ∗ [Fi,j (t =

0)]x/mi,j . The second-order formula for these quantities is

written as: xi,j (t = dt)2 = xi,j (t = 0) + (dt/2) ∗ (v
i,j
x (t =

0) + v
i,j
x (t = dt)1) and v

i,j
x (t = dt)2 = v

i,j
x (t = 0) +

(dt/2) ∗ ([Fi,j (t = 0)]x + [Fi,j (t = dt)]x)/mi,j . The same
second-order procedure may be used for the y direction. In
our calculations, we use dt ≈ 5 × 10−3 along the entire
time interval. We also check numerical accuracy of our pro-
cedure. It was done by monitoring the temporal evolution
of the total energy contained within the lattice. If an initial
localized wave-packet with energy E0 was injected into the
lattice, the time-dependent total energy E(t) should be con-
stant along the time; we find that |1 − E(t)/E0| < 10−10

within the entire interval. The time-dependent energy may
be computed as E(t) = ∑

i,j hi,j (t) where

hi,j (t) = mi,j ∗ [(vi,j
x )2 + (v

i,j
y )2]

2
+

4∑
z=1

k|di,j
z − 1|2

4
(7)

Our first analysis consists of injecting an initial wave-packet
with energy E0 close to the center of the lattice and then cal-
culate its spread with time. The fraction of the initial energy
on the mass (i, j) (i.e., f i,j = hi,j /E0) is used to estimate
the spread of energy within the lattice.

Σ(t) =
√∑

i,j

[(xi,j − xi0,j0)
2 + (yi,j − yi0,j0)

2]f i,j (8)

The quantity Σ has the same status of the root-mean-square
displacement of the wave packet of an electron in a solid.
Here, xi0,j0 and yi0,j0 represent the coordinates of the site
in which energy is initially injected into the lattice. The
time-dependent behavior of Σ(t) provides a description of
the energy flow within this model and its relationship with
the type of correlated disorder that we are dealing with.
We emphasize that Σ(t) is measured in units of the lattice
spacing a = 1.

Beyond previous analysis, we also perform a direct mea-
sure of the energy pulse propagation along the system. We
consider that one of the sides of the lattice is coupled to
some oscillators. These oscillators inject a pulse into the
lattice such as:

xi,0 =
∑
ωn

Z cos(ωnt) (9)

where Z is a small amplitude and ωn is a set of frequencies
within the interval [0.05, 5]. We use about 100 frequency
values separated by δω = 0.05 in order to calculate xi,0.
Formally, the amplitude Z could be any value less than one.
However, as Z is increased, the discretization in time (dt)
needs to decrease then, the computational time diverges.
So, we choose Z = 0.001 and dt = 5 × 10−3. We stress
that, within this experiment, we are interested to study the
energy propagation along one direction; thus we can solve
the equations in a rectangular geometry L×N (with N > L

representing the propagation axis). In order to analyze the
energy propagation along the system, we follow the time-
evolution of energy pulse by monitoring the mass position
xi0,d0 . In our calculations, i0 ≈ L/2 and d0 is close to N .
Hence, xi0,d0 represent the position of a mass far from the
lattice’s side that received the energy pumping. We calcu-
late the displacement of mass (i0, d0) relative to the initial
condition i.e. Di0,d0(t) = xi0,d0(t) − xi0,d0(t = 0) (in units
of the lattice spacing a = 1). Using this quantity, we com-
pute I (ω) = |FT (Di0,d0(t))|, where FT (A) represent the
Fourier transform of function A. I (ω) reveals some infor-
mation about the frequencies that propagate along the chain.
When I (ω) = 0, it advocates that frequency ω does not
reach the end of lattice (position d0). If I (ω) > 0, our cal-
culations indicate that the frequency ω crossed the lattice
from one side to another. In other words, I (ω) > 0 suggests
propagation and a possible existence of extended modes.

3 Results and Discussion

We emphasize that we investigated vibrational dynamics
in a two-dimensional disordered harmonic lattice. We con-
sidered three distinct types of distribution of masses: (i)
“Random case”: the masses distribution is defined as mi,j =
1+ηi,j where ηi,j is a random number uniformly distributed
within the interval [0, 1]; (ii) “Diluted case 1”: the mass
distribution of case (i) is modified by following the rule:
mi,j = 1 for i = 1, . . . , N and j is odd. (iii) The “Diluted
case 2” is similar to “Diluted case 1” (case ii) except that
the position of periodic lines changes to: mi,j = 1 for
i = 1, . . . , N and j = 1, 4, 7, 10, 13, 16, . . .. In Fig. 2, we
plot a summary of our main results for the spread of the
energy distribution (8) versus time t . We stress that initial
vibrational energy input was injected on site i0, j0 according
to two quite distinct classes: (A) Impulse excitations corre-
sponding to v

i,j
x (t = 0) = v

i,j
y (t = 0) = δi,i0δj,j0 and

xi,j (t = 0) = j and yi,j (t = 0) = i. (B) displacement exci-
tations, i.e., xi,j (t = 0) = j + Δδi,i0δj,j0 , yi,j (t = 0) =
i + Δδi,i0δj,j0 and v

i,j
x (t = 0) = v

i,j
y (t = 0) = 0 (in our

calculations, we used Δ = 0.1, however, for Δ < 1, calcula-
tions did not exhibit any qualitative difference). Also, for all
numerical calculations related to the random case (case i),
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Fig. 2 Energy spread distribution Σ(t) versus time t for (a) Impulse
excitations that correspond to v

i,j
x (t = 0) = v

i,j
y (t = 0) = δi,i0δj,j0

and xi,j (t = 0) = j and yi,j (t = 0) = i and (b) displace-
ment excitations that correspond to xi,j (t = 0) = j + Δδi,i0δj,j0 ,

yi,j (t = 0) = i + Δδi,i0δj,j0 and v
i,j
x (t = 0) = v

i,j
y (t = 0) = 0 (here

we used Δ = 0.1). The initial wave-packet was localized on a site
(i0, j0) close to the center of lattice with mi0,j0 = 1. We observe that,
for the random case, standard deviation of energy follows a super dif-
fusive dynamics (Σ(t) ∝ t3/4) in (a) and a diffusive one (Σ(t) ∝ √

t)
in (b). Moreover, for this kind of initial condition, the diluted disorder
promotes a ballistic dynamics (Σ(t) ∝ t1)

we considered (i0, j0) = (N/2, N/2). For the diluted cases
(case ii and iii), the site (i0, j0) represents a site close to the
center of lattice ((N/2, N/2)) such that mi0,j0 = 1. Calcula-
tions of the spread Σ(t) were done for a square lattice with
N × N = 3000 × 3000. By analyzing Fig. 2, we observed
that, for the random case, the spread of energy showed a
super diffusive dynamics (Σ(t) ∝ t3/4) in Fig. 2a and a
diffusive one (Σ(t) ∝ √

t) in Fig. 2b. The dependence of
Σ(t) with the type of initial condition (impulse or displace-
ment) it was also obtained in disordered one-dimensional
harmonic chains [31, 32]. The main physical explanations
for this phenomena is the amount of low-frequency modes
that exist within the initial conditions [31]. In the case with
an initial impulse excitation, the amount of low-frequency
states is larger than the case with initial displacement, hence
the dynamics is faster. In both cases with diluted disorder,
the mean square displacement exhibits a ballistic behav-
ior (Σ(t) ∝ t), thus indicating the presence of extended
vibrational modes within this two-dimensional disordered
harmonic model. Our calculations indicate that types 1 and
2 of diluted disorder promotes the ballistic dynamics. The
fast dynamics found in the case with diluted disorder sug-
gest the presence of extended vibrational eigenstates. We
investigated this point using the numerical calculations of
quantity I (ω). In Fig. 3a, we plot Di0,d0 versus t for the ran-
dom case and both types of diluted disorder. Calculations
were done in a rectangular (L × N) harmonic lattice with
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Fig. 3 a Di0,d0 versus t for the random case and for both types of
diluted disorder. Calculations were done in a rectangular (L × N)
harmonic lattice with N = 1500 and L = 360. In our calculations
i0 ≈ L/2 and d0 ≈ 1200. We emphasize that we consider t = 0 the
time in which that |Di0,d0 | > 10−10. B) I (ω) = |FT (Di0,d0 (t))| where
FT (Di0,d0 (t)) represent the Fourier transform of Di0,d0 (t) for the data
in (a). For the random case, the function I (ω) is null for ω > 0 and
it is nonvanishing for ω ≈ 0. For both types of diluted disorder, I (ω)

exhibits a plateau that suggests the existence of a band of extended
vibrational modes

N = 1500 and L = 360. In our calculations i0 ≈ L/2
and d0 ≈ 1200. We emphasize that, in Fig. 3a, we consider
t = 0 the time in which that |Di0,d0 | > 10−10. By using the
time-evolution of Di0,d0 , we calculated the quantity I (ω) as
I (ω) = |FT (Di0,d0(t))|, where FT (Di0,d0(t)) represents
the Fourier transform of Di0,d0(t). The results of I (ω) for
the random case and also the diluted case types 1 and 2 can
be found in Fig. 3b. Our calculations are summarized as fol-
lows: The function I (ω) for the random case is almost null
for ω > 0 and exhibits a pronounced peak around ω = 0.
This is a clear signature that only the modes around the uni-
form mode (ω = 0) propagates along the lattice. This result
is in good agreement with the previous calculations for a
one-dimensional disordered harmonic chain [25, 29]. The
uniform mode (ω = 0) in a 1d harmonic disordered chain
represents a mode without spring deformation, so it has
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divergent wave-length and, also, it is not affected by the dis-
order propagating through the system [25, 29]. Conversely,
harmonic modes with ω > 0 cannot propagate along dis-
ordered harmonic chain. It happens due to the intrinsic
disorder distribution. Our calculations of I (ω) suggest the
same behavior occurs for the 2d disordered harmonic case.
The diluted disorder 1 and 2 exhibit a new and interesting
framework. There is a plateau in the low-frequency region.
It suggests that nonzero frequencies propagate along the dis-
ordered harmonic lattice and that, for both types of diluted
disorder, a band of extended vibrational modes arises. It
is a new and interesting result. Within our numerical cal-
culations, we observed that the aforementioned band lies
roughly within the interval of frequencies [0,1.2]. Therefore,
this type of correlated disorder might promote the appear-
ance of a localization-delocalization transition. Data shown
in Fig. 3a, b are in a good agreement with the ballistic
dynamics found in Fig. 2. In general, both diluted case 1
and 2 exhibiting fast energy propagation. Our spectral cal-
culations suggests that at the diluted case (2), the intensity
of the lattice deformation displays a extremely tiny increas-
ing in comparison to the case (1). These small changes are
observed in the calculations of Di0,d0(t) as well as at the
difference between the plateau of the I (ω) curves for the
diluted cases. We also observed a very slight increasing
of the width of the region in which that I (ω) > 0 (i.e.,
bandwidth of extended vibrational modes). However, those
discrepancies do not change qualitatively the energy dynam-
ics, neither the diffusion coefficient in both types of diluted
disorder. We believe that if we increased the periodicity of
the lines with mi,j = 1 we would not find any qualitative
change in our results.

Before our concluding statements, we briefly discuss the
dependence of our results for the spread Σ with the type
of initial condition. We emphasize that, in order to com-
pute Σ we injected the energy in an initial site (i0, j0)
close to center of the lattice. The condition for choosing this
position (i0, j0) was that its mass mi0,j0 = 1. Therefore,
all previous investigations about Σ were done considering
the initial energy injected into the periodic sub-lattice. We
show some results of Σ by considering the initial energy
put on a site i0, j0 belonging to the random sub-lattice. In
Fig. 4, we plot Σ versus time for both types of diluted
disorder and also (A) impulse excitation and (B) displace-
ment excitation. Dynamics is apparently slower than those
in the previous cases (see Fig. 2). We got Σ(t) ∝ t0.9

for the case with an initial impulse excitation (Fig. 4a) and
Σ(t) ∝ t0.75 for the case with an initial displacement excita-
tion (Fig. 4b). Therefore, our results suggest that the type of
dynamics in harmonic lattices with diluted disorder depends
on the nature of the initial excitation (impulse or displace-
ment) and also of the initial site (i0, j0). When we started
the dynamics by injecting the energy into the periodic
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Fig. 4 Σ versus t considering the initial energy put on a site i0, j0
belonging to the random sub-lattice (i.e.: the initial site (i0, j0) is a site
close to the center of chain with mi0,j0 �= 1). Calculations were done
for a impulse excitation and b displacement excitation

sub-lattice, we obtained a fast ballistic dynamics (for both
impulse and displacement excitation). However, if the ini-
tial energy pulse were injected into the random sub lattice,
the energy flow within the lattice became slower. This phe-
nomena was also observed in one-dimensional systems with
diluted disorder [30, 33]. The extended vibrational modes
of the models with diluted disorder were localized at peri-
odic sub lattice [33]. Thus, an energy wave-packet initially
localized within the random sub lattice has a small contribu-
tion from those frequencies with large localization lengths.
Consequently, that turns energy dynamics slower.

4 Summary and Conclusions

We studied the energy flow in a harmonic lattice with diluted
disorder. Here, the distribution of masses was obtained as a
superposition of a random and a periodic mass distribution.
By using numerical methods, we solved the classical equa-
tions for mass displacement and velocity. We analyzed the
energy flow by considering two types numerical tools: (i)
the spread of an initially localized energy pulse around the
center of lattice and (ii) the evolution of a pulse that is pump-
ing at one side of the lattice. Our calculations suggest that
the type of diluted disorder used here promotes the appear-
ance of new extended vibrational modes. We demonstrate
numerically that the velocity of energy flow depends on the
type of initial energy pulse (impulse or displacement exci-
tation) and also on the initial position of the pulse. Results
indicate that if the initial energy pulse is localized at the
periodic sub lattice, the dynamics is ballistic. However, if
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the initial excitation is fully restricted to the random sub
lattice our calculations point to a super diffusive spread.
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