
Quantum state transfer through disordered hexagonal lattices

D. Messias,1 C. V. C. Mendes,1 R. F. Dutra,1 G. M. A. Almeida,1 M. L. Lyra,1 and F. A. B. F. de Moura1, ∗

1Instituto de F́ısica, Universidade Federal de Alagoas, 57072-900 Maceió, AL, Brazil
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We investigate a quantum-state transfer protocol through a quasi-1D spin-1/2 channel defined
on a hexagonal layer featuring hopping disorder. In the absence of disorder, the quantum channel
display two flat bands hosting compact localized states. That is signalled by the appearance of
singularities in the density of states. We show that an arbitrary qubit state can be transmitted with
high fidelity between the two ends even in the presence of noise as long as they are not in resonance
with energy levels surrounding the flat band. This higher sensitivity against disorder is due to the
residual single-cell compact localized states accompanied by a degeneracy lifting.

I. INTRODUCTION

Quantum information technologies have gone through
significant advances in recent years. Although all-
round commercial quantum computing is still far from
reality, big tech companies are making progress with
superconducting-based quantum computers featuring
tens of qubits [1, 2]. Yet, there is plenty of room for
improvement, specially when it comes to fault-tolerant
quantum computing. As put by Preskill in [3], we are
currently in the era noisy intermediate-scale quantum de-
vices, meaning that although computers featuring tens
of qubits are already available, they face limitations on
their performance due to imperfect control over qubits
and quantum gates. It is thus paramount to find out
ways to deal with noise so as to develop more accurate
quantum processing units.

Large-scale quantum information processing demands
robust quantum-state transfer (QST) and entanglement
generation protocols between distant nodes in a net-
work [4]. One approach consists of engineered solid-state
qubit networks, carefully crafted to bypass active con-
trol as much as possible. A paradigmatic QST model
was put forward by Bose in [5] on the framework of spin
chains with nearest-neighbor exchange interaction act-
ing as channels set to work via the natural time evo-
lution of the system. Numerous works followed up ad-
dressing unique interaction patterns and topologies, each
featuring different requirements, speed-fidelity tradeoffs,
and so forth [6–24] (see Refs. [25, 26] for reviews).
One of the issues underlying those engineered networks
is the unavoidable presence of disorder due to param-
eter fluctuations that might occur during their fabrica-
tion/assembling process. The occurrence of Anderson
localization phenomena in QST protocols has been ex-
plored in different settings [27–34]. QST protocols op-
erating in the Rabi regime, that is when the sender and
receiver are weakly coupled to the channel, are particu-
larly robust against static disorder [28]. This trait has
been explored considering various types of diagonal and
off-diagonal disorder [33–35].
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FIG. 1. QST model. A quasi-1D array defined on a hexagonal
layer featuring hopping disorder constitutes the channel and
the two outermost sites, weakly coupled to it, act as sender
and receiver.

In this work, we go beyond 1D configurations and in-
vestigate the resilience of an isotropic XY spin-1/2 chain
defined on honeycomb layers (see Fig. 1) featuring static
interaction (off-diagonal) disorder. The aim is to look for
novel topological features that can handle high-quality
and robust QST. Indeed, polymer-based geometries pro-
vides rich spectral properties [36–39]. Lattices hosting
flat bands – dispersionless bands associated to diverging
density of states – are an example that has been largely
explored in recent years [38–40]. The hexagonal strip
of Fig. 1 hosts two flat bands each being populated by
one-cell compact localized states.

We show that it is possible to perform end-to-end QST
through the disordered lattice provided they are in close
resonance with delocalized channel modes. In our case,
that strictly means the flat-band levels must be avoided
due to compact localized modes. This is explained in
terms of the key spectral properties of the channel such
as the density of states and participation ratio.

II. MODEL

Let us consider an isotropic XY spin-1/2 chain with N
sites, arranged as a quasi-1D hexagonal array as shown
in Fig. 1. The Hamiltonian of this system is written as
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with σ̂x,y,zi denoting the Pauli operators acting on spin
i, εi the local magnetic field (on-site energy), and Jij the
nearest-neighbor coupling strength between spins i and
j. The sender (s) and receiver (r) spins residing on the
end points couple to the channel via g and their local
energies are both set to w.

It is immediate to see that the Hamiltonian preserves
the total magnetization of the system, i.e., [H,

∑
i σ

z
i ] =

0, so that it can be partitioned into subspaces with
fixed excitation number. Here we will be concerned with
the single-excitation subspace only for the following rea-
son. To transfer an arbitrary qubit state [5] we may
initialize the first spin (residing at the leftmost end) in
|ψ〉1 = α| ↓1〉+ β| ↑1〉, with the rest of the system in the
ground state so that the whole system reads |Ψ(0)〉 =
|ψ〉1| ↓2 · · · ↓N+1〉| ↓N+2〉. Then, we let it evolve through
the time evolution operator, |Ψ(t)〉 = e−iHt|Ψ(0)〉, what
renders the actual dynamics to take place in the (N +2)-
dimensional single-excitation subspace. So hereafter we
set, for easiness, |i〉 ≡ | ↓1↓2 · · · ↑i · · · ↓N+2〉. The goal
of the protocol is to obtain, at some instant τ , the state
|Ψ(τ)〉 = | ↓1〉| ↓2 · · · ↓N+1〉|ψ〉N+2 (not considering the
global phase), which is when the qubit state has reached
the rightmost end of the array.

To evaluate the transfer performance, the fidelity for
a specific input reads Fψ = 〈ψ|ρN+2|ψ〉, with ρN+2 =
Tr1,...,N+1|Ψ(τ)〉〈Ψ(τ)|. In order to obtain a measure
that does not depend on amplitudes α and β, we can
perform an average over the Bloch sphere to obtain [5]

F (t) =
1

2
+
fN+2(t)

3
cos ζ +

fN+2(t)2

6
, (3)

where fN+2(t) = |〈N + 2|e−iHt|1〉| and cos ζ ≡ 1 by
a convenient local rotation. Equation (3) falls within
interval [0.5, 1] reaching its maximum only when fN+2 =
1.

Let us now set all the on-site energies of the channel
to εi = 0 and rewrite the Hamiltonian in a much simpler
form (in the single-excitation basis) as

H =
∑
〈i,j〉

Ji,j |i〉〈j|+ g(|1〉〈2|+ |N + 1〉〈N + 2|) (4)

+ w(|1〉〈1|+ |N + 2〉〈N + 2|) + h.c..

We further assume that the hopping strength Ji,j is sub-
jected to static noise of the form Ji,j/J = 1 + ξi,j , where
ξi,j is a random number falling in a box distribution

[−b, b], b denoting the disorder strength. Hereafter we
set the energy units such that J ≡ 1.

Note that if g ≈ J an initial excitation will either get
delocalized within the channel or undergo Anderson lo-
calization due to disorder. It is therefore not well suited
for high-fidelity QST, especially between long distances.
A way around is to set g � J in order to energetically
detach the communicating parties from the channel. In-
deed, as put forward in [11], second-order perturbation
theory in g yields the effective Hamiltonian spanned by
{|1〉, |N + 2〉}:

Heff =

(
hs Jeff

Jeff hr

)
, (5)

where

hν = w − g2
∑
k

|vν,k|2

Ek − w
, (6)

Jeff = −g2
∑
k

vs,kv
∗
r,k

Ek − w
, (7)

with ν ∈ {s, r}, vs,k = 〈2|Ek〉, vr,k = 〈N + 1|Ek〉 and
Ek, |Ek〉 being the eigenvalues and eigenvectors of Hch

respectively. Note that the off-resonant condition Ek 6=
w ∀ k must hold for the equations above to be valid unless
vν,k = 0.

The weak-coupling regime approximately reduces the
dynamics of the entire array to that of a two-level sys-
tem involving the two outermost parties. However, the
effective coupling and on-site energies carries information
about the channel, being pivotal that (hs − hr)/Jeff gets
as close to zero as possible, or else we will get something
that looks like a detuned two-level dynamics and hence
poor transfer fidelity. In the ideal scenario hs − hr = 0
and the QST is reached at times τ = nπ/(2|Jeff |), where
Jeff ∝ g2.

Now, before evaluating the QST performance, let us
gain some insight about how the channel modes will play
out with the effective description above.

III. RESULTS

A. Spectral properties of the hexagonal lattice

In the absence of disorder, the density of states,
DOS(E) =

∑
k δ(E − Ek), of the channel described

by Hch [Eq. (1)] can be treated analytically by map-
ping it onto an effective linear chain with alternate hop-
pings. Using a standard decimation procedure, the de-
grees of freedom corresponding to the internal sites of
each cell can be eliminated, leading to an effective energy-
dependent hopping amplitude between the connecting
sites of a cell with renormalized energy-dependent on-
site energies. Let us illustrate this decimation procedure
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FIG. 2. Comparison between the analytic DOS obtained via
the effective model derived for the ordered channel (dotted
red line) and the DOS evaluated numerically for b = 0.1J
and N = 600 (solid black line).

FIG. 3. Participation number for N = 600, 1200 and disorder
strength b = 0.1J .

for a single arbitrary cell l using the site index adopted

in Fig.1. Assuming v
(l)
i as the eigenfuction amplitude at

site i at the l − th cell with corresponding eigenvalue E,
we obtain the following set of coupled equations:
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The amplitudes v
(l)
3 , v

(l)
4 , v

(l)
5 and v
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from the above set, leading to effective equations for the

connecting sites, namely
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with

Eeff = 2EJ2/(E2 − J2),

Jeff = 2J3/(E2 − J2). (10)

Performing such decimation on all cells, we obtain an
effective chain with all on-site energies Eeff and alter-
nate hopping amplitudes, being Jeff for connecting sites
originated from the same cell and J between neighboring
cells. The dispersion relation of an infinite chain with
alternate hopping amplitudes can be given by

E = Eeff ±
√
J2 + J2

eff + 2JJeff cos k, (11)

for a typical wavenumber k, where eigenstates with non-
vanishing amplitudes at the sites of the effective chain
are assumed. Substituting Eq. (10) into the one above
yields the dispersive bands

E(k) = µ

√
3± 2

√
2 cos (k/2)J, (12)

with µ = ±. The band limits are thus at µ(1±
√

2)J .
However, the original array also supports eigenstates

with null amplitudes at the sites connecting distinct cells.
For example, for every cell there is a pair of eigenstates
with energies E = ±J of the form |E±CLS〉 = (|3〉 ± |5〉 −
|4〉 ± |6〉)/2. These are the so-called compact localized
states (states restricted to their cell) that compose the
flat bands at E = ±J . We thus end up with a L-fold
degeneracy at each of those levels, where L is the total
number of cells. The total density of states per site of
the entire channel can then be written as

DOS(E) = [
1

π
|dk/dE|+ δ(E − J) + δ(E + J)]/6, (13)

where k(E) is taken from Eq. (11) and the degeneracies
are taken into account.

In Fig. 2, we plot the analytical DOS of the pure chan-
nel alongside the disordered one obtained via exact nu-
merical diagonalization for N = 600 (L = 100). The sin-
gularities exhibited in the pure graphene array are soft-
ened up by disorder. This is told by the development of
tails in the band edges as well as by the replacement of
the delta singularities by peaks with finite widths. The
later is due to the degeneracy lifting of the compact lo-
calized modes within the hexagonal cells, with the width
of the resulting peaks being proportional to the disorder
strength. We will see shortly that the two ranges of al-
lowed energies within the graphene array corresponds to
the energy bands on which QST can be carried out.

In order to take a look into the localization properties
of the channel, in Fig. 3 we plot the participation num-
ber defined as P (Ek) =

∑
i |vi,k|2/

∑
i |ai,k|4. It basi-

cally covers the amount of sites having a significant over-
lap with mode k. For the eigenstates reminiscent from
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FIG. 4. Fidelity FMax versus local sender and receiver ener-
gies w for N = 600 (L = 100 hexagonal cells) and (a) b = 0,
(b) b = 0.001J , and (c) b = 0.01J . Solid (dashed) curves are
for g = 0.01J (g = 0.1J)

the effective alternate chain, the participation number
remains relatively large and of the order of the chain size
for the considered degree of disorder. This behavior is
essential to the QST performance due to the presence of
states of extended nature [41]. On the other hand, the
levels E = ±J feature strongly localized modes which
are restricted to each cell. As such, the QST protocol
should become very sensitive to disorder when occurring
at those levels (as controlled by w).

B. Qubit transfer

We shall now evaluate the dynamics of the single-qubit
transfer through the channel in the weak-coupling regime
g � J . Our numerical procedure is carried out via exact
diagonalization of the single-excitation Hamiltonian [Eq.
4] that involves the whole (N + 2)× (N + 2) matrix. Ba-
sically, in order to compute the input-averaged fidelity
F [3] we need to keep track of the transfer amplitude
fN+2(t) = |〈N + 2|e−iHt|1〉|. Due to disorder, each sam-
ple dynamics features a different timescale. So, in order
to evaluate the figure of merit of the protocol, we record
the maximum value of the fidelity FMax for tJ ∈ [0, 106].
This is enough time to guarantee a few end-to-end Rabi
cycles given the transfer time τ ∼ O(g−2) and we the set
g = 0.01J as the minimum coupling strength. In each
simulation bellow we take the average of the maximum
fidelity over 50 independent realizations of disorder.

We start by evaluating the protocol in the absence of
disorder, (b = 0). The results are seen in Fig. 4(a),
where FMax is plotted as a function of the local sender
and receiver energies w for different values of N and g.
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FIG. 5. FMax versus the hopping disorder strength b for
N = 600 and g = 0.01J averaged over local energy levels
surrounding w = J and w = 1.35J (about 50 levels). Again,
the overall fidelity is further averaged over 50 independent
disorder samples.

Therein we see that QST occur with high fidelity for
a wide interval of energies w, specially for lower g, as
expected, given that this is the primary condition for
holding the two-level approximation [Eq. (5)]. The two
energy bands on which the QST protocol runs is directly
associated with the structure of the density of states of
the hexagonal lattice as discussed previously.

We must take care, however, when making assump-
tions about the seemingly lack of QST for w set in the
vicinity of the band center. For b = 0, note that w = 0
renders a proper effective resonant two-level (Rabi) dy-
namics as hs = hr [see Eq. (6)] due to the particle-hole
symmetry. The effective coupling [Eq. (7)], however,
reads Jeff = 2−Lg2 resulting in a transfer time that
scales as τ ∝ 2L. For the number of cells being con-
sidered in Fig. 4 (L = 100), τ is extremely large and
thus unpractical.

We now turn our attention to the QST protocol in the
presence of the hopping disorder as seen in Figs. 4(b) and
4(c). The performance remains nearly unaffected by the
small amounts of disorder considered except when w gets
in close resonance with the flat band levels w = ±J . As
we discussed in the previous section, that happens due
to the residual presence of the compact localized states.
When b = 0 they do not get involved in the QST because
the sender and receiver are coupled to sites topologically
protected from them. The smallest perturbation is then
capable of lifting the degeneracy and mix |E±CLS〉 with
the modes belonging to the dispersive bands. This is
immediately felt in the perturbative Rabi regime given
w = ±J .

Finally, in order to get a broad picture of the QST
performance against disorder in Fig. 5 we plot FMax for
a wider range of b, this time with the local energies set
at w = J and nearby for comparison. That clearly illus-
trates the higher sensitivity against disorder displayed by
the flat band level. As long as w is tuned away from it, it
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is possible to obtain a good QST fidelity on a reasonable
amount of disorder b ∼ 0.1J .

IV. CONCLUSIONS

We studied a QST protocol between two distant nodes
of XY isotropic hexagonal spin-1/2 lattice subjected to
off-diagonal (exchange interaction) disorder. By setting
their coupling very weakly in comparison to the typical
interaction strength scale within the channel, we showed
it is possible to obtain high-fidelity QST up to a certain
disorder threshold depending on the resonance conditions
between the sender/receiver and the channel. There are
two very unstable levels (E = ±J) that lead to a rapid
fidelity decay as we increase the disorder strength. This
is reminiscent of the flat-band structure hosting compact

localized states in the absence of disorder. To explain
such a behavior we derived an effective model that de-
scribes a chain with alternate couplings, which is known
to induce a topological gap and has been explored in
the context of QST and quantum teleportation protocols
[42–44].

Our work contributes to the design of solid-state de-
vices for quantum communication in the presence of
static noise and opens up venues for investigation of QST
protocols in other geometries other than 1D channels, es-
pecially in flat-band lattices.
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