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Abstract

We determine resonant scattering states of two-dimensional photonic crystal nanostructures
with defects. To do so, we use the boundary-wall method originally introduced to obtain the
scattering eigenstates of one electron moving in a medium with arbitrary boundaries. We
investigate geometries including beam bending and interferometer-like waveguides, as well as
waveguides connected by resonant cavities. We are able to identify the electromagnetic modes
that, due to the special resonance condition attained in the vicinity of defects, provide optimal
transmission of an incoming plane wave. Based on the generality of the boundary wall
technique and its numerical simplicity and efficiency to identify resonant scattering modes, we
briefly discuss further possible applications of this method in analysing the performance of
general photonic band-gap devices.

1. Introduction

The close analogy between quantum electronic transport in
crystals and electromagnetic wave propagation in dielectric
media has been explored since the early age of quantum
mechanics. One of the most striking examples is the
tunnelling effect, where an electron may overcome a
classically forbidden potential barrier, a phenomenon formally
equivalent to the partial transmission of electromagnetic
waves through a dielectric slab. As recent developments in
optical communication systems have overcome electron-based
technology, in both speed and bandwidth, there has been a
growing movement towards the study of new dielectric media,
commonly termed photonic crystals [1–3]. These systems are
composed of periodic optical media whose manipulation can
tailor light propagation in the same way as electronic transport
is controlled in different device structures.

Among the wealth of research work on photonic crystals,
the study of dielectric structures at which the optical band
displays a photonic band gap is of particular interest [4]. In
these structures, there is a frequency range for which light
propagation is forbidden. The picture is quite similar to
that of a semiconductor. One of the main motivations to
study such systems lies in the use of photonic band gaps

to inhibit spontaneous emission of light [5]. Further, defects in
a semiconductor structure induce the emergence of localized
electronic states, whose positions within the energy band can
be tuned. The transistor electronics enabled by this effect have
promoted the huge technological revolution of the last half-
century. Thus, the creation of localized light states by means
of intentional defects in photonic crystals points towards the
possibility of optical devices mimicking all the features of
electronic devices. The advantage is the fact that the present
technology permits almost unlimited control over the size and
shape of defects on the typical optical length scale.

Besides the technical advantages of photonic crystal
devices over traditional electronic ones, there is a physical
property of photons which makes the theoretical studies
based on the photonic band structure more reliable than
their equivalent for electrons: photons are essentially non-
interacting. Hence, band-structure calculations of photonic
crystals can be considered a very precise description while it
is usually just a first approximation for electrons (once the
Coulomb interaction plays a decisive role in many relevant
situations [6]). Much of the theoretical effort devised to
study photonic crystals has been devoted to the extension
of mathematical and computational methods of solid-state
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physics to obtain band diagrams, transmission spectra and
optical scattering eigenmodes.

In this work we depart from the standard numerical
approaches to studying photonic crystals. We consider the
so-called boundary wall method (BWM) [7], a scattering-
based technique which clearly contrasts with those already
existing for photonic crystals (see, e.g., [8]). Originally, it was
developed to analyse scattering by wall potentials in quantum
mechanics and used, for instance, to calculate the conductance
of quantum point contacts coupled to open resonators [9] and
matter waves in quantum wires and atomic arrays [10]. We
show that such a method can be used successfully to obtain the
resonant scattering modes of nanostructured photonic crystal
waveguides with defects. The BWM presents many interesting
features, such as the ability to deal with disconnected and open
boundaries, being numerically simple and computationally
fast.

We will be particularly interested in identifying the
resonant modes of 2D photonic band gap structures with
defects composed of a square lattice arrangement of nanosized
rods. These photonic structures support the transmission of
beam bending localized states, interferometric phenomena, as
well as wave guiding mediated by resonant cavities.

This paper is organized as follows. In the following
section we describe the main ideas behind the method and how
to extend it to the problem of scattering states of Maxwell’s
equations for dielectric materials. In section 3 we apply the
BWM to beam bending and interferometer-like waveguide
geometries. The case of resonant cavities is addressed in
section 4. Finally, in section 5 we summarize and briefly
discuss further potential applications of the boundary wall
method.

2. The boundary wall method

A few years ago, a new approach, the boundary wall method
(BWM) [7], was developed to solve the problem of a particle
scattered off by arbitrary disconnected open or closed sharp-
walled boundaries such as billiards, waveguides and various
compound objects, e.g., baffles, chambers, etc. It allows us to
impose penetrable, Dirichlet, Neumann and mixed boundary
conditions along the scatters walls. The original derivations
were focused on the Schrödinger equation in two dimensions.
Nevertheless, the method can easily be extended to other wave
equations in two or more spatial dimensions.

In this section we give a brief summary of the BWM, also
discussing how it can be used to calculate electromagnetic
fields in photonic crystal structures. A full account of the
BWM can be found in the original work [7], as well as in a
very recent technical review [11].

2.1. The BWM formulation

Consider scatters of arbitrary shape C, presenting penetrable
or leaky boundary conditions. Now, for the ‘δ-wall’ potential
V (r) = ∫

C dsγ (s)δ(r − r(s)), one finds from the Lippmann–

Schwinger equation that the wavefunction of energy E = k2

is given by

�(r) = ϕ(r; k) +
∫
C

ds γ (s)G0(r, r(s); k)�(r(s)). (1)

In the above, the integration is over C, the connected or
disconnected boundary, with r(s) the vector position of
a point s on C. ϕ(r; k) solves (∇2 + k2)ϕ(r; k) = 0
in the whole plane and the free Green function satisfies
(∇2 + k2)G0(r, r0; k) = δ(r − r0), which in 2D results in
G0(r, r0; k) = (4i)−1H

(+)
0 (k|r−r0|), with H

(+)
0 the zero-order

Hankel function of the first kind.
We can interpret C as a leaky wall characterized by the

permeability parameter γ (s). As proved in details in [7],
any plane wave of wavenumber k, incident perpendicular to
the point s on C, has the probability 4k2/(4k2 + γ (s)2) to be
transmitted through and γ (s)2/(4k2 + γ (s)2) to be reflected
from s. If for any s we take the limit γ (s) → ∞, the
probability of transmission goes to zero. This is equivalent
to a vanishing wave on C, thus leading to the usual Dirichlet
impenetrable boundary condition [7, 11]. The Neumann and
mixing boundary conditions can be implemented by a direct
extension of the method [7].

To solve equation (1), we write the relation between the
incident wave ϕ(ra) and the scattered �(rb), with r(sa) = ra

and r(sb) = rb vector positions of arbitrary points sa and sb

on C, as

�(rb) =
∫
C

dsa Tγ (sb, sa; k)ϕ(ra). (2)

Then, in order to satisfy equation (1), Tγ must obey

Tγ (sb, sa; k) = δ(sb − sa) +
∫
C

ds G0(rb, r(s); k)

× γ (s)Tγ (s, sa; k). (3)

Finally, using relation (2) in (1), we arrive at the solution for
the scattered wave, or

�(r) = ϕ(r) +
∫
C

∫
C

dsb dsaG0(r, rb; k)

× γ (sb)Tγ (sb, sa; k)ϕ(ra; k). (4)

Here we have reached the method’s central idea. If
somehow Tγ can be obtained (e.g., directly from its definition,
equation (3), or from a numerical implementation, see below),
then the wavefunction everywhere is calculated by simple
quadratures over C.

At this point, the main difference between the BWM and
other Green function methods (GFM) [12] becomes clear.
In general, the use of GFM leads to the scattered fields
through N integral equations (with N the number of lattice
scatterers), involving the field, the Green function and their
normal derivatives at the media interfaces. Also, different sets
of equations are necessary for each domain (inside/outside).
The resulting equations can be solved numerically by various
procedures, a common one being the boundary integral method
[13]. In the BWM, the scattering states for all space
(both inside and outside the scatterers) are obtained from
the integration of equation (4), which encompass only the
known quantities G0(r, r(s)), γ (s) and Tγ (this latter being
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a function of G0 and γ over C, equation (3)). Using the
BWM for photonic crystals, all the rods are faced as a unique,
although disconnected, boundary. So, equation (4) describes
the full scattering process at once, in contrast to some multiple-
scattering or recursive treatments [14, 15].

The particular case of infinite γ is easily handled through a
simple mathematical trick [7]. It is relevant when the Dirichlet
impenetrable boundary conditions [16] are applied to photonic
crystal lattices. In fact, for many purposes, e.g., to minimize
the losses in the substrate or to increase the band gap, one must
increase the dielectric contrast difference between the substrate
and the crystal structure [17]. Thus, in the ideal situation
the refraction index of the latter should go to infinity, as in
metallic materials [18], for which the BWM with γ → ∞ has
already been used to demonstrate negative refraction features
of microwave photonic crystals [19].

From a practical point of view, in general it is difficult
to obtain exact analytical formulae for T and thus for � (a
few examples are given in [7, 11]). Nevertheless, different
numerical ways to implement the BWM for a complete
arbitrary boundary C are discussed in [7] and also in [9, 10].
Furthermore, a very simple and efficient numerical protocol—
based on the discretization of the equation (1) and on the
derivation of an algebraic expression for a finite matrix version
of T in equation (2)—is presented in [11] and outlined in the
appendix. This is the approach we are going to use next in all
our applications.

2.2. Relation with Maxwell’s solution

There is a very profound formal similarity between quantum-
mechanical particles propagating in periodic 3D media and
the solution of free Maxwell’s equations for electromagnetic
waves. For instance, for a fixed frequency ω, one can write
independent equations for the magnetic field H and electric
field E as eigenvalue problems with Hermitian operators.
Hence, in many aspects they resemble the Schrödinger
equation (see, e.g., the discussion in [2]). This similarity
is even stronger if the relevant dynamics is restricted to two
dimensions. Indeed, by considering a structure as shown in
figure 1, where all the rods have the same constant permeability
γ , the electromagnetic wave problem reduces to solving a
Helmholtz equation in 2D, for either the electric or magnetic
fields [20, 21], corresponding to TE and TM modes. The
fields are subjected to the appropriate penetrable boundary
conditions along the photonic crystal, i.e., at the scatter C,
formed by the collection of rods (which in real systems are
filled with the dielectric material but here represented only
by dielectric shells). So, by using the BWM, one should
solve equation (4) by identifying the function � with, say, the
electric field (TE mode) along the photonic crystal cavities, and
associating k2 = εμω2/c2, where ε is the substrate dielectric
constant and μ is the magnetic permeability.

The permeability γ of the scatterers can be related to the
dielectric constant by considering the transmission coefficient
T in terms of the field square. For an electric field E(r)

incident normally to the interface between two (non-magnetic

μ = μ0) dielectric media of refraction indexes n1 and n2, we
have

TEM = |E2(r(s))|2
|E1(r(s))|2 = 4n2

1

(n1 + n2)2
. (5)

As mentioned before, the relation between the normal
transmission through some point s in the boundary of a
scatterer and its permeability γ is given by (for derivations,
we invite the reader to refer to [7])

T = 4k2

4k2 + γ (s)2
. (6)

Qualitatively, the above expression is very simple to
understand. Indeed, thinking in terms of a plane wave incident
perpendicular to C at s, along such a direction the boundary
acts like an effective 1D δ-function potential, thus splitting
the wave into reflected and transmitted parts at s accordingly.
Equation (6) is exactly the δ-function transmission probability
for the case of a wavenumber k.

Using the relative index between the media (n2/n1 = nr)

and making TEM equal to T , we have for γ

γ = k
√

(nr + 1)2 − 4, (7)

which yields the value of the permeability γ of a boundary as
a function of its index of refraction nr .

3. Applications I: beam bending and
interferometer-like waveguides

In the present and following section we discuss 2D photonic
crystal structures, whose defects are of air-type, i.e., those
where scatterers are completely removed from the lattice. For
the ratio between the lattice constant a0 and the scatterer radius
r we take a0/r = 5, where any spatial dimension is given in
arbitrary units. As the refraction index of the scattering rods
we set n = 3.4 (typical of GaAs in the infrared regime).
For the incident field, we always consider plane waves along
the x direction, i.e., ϕ(r; k) = exp[ikx]. Finally, the size
of the T matrix used in all simulations is such that each rod
is discretized in ten segments �s (see the appendix), which
yields λ/�s ≈ 22 for the minor wavelength used.

We start with a π/2 line-defected waveguide in a finite
photonic crystal (see, e.g., [2, 22]). The exact geometry and
spatial dimensions are depicted in figure 1. We shall study
transmission along the waveguide. Since the initial plane-
wave field comes from the left, we have added to the structure
an impenetrable wall (γ → ∞, n → ∞) as shown in figure 1.
Such a procedure is useful in the forthcoming analysis, once it
guarantees that any appreciable amplitude for the field at the
waveguide vertical arm’s end can result only from a resonant
transmission. For better visualization, hereafter all the plots
are normalized so that the overall highest amplitude in each
figure is equal to 1.

We have investigated the scattering states for many
different values of kr . Here we show only two representative
examples, namely, kr = 0.459 and kr = 0.27, whose
corresponding wavelengths λ = 2π/k are schematically
represented in figure 1. In figure 2 we plot a 2D density plot of
|�|2 for kr = 0.27. We see that within the photonic crystal the
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Figure 1. Schematics of the π/2 line-defect waveguide in a finite
photonic crystal-like system constituted of penetrable rods of radius
r and lattice spacing a0 = 5r . The other distances are
a = 5a0, b = 9a0 and c = 14a0. The wavelengths corresponding to
kr = 0.459 and kr = 0.27 are also shown for comparison. The
origin of the x–y plane is at the centre of the farther bottom-left rod.

field is practically null. Also, the intensity is vanishingly small
along the waveguide, as verified from the one-dimensional
‘cuts’ of |�|2 crossing the line-defect arms. In the region
surrounding the finite lattice, we observe the expected steady
wave scattering pattern.

Figure 3 displays the case of kr = 0.459, for which
resonant transmission takes place. Our result is consistent with
a previous study [22] of a similar structure (with a slightly
larger aspect ratio, kr = 0.40 and a0/r = 5.55), where a
sophisticated vector finite-difference time-domain algorithm
with quartic perfectly matched layer boundaries has been
used to characterize the transmission features. In figure 3
the observed crescent profile of the beam along the vertical
arm (best visualized in the 3D plot), a kind of ‘candle flame’
effect, is due to the vanishing of the backscattering effect as

Figure 2. A 2D density plot of |�|2 for the incident plane wave ϕ(r) = exp[ikx], with kr = 0.27. Darker regions correspond to lower
intensities. It is also shown ‘cuts’ of |�|2 along y = a and x = b, therefore crossing the waveguide arms. For better visualization the results
are normalized so that the overall highest amplitude is equal to 1.

the end of the waveguide approaches. Note also that within
the photonic crystal |�|2 vanishes. This resonant mode of
wavelength λ = 13.69r can be tuned from the visible light to
the near-infrared spectrum (400 nm < λ < 1400 nm) varying
the radius of the scatterers in the range between 30 and 100
nm. Additional tuning can be performed by adjusting the
aspect ratio a0/r and the scatterers refraction index.

Next, we consider the interferometer-like waveguide,
schematically represented in figure 4. It consists of lower
and upper arms (starting at x = 0), which are connected to
each other by a perpendicular line defect. A middle arm
leaves from the latter, ending at x = c. We investigate
the field profiles inside the waveguide. As examples, we
take kr = 0.333 and kr = 0.459, whose corresponding
wavelengths are represented in figure 4. We show in figures 5
and 6 the resulting density plots. In each case, we also display
cuts of |�|2 crossing the lower and middle arms. Due to the
symmetry, the field in the lower and upper arms is exactly the
same, as we have checked numerically.

For kr = 0.333 (figure 5), the square of the field has its
maximum at the ‘entrances’ of the two left arms, decaying to
around 37% of this value at their ends in x = b. Along the
middle and perpendicular arms, the field is low but not null,
with peaks for |�|2 of about 10% of the overall maximum
value. On the other hand, in figure 6 we see a perfect
constructive interference for kr = 0.459. The perpendicular
and parallel arms present identical structures of maxima and
minima for |�|2. It favours the resonant transmission at the
middle arm, where the square of the field reaches in the arm’s
end region a value very close to its possible maximum intensity.
Here again we observe the ‘candle flame’ effect.

Finally, by changing the waveguide arms size we test
how different optical path lengths influence the field inside the
structure. The results for kr = 0.459 are displayed in figure 7,
where we show 2D density plots of |�|2 for three different
situations, namely, the bottom leg of the perpendicular arm
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Figure 3. Same as figure 2, but for kr = 0.459. Here a resonance transmission along the waveguide is clearly seen. The bottom 3D plot
shows a more detailed view of |�|2 within the photonic crystal region. Outside the line-defected waveguide the field is practically null.

is one, two or three row of rods longer than the top leg.
We clearly see that different spatial configurations of the
line defects lead to different patterns for the field within
the waveguide. An outgoing light beam can be produced
once the resonance condition for beam bending is satisfied
and the optical path length difference favours constructive
interference. We should stress that a Mach–Zehnder photonic
crystal based interferometer has recently been proposed in the
literature [23].

4. Applications II: resonant cavity and cavity
coupled to waveguides

In analogy with impurity in semiconductors, the introduction
of certain kinds of defects in the periodic crystal lattice can
create an eigenstate associated with it, with energy belonging
to the band gap of the periodic structure [1]. As in the
waveguide case, the suppression of transmission between the
rods makes the structure work as a reflective wall, forming a
resonant cavity at which the mode becomes trapped [2]. The
kind of defect that yields such modes is of point-type. It can
be produced, for example, by varying the radius or index of
refraction of some of the scatterers [3].

In figure 8 we show the numerical results for a lattice
with a cavity produced by the removal of the central scatterer

a

c

b

d

0
0

x

y

r r

Figure 4. Schematics of a line-defected ‘interferometer’ waveguide,
whose characteristic sizes are a = 3a0, b = 10a0, c = 16a0 and
d = 8a0. The indicated wavelengths correspond to kr = 0.459 and
kr = 0.333, respectively.

localized at x = b and y = a (the exact structure is depicted
in the inset). We assume an incident plane wave with kr =
0.4295, so λ/2 is approximately equal to the diagonal length
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Figure 5. 2D density plot of |�|2 as well as cuts along y = a (lower arm) and y = d (middle arm) for the case of kr = 0.333. Although the
light beam can penetrate the input channels, the beam bending at the perpendicular line defect is not effective and only a vanishingly small
light jet is obtained at the output channel.
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Figure 6. Same as figure 5, but for kr = 0.459. In this case, the condition for beam bending is achieved for both the perpendicular and
middle line defects. A light jet is obtained at the output channel.

Figure 7. 2D density plots of |�|2 for kr = 0.459 and three different spatial configurations for the ‘interferometer’ waveguide (see the main
text). By controlling the difference in the optical path lengths, the condition for constructive interference can be tuned to produce an
outgoing light beam.

of the cavity. The system presents a pronounced resonant
mode, with an amplitude comparable to that of scattered wave
in the external part. This resonance is compatible with a recent
estimate, which uses a recursive Green function technique to

study the transmission spectrum of a similar photonic structure
[15].

Resonance transmission is also expected to take place
when two waveguides are coupled by a cavity [1, 15, 24]. Here,
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Figure 8. 2D density plot of |�|2, ‘cut’ along y = a, and 3D plot for an incident plane wave with kr = 0.4295, for which the cavity has a
pronounced resonance. The structure geometry is presented in the inset.

Figure 9. (a) Twg × k throughout the structure waveguide shown in the inset. 3D plots of |�|2 for incident plane waves with (b) kr = 0.42,
(c) kr = 0.4288 (the cavity resonance value) and (d) kr = 0.44. The insets in the 3D graphs show logarithmic plots for ‘cuts’ of the |�|2’s
along the horizontal centre of the waveguide.

we consider a structure formed by two scatterers separated by
an air-type defect. Alternatively, the system can be faced
as a waveguide trespassing the whole lattice, but interrupted

by a cavity. The geometry is visualized in the inset of
figure 9(a). As in the previous case, the cavity has a resonant
mode when the half wavelength λ/2 of the incident wave
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is compatible with the cavity’s diagonal size. Figure 9(a)
shows the transmission Twg through the waveguide—defined
as the ratio of the amplitudes |�|2 of the transmitted wave at
the end and beginning of the structure—as a function of the
wavenumber k of the incident plane wave. We find that the
maximum transmission from the first to the second waveguide
is obtained when the incident wave has the same energy of
the cavity resonant mode (in the present case corresponding
to kr = 0.4288). In the density plots of figures 9(b) and
(d), the incident waves have values for k lower and greater,
respectively, than the resonant mode. Though such k’s are
close to the resonance value, they still cannot excite the
cavity mode and thus only a small transmission to the second
waveguide occurs. In figure 9(c), k is under the resonance
condition and a mode of large amplitude is formed in the
cavity. Also, we see that the wave travelling on the first arm
is transmitted to the second. This clearly illustrates the role
of the resonant mode in mediating light transport along the
waveguides.

5. Remarks and conclusion

In summary, we have demonstrated the potentiality
of the boundary wall method to obtain the scattering
eigenstates and resonant modes of general 2D photonic band
gap nanostructures with typical refraction index contrast.
Electromagnetic resonant scattering states localized in the
vicinity of line defects were computed with high accuracy
using a relatively small computational effort. Besides the
beam bending waveguide geometry, we also have explored
interferometer-like structures. In this case, the resonant
condition for the existence of a localized state within
the waveguide has to be combined with the matching
condition for the difference between the optical path lengths.
Their simultaneous coincidence results in a constructive
interference, leading to the emergence of a superposed beam at
the waveguide output channel. Finally, for lattices presenting
cavities, we have obtained the first resonant mode, which
mediates the transmission between waveguides connected by a
cavity. The resonance frequencies fall within the visible light
and near-infrared spectrum for structures having scattering
rods with radius typically in the range of a few tenths of
nanometres.

In order to associate the model parameter γ with the
transmission coefficient of the photonic crystal structures (see
expression (7)), we have assumed the simple case of infinite
dielectric interfaces, equation (5). In spite of that, the method
was already able to identify the resonance modes in good
agreement with those reported by more traditional numerical
approaches [15, 22]. Obviously, whenever such an assumption
may become an issue, one should consider a more appropriate
expression for TEM so as to identify it with T in equation (6).

Due to the simplicity of the numerical procedure, much
more complex structures can be explored in the search for
optimal geometries and parameter values needed to perform
a predetermined task. In fact, this is the great advantage
of the BWM over other techniques. The freedom of choice

and variation of scatterer parameters makes the BWM a good
approach to finding scattering and resonant states in both
known and new structures. Recently, this method has been
applied to the study of an organic photodetector device
with a metal nano-indented mask for light harvesting. The
optimal parameters for the device were first obtained by BWM
simulations and then used in the experimental implementation,
with a considerable efficiency gain [25].

Considering the above comments, we mention two
contexts where the BWM can be particularly useful. The
first is the study of branching networks (circuits), fabricated
by tailoring appropriate defect lines along the photonic crystal
structure [26]. The resulting net of connected waveguides
will present a great variety of interference effects, leading
to a complex dynamics for light transport. The BWM is
quite amenable to deal with this type of design, as already
seen in section 3 in the simpler example of an interferometer-
like device. The second is to understand how imperfections
in photonic crystals, e.g., due to some structural disorder
or surface roughness, can give rise to scattering losses
[1, 20, 27], eventually rendering impossible certain
applications. For instance, even small dislocations of a single
rod at the corner of a π/2 waveguide may destroy resonant
transmission. Although efficient approaches to quantifying
such phenomena do exist [20, 27], some can be a little
cumbersome to carry out and better suited to simulating
average disorder, instead of localized imperfections. Since
changes in the position and properties of individual rods in
a photonic crystal structure are easy to implement with the
BWM, it becomes very appropriate to address this problem.

Potentially, the method can also be used to obtain the
scattering states of photonic crystal slabs [28], photonic band-
gap fiberes [29] and general 3D photonic crystal structures
[30]. However, the light polarization has to be taken into
account carefully in these cases. It would be interesting to
see also the BWM extended to the study of nonlinear optical
phenomena in photonic band-gap crystals [31]. We hope
that the present work will motivate further applications of the
boundary wall method in this rapidly developing area.
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Appendix. A simple numerical implementation for
the BWM

Here we present just the main steps towards numerically
implementing the BWM. A detailed discussion, including
convergence criterium, ways to speed up the protocol,
comparison with other methods, how to handle the case of
γ → ∞, etc, can be found in [11].
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We start by considering an arbitrary border C and dividing
it into N segments, so to form the set {Cj }, j = 1, 2, . . . , N .
In this way, equation (1) reads (with γ being assumed constant
and dropping the notation for the k dependence)

�(r) = ϕ(r) +
N∑

j=1

γ

∫
Cj

ds G0(r, r(s))�(r(s)). (A.1)

If we now suppose sj a point on Cj (in practice, usually taken
as its middle) and if the segments are made very small, the
above equation can be approximated by

�(r) ≈ ϕ(r) +
N∑

j=1

γ

∫
Cj

ds G0(r, r(s))�(r(sj ))

≈ ϕ(r) +
N∑

j=1

γ�(r(sj ))

∫
Cj

ds G0(r, r(s)). (A.2)

Next, by setting r = ri , with si a point of Ci , we get

�(ri ) ≈ ϕ(ri ) +
N∑

j=1

Mij γ�(rj ),

Mij ≡
∫
Cj

dsG0(ri , r(s)).

(A.3)

Analogously to the above procedure, from the definition in
equation (2) we can write �(ri ) ≈ ∑

j Tij ϕ(rj ), which
defines a discretized version (T) of T. Then, by a direct
comparison between such an expression and equation (A.3),
we have

T = γ [I − γ M]−1. (A.4)

Finally, for
∫
Cj

dsG0(r, r(s)) ≈ G0(r, rj )�j (with �j

the length of Cj ), � = (ϕ(r1), . . . , ϕ(rN))T, and using the
discrete version of T in (A.4), we find for equation (A.2)

�(r) ≈ ϕ(r) +
N∑

j=1

G0(r, rj )�j (T�)j . (A.5)

Regarding the expression for M, equation (A.3), if i �= j

we can write Mij ≈ G0(ri , rj )�j . For i = j,G0(ri , ri )

diverges due to its logarithmic behaviour for small argument
values (recall that in 2D, G0 is given in terms of the zero-
order Hankel function of first kind). Hence, Mii’s must
be calculated directly from the integral in equation (A.3).
Fortunately, it can always be performed analytically from
appropriate series expansions for G0, since it holds that for
|z| small H0(z) ≈ 1− (z/2)2 + (2i/π)(ln[z/2] +�)+ · · · , with
� the Euler constant. This is what we have done in all our
numerical examples.
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