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Abstract. Considering the nonlinearity arising from the interaction between electrons and lattice vibra-
tions, an effective electronic model with a self-interaction cubic term is employed to study the interplay
between electron-electron and electron-phonon interactions. Based on numerical solutions of the time-
dependent nonlinear Schroedinger equation for an initially localized two-electron singlet state, we show
that the magnitude of the electron-phonon coupling χ necessary to promote the self-trapping of the elec-
tronic wave packet decreases as a function of the electron-electron interaction U . We show that such
dependence is directly linked to the narrowing of the band of bounded two-electron states as U increases.
We obtain the transition line in the χ × U parameter space separating the phases of self-trapped and
delocalized electronic wave packets. The present results indicates that nonlinear contributions plays a
relevant role in the electronic wave packet dynamics, particularly in the regime of strongly correlated
electrons.

1 Introduction

The behavior of interacting electrons moving in low-
dimensional systems has direct connections with the emer-
gence of nontrivial magnetic, superconducting and optical
properties [1–10]. Recently, a two-electrons tight-binding
Hamiltonian in a linear chain has been investigated in
detail providing a deeper understanding of some aspects
of the competition between electron-electron interaction,
compositional disorder and dynamical localization caused
by electric fields [11–24]. In particular, by using analytical
calculations [18–20], it was demonstrated that the two-
electron Hamiltonian displays a band of bounded states in
the energy range U ≤ E ≤ √

U2 + 16W 2, where U is on-
site Coulomb interaction and W the hopping amplitude
between first neighbors. Moreover, by using an extended
dynamical mean-field theory [24], the effect of a large elec-
tric field on interacting electrons was studied, numerically
demonstrating that the coherence of Bloch oscillations de-
cays due to electron-electron correlations.

Besides the Coulombian interaction, the electron-
phonon interaction also plays a relevant role on transport
and thermodynamic properties. Concerning the electronic
transport, the interaction between electrons and lattice vi-
brations leads to an effective nonlinearity [25–52]. In par-
ticular, a significant generalization of the polaron concept
has been recently developed. It was demonstrated the ex-
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istence of a polaron-soliton “quasiparticle”. The coupling
of self-trapped states (polaron states) with the lattice soli-
tons has been generally termed as a solectron [25–33]. The
solectron concept appears as a significant generalization of
the original polaron concept that can mediate non-Ohmic
supersonic electric conduction [33].

Usually, an effective cubic term in the time-dependent
Schroedinger equation captures some essential features
related to several physical scenarios, such as the electron-
phonon dynamics, Bose-Einstein condensates (BEC), op-
tical lattices, rogue waves and coupled optical waveg-
uides [34–52]. Within the context of electron-phonon
dynamics, the most important phenomenon associated
with the effective nonlinearity incorporated into the
Schroedinger equation is the so-called self-trapping of the
electronic wave packet. It is also associated with the emer-
gence of a wide class of topologically stable solutions
such as solitons, vortex rings and breathers (oscillatory
soliton-like solutions). Experimental investigations using
photo-emission spectra have been widely used to investi-
gate the effects of the electron-phonon interaction in pen-
tacene films [53], graphene structures [54,55] and Pb thin
films [56]. It has been pointed out that the phonon decay in
an electron-hole pair can be used to estimate the strength
of the electron-phonon coupling [57,58]. This decay leads
to an extra width of the phonon that, after an average
over all q vectors, provides the electron-phonon coupling
strength. This width can be measured in experiments in-
volving neutron [57,58] or Raman scattering [59–61].
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The influence of lattice vibrations on systems of in-
teracting electrons has been a subject of recent investi-
gations [62–66]. In particular, the interplay of electron-
phonon interaction and electron-electron coupling was
studied using dynamical mean-field theory to explore the
effects of electronic correlations on the evolution of phonon
kinks [62]. Depending on the degree of nonlinearity and
Hubbard interaction, the slope of the electronic disper-
sion curve close to the Fermi level was shown to depict
a significant decrease [62]. The time evolution of two cor-
related electrons of opposite spins moving in an anhar-
monic Morse-Toda lattice chain was investigated in refer-
ence [63]. It was observed that the degree of nonlinearity
is a key ingredient to control the velocity of paired elec-
trons [63]. Further, the problem of two interacting elec-
trons coupled to dispersive phonons in a nonlinear lattice
was numerically investigated [65]. It was observed an in-
teresting collection of discrete breathers modes induced
by the coupling between lattice vibrations and quasiparti-
cles states. Moreover, it was demonstrated that the pres-
ence of anharmonicity in a two-electron Hamiltonian fa-
cilitates electron pairing in a localized state [66]. Such
localized state appears as singlet state of two electrons
bounded with the traveling local lattice soliton distor-
tion. This state survives when Coulomb repulsion is
included [66].

In this paper, we report further progress on the study
of correlated electron systems coupled with lattice vibra-
tions. We will provide a detailed analysis of the interplay
between the on-site electron-electron Coulomb coupling
and the effective nonlinearity arising from an underly-
ing electron-phonon interaction within the context of self-
trapping in low-dimensional systems. To this end, we will
focus on the wave-packet dynamics of two electrons mov-
ing in a 1D crystalline nonlinear chain. We will use nu-
merical methods to solve the time dependent Schroedinger
equation to follow the time-evolution of the two-electrons
wave packet. For initially close electrons in a singlet state,
it is observed that the magnitude of the electron-phonon
coupling χ necessary to promote the self-trapping de-
creases as the electron-electron interaction U is increased.
Based on the long-time behavior of the two-electrons wave
packet, we obtain the transition line corresponding to the
self-trapped to delocalized transition.

2 Model and formalism

The vibrations in a lattice can be classified as acous-
tic phonon modes associated with the relative displace-
ment of unitary cells and the optical phonons account-
ing for the displacement of atoms inside a single cell.
Concerning the electronic tight binding Hamiltonian, the
on-site potentials as well as hopping integrals depend
upon these vibrations [40–42]. Following the Su-Schrieffer-
Heeger model [67,68], the Hubbard Hamiltonian for two-
interacting electrons coupled to the vibrations of a linear
closed chain (periodic boundary condition) can be written

as:

H =
∑

n

{
pn

2

2M
+

1
2
Mω2

s(un+1 − un)2
}

+
∑

n

{
Pn

2

2M
+

1
2
Mω2

0νn
2

}

+
∑

n

α(V0 + un+1 − un)(c†n+1cn + cnc†n+1)

+
∑

m

α(V0 + um+1 − um)(c†m+1cm + c†mcm+1)

+
∑

n

(En + γnνn)c†ncn +
∑

m

(Em + γmνm)c†mcm

+
∑

n

Uc†n,↑cn,↑c
†
n,↓cn,↓. (1)

Here un and νn are the overall displacement and the in-
ternal vibration coordinates of the nth unit cell, respec-
tively. pn and Pn are, in order, their conjugated momen-
tum. M is the mass of the unit cell, while ω0 and ωs

are the oscillation frequency of the optical and acousti-
cal phonons, respectively. c†n(m) and cn(m) are the cre-
ation and annihilation operators for the electron at site
n(m). Here α and γm(n) are the coupling constants while
V0 is the bare hopping amplitude. Em(n) are the on-site
energies and U is the on-site Hubbard electron-electron
interaction. We will consider γn = γm = γ. In order to
follow the time evolution of two-electron wave packets, we
solve the time dependent Schroedinger equation by ex-
panding the wave-function in the Wannier representation
|Φ(t)〉 =

∑
n,m φn,m(t)|n s1, m s2〉. From this, we can de-

rive the equations of motion:

d2un(t)
dt2

= −ω2
s [2un(t) − un+1(t) − un−1(t)]

+
2α

M
�[φ∗

n+1,m(t)φn,m(t) − φ∗
n−1,m(t)φn,m(t)

+ φ∗
n,m+1(t)φn,m(t) − φ∗

n,m−1(t)φn,m(t)]
(2)

d2νn(t)
dt2

+ ω2
0νn(t) = γ

∑

m

|φn,m(t)|2 (3)

d2νm(t)
dt2

+ ω2
0νm(t) = γ

∑

n

|φn,m(t)|2 (4)

i�
dφn,m(t)

dt
= [En + γνn(t)] φn,m(t)

+ [Em + γνm(t)] φn,m(t)

+
∑

p,n

tp,nφp,n(t) +
∑

p,m

tp,mφp,m(t)

+ δn,mUφn,m(t), (5)

where tp,n = α(V0 + up − un) and tp,m = α(V0 + up −
um). We assume that the dependence of hopping integrals
on the un is so weak that it can be ignored and nearest
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neighbors hopping integrals (tp,n(m) = W if |p−n(m)| = 1
and zero otherwise). After these considerations, we obtain

i�
dφn,m

dt
= [En + γnνn(t) + Em + γmνm(t)] φn,m(t)

+ W [φn−1,m(t) + φn+1,m(t)
+φn,m−1(t) + φn,m+1(t)]
+ δn,mUφn,m(t). (6)

We assume that the molecular vibrations on the lattice
sites reach equilibrium on a time scale smaller than the
scale of time for the evolution of the electronic wave
packet. Therefore, we obtain ω2

0νn = γ
∑

m |φn,m(t)|2 and
ω2

0νm = γ
∑

n |φn,m(t)|2. Substituting it in (6) and defin-
ing χ = γ/ω2

0 we have

i�
dφn,m

dt
= [En + Em] φn,m(t)

+

[
χ

∑

m

|φn,m(t)|2 + χ
∑

n

|φn,m(t)|2
]

φn,m(t)

+ W [φn−1,m(t) + φn+1,m(t) + φn,m−1(t)
+φn,m+1(t)] + δn,mUφn,m(t)
n, m = 1 . . .N (7)

where N is the chain size. In the above equation we
used units of � = 1 and considered a unitary hopping
amplitude between first-neighbor sites W = 1. χ rep-
resents the effective local electron-phonon coupling. In
what follows, we will employ the eighth-order Runge-
Kutta method to numerically integrate equation (7). We
followed the time-evolution of an initially localized wave
packet φn,m = δn,n0δm,m0 where the initial position of the
electron pair (n0, m0) will be considered to be centered at
(N/2−d0, N/2+d0). Aiming to characterize the dynamic
behavior of the wave packet, we computed two typical
quantities that can bring information about the possible
self-trapping of the wave packet and its spacial extension,
namely, the return probability and the participation func-
tion which are defined as

R0(t) = |φn0,m0(t)|2, (8)

and
ξ(t) = 1/

∑

n,m

|φn,m(t)|4. (9)

R(t) gives the probability of finding the electron pair in
the position corresponding to the center of the initial wave
packet. In the long-time regime, its scaling behavior can
also be used to distinguish between localized and delocal-
ized wave packets [38,39]. We have used tmax ≈ 106 in our
calculations. Thus, R(t ≈ 106) → 0 means that the elec-
tronic wave function escapes from its initial location. Con-
versely, the return probability saturates at a finite value
for a localized or a self-trapped wave packet. The partic-
ipation function gives an estimate of the number of base
states over which the wave packet is spread at time t. In
particular, the asymptotic participation number becomes
size-independent for localized wave packets. On the other
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Fig. 1. (Color online) (a) Return probability at long times
R0(t ≈ 106) and (b) participation function ξ(t ≈ 106) versus
the nonlinear strength χ for initially close electrons (d0 = 0.0)
with on-site Hubbard interaction U = 0.0, 4.0, 10.0. The results
suggest that the presence of interaction promotes self-trapping
for weaker nonlinearities.

hand, ξ(t ≈ 106) ∝ N2 corresponds to the regime where
the wave packet is uniformly distributed over the lattice
and the two-electrons are uncorrelated.

3 Results

In Figures 1a–1b we plot the long-time return proba-
bility R0(t ≈ 106) and the corresponding participation
function ξ(t ≈ 106) versus the nonlinear strength χ for
electrons initially localized on the same site (d0 = 0.0).
We report data for the non-interacting case together with
two distinct values of the electron-electron coupling. The
delocalized regime is signaled by a vanishingly small re-
turn probability and a finite participation function, while
for self-trapped wave packets the return probability be-
comes finite and the participation function vanishes. We
observe that the interaction promotes the wave packet self-
trapping for weaker nonlinearities. Figures 2a–2b show
similar data for the return probability R0(t ≈ 106) and
the participation function ξ(t ≈ 106) versus χ for elec-
trons initially localized in well distant sites (d0 = 20.0)
with on-site Hubbard interaction U = 0.0, 4.0 and 10.0.
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Fig. 2. (Color online) (a) Return probability at long times
R0(t ≈ 106) and (b) participation function ξ(t ≈ 106) versus
the nonlinear strength χ for electrons initially far apart (d0 =
20.0). For initially separated electrons, the Coulomb interac-
tion does not significantly affect the wave packet dynamics.

The collapse of the data suggests that the on-site interac-
tion does not play a significant role on the self-trapping
in this case, indicating that local coupling is required to
enhance the tendency of self-trapping due to the effective
nonlinearity.

In order to further characterize the influence of
the electron-electron coupling on the self-trapping
phenomenon, we show in Figure 3 the asymptotic return
probability R0(t ≈ 106) versus the on-site Hubbard inter-
action U both in the linear regime χ = 0.0 as well as in the
nonlinear regime with χ up to 3.0 for electrons initially at
the same site [2(a)] and electrons initially far apart [2(b)].
Notice that in the linear regime, the return probability is
always small, signaling the absence of wave packet trap-
ping. For electrons initially placed on distant sites, the
return probability is of the order of 1/N2 irrespective to
the coupling strength. This behavior is consistent with an
uncorrelated spreading of both electrons throughout the
chain. For electrons that are initially occupying the same
site, we observe that above a critical coupling strength
a self-trapping transition takes place even in the regime
of weak nonlinearity. Therefore, our results show that the
Hubbard coupling favors the self-trapping of the electronic
wave packet. The smooth linear growth of the return prob-
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Fig. 3. (Color online) Return probability at long times R0(t ≈
106) versus the on-site Hubbard interaction U with χ = 0.0 up
to 3.0 for (a) initially close electrons (d0 = 0.0) and (b) elec-
trons initially far apart (d0 = 20.0). For initially close electrons,
it is observed that the magnitude of the electron-electron inter-
action necessary to promote the self-trapping becomes smaller
in the presence of larger nonlinearities. The inset shows that
the wave packet of initially far apart electrons becomes delo-
calized in the regime of small nonlinearities, irrespective to the
valor of the Hubbard coupling.

ability in the linear case χ = 0 is associated with the
build up of electron-electron correlations as the coupling
strength is increased. In this case, the vanishing of the
asymptotic return probability changes from a 1/N2 scal-
ing law typical of uncorrelated delocalized electrons to a
slower 1/N decay for strongly correlated, although also
delocalized, electrons.

To precisely locate the critical points of the delocal-
ized to self-trapped transition, we employ a finite-size
scaling analysis. In Figure 4 we plot the return proba-
bility at long time R0(t ≈ 106) versus χ for U = 2.5,
d0 = 0.0 and N = 100, 150, 200, 300, 500, 750. Above
χc = 1.85(5) the return probability becomes finite, indi-
cating the self-trapped regime. Below χc, the asymptotic
return probability is vanishingly small (of the order of
1/N), which characterizes the regime of extended states.
Finally, we plot the phase diagram in the χ × U plane
in Figure 5. In the absence of electron-electron coupling
(U = 0) the critical nonlinear strength above which the
electronic wave packet becomes self-trapped is of the order
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Fig. 4. (Color online) Return probability versus χ for U =
2.5, d0 = 0.0 and N = 100, 150, 200, 300, 500, 750. For χ ≥
1.85(5) the return probability becomes finite, indicating the
self-trapped regime.
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Fig. 5. (Color online) Phase diagram in the χ versus U pa-
rameter space showing the delocalized to self-trapped transi-
tion. In the absence of electron-electron interaction, the critical
nonlinear strength is of the order of the single-electron band-
width. The magnitude of the critical electron-phonon coupling
χ decreases as the electron-electron coupling is increased. Inset
shows the χc ∝ 1/U asymptotic behavior.

of the single electron energy bandwidth, in agreement
with previous results [38–42]. As the Hubbard coupling
is turned on, the critical nonlinear strength decreases.
Such decrease is linear with the Hubbard coupling in
the regime of weakly interacting electrons. In the oppo-
site regime of strongly correlated electrons, the critical
nonlinear strength vanishes as 1/U . It is worthy to re-
call that the energy band corresponding to bounded two-
electrons states ranges from U ≤ E ≤ √

U2 + 16. Its width
display the same limiting behaviors at weak and strong
couplings. This feature indicates that the bounded two-
electron states play a mayor role in the wave packet dy-
namics, being able to promote the wave packet trapping of
strongly correlated electrons even in the presence of weak
nonlinearities.

4 Summary

In summary, we investigated the influence of electron-
electron correlations in the wave packet self-trapping phe-
nomenon induced by an effective cubic nonlinearity arising
from an underlying electron-phonon coupling. In particu-
lar, we considered the problem of two electrons in a singlet
configuration moving on a nonlinear chain and interact-
ing with each other through a local Hubbard coupling. We
numerically solved the time dependent Schroedinger equa-
tion and followed the time-evolution of the two-electrons
wave-packet. By exploring the asymptotic behavior of
the return probability and the participation function, we
showed that the Hubbard coupling has a negligible influ-
ence on the wave packet dynamics whenever the electrons
are initially placed at large distances, even though dou-
ble occupancy is produced by the wave packet spreading
over the lattice in the regime of weak nonlinearities. The
electron-electron coupling develops a significant influence
on the wave packet dynamics when the electrons are ini-
tially localized on the same site. In this case, the criti-
cal nonlinear strength above which the wave packet be-
comes trapped continuously decrease as a function of the
Hubbard coupling. In the regime of strongly correlated
electrons, the critical nonlinear strength becomes of the
order of the energy bandwidth associated with bounded
two electron states. The present results adds to some
recent works on the interplay between electron-electron
and electron-phonon interactions [62–65]. In particular,
we showed that the critical nonlinearity decays as 1/U
thus indicating that the electron-phonon interaction acts
as a relevant mechanism of electron localization in strongly
correlated electron systems.

This work was partially supported by the Brazilian research
agencies CNPq, CAPES and FINEP, Rede nanobioestruturas,
as well as by the Alagoas state research agency FAPEAL.
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97, 266408 (2006)

25. B.J. Alder, K.J. Runge, R.T. Scalettar, Phys. Rev. Lett.
79, 3022 (1997)

26. L.S. Brizhik, A.A. Eremko, Physica D 81, 295 (1995)
27. O.G. Cantu Ross, L. Cruzeiro, M.G. Velarde, W. Ebeling,

Eur. Phys. J. B 80, 545 (2011)
28. M.G. Velarde, C. Neissner, Int. J. Bifurcation Chaos 18,

885 (2008)
29. M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J.

Bifurcation Chaos 21, 1595 (2011)
30. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys.

J. B 80, 137 (2011)
31. D. Hennig, M.G. Velarde, W. Ebeling, A. Chetverikov,

Phys. Rev. E 78, 066606 (2007)
32. M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J.

Bifurcation Chaos 15, 245 (2005)
33. M.G. Velarde, J. Comput. Appl. Math. 233, 1432 (2010)
34. M.V. Ivanchenko, Phys. Rev. Lett. 102, 175507 (2009)
35. S. Flach, D.O. Krimer, Ch. Skokos, Phys. Rev. Lett. 102,

024101 (2009)
36. Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys.

Rev. E 79, 056211 (2009)
37. G. Sangiovanni, M. Capone, C. Castellani, M. Grilli, Phys.

Rev. Lett. 94, 026401 (2005)
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