
Eur. Phys. J. B 80, 321–324 (2011) DOI: 10.1140/epjb/e2011-20006-5

Anderson localization in a disordered chain with a finite nonlinear
response time

R.A. Caetano, F.A.B.F. de Moura and M.L. Lyra



Eur. Phys. J. B 80, 321–324 (2011)
DOI: 10.1140/epjb/e2011-20006-5

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Anderson localization in a disordered chain with a finite nonlinear
response time

R.A. Caetano, F.A.B.F. de Mouraa, and M.L. Lyra

Instituto de F́ısica, Universidade Federal de Alagoas, 57072-970 Maceió AL, Brazil
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Abstract. In this work, we investigate the competition of disorder, nonlinearity and non-adiabatic process
on the wave packet dynamics in 1D. We follow the time evolution of the second moment of the wave
packet distribution to characterize its spreading behavior. In order to describe the dynamical behavior of
one-electron wave packets, we solve a discrete nonlinear Schrödinger equation which effectively takes into
account a diagonal disorder and a nonlinear contribution. Going beyond the adiabatic regime, we consider
that the nonlinearity relaxes in time according to a Debye-like law. In the adiabatic regime, it has been
recently demonstrated that the interplay of disorder and nonlinearity leads to a sub-diffusive spread of the
wave packet. Here, we numerically demonstrate that no sub-diffusive spreading of the second moment of
the wave packet distribution takes place when the finite response time of the nonlinearity is taken into
account.

1 Introduction

The study of the electronic properties in disordered sys-
tem has been one of the most recurrent issues in con-
densed matter physics. The cornerstone result about the
nature of the electronic states was done in a seminal
work by Abrahams et al. [1] in which the authors claimed
that all states in a disordered system with dimension
D ≤ 2 are localized in an absence of magnetic field and
spin-orbit coupling. Originally developed in order to un-
derstand electronic transport in non-periodic structures,
Anderson localization became an even stronger result
since such prediction is still valid for every field de-
scribed by a wave equation. For instance, Anderson local-
ization in superlattice-graphene nanotubes and nanorib-
bons [2,3], of electromagnetic fields [4], water waves [5]
and Bose-Einstein Condensates (BEC) [6] has been re-
ported in the recent literature. The last issue has attracted
an increased interest motivated by recent remarkable ad-
vances in experimental technologies. It is possible, for ex-
ample, to create a one-dimensional (1D) disordered po-
tential through of an optical lattice and verify evidences
of Anderson localization of BEC [7–10]. One interesting
aspect of BEC in a 1D disordered potential is that its
dynamic is well described by the Gross-Pitaevskii equa-
tion [11] and the nonlinearity present in this equation
leads to exciting new physical properties [12–14]. Non-
linearity in the Schrödinger equation also appears in the
electronic context. It originates from interaction between
the electron and lattice vibrations [15,16]. The presence
of the nonlinearity in the electronic Schrödinger equation
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induces the phenomenon of self-trapping [17,18] in which
an initially localized wave packet does not spread over the
lattice. It occurs when the nonlinearity exceeds a critical
value of the order of the bandwidth [15–18]. The interplay
between nonlinearity and disorder has also been recently
investigated. Nonlinear aspects seem to be more important
than disorder effects in low-dimensional systems [19–22].
Pikovsky et al., for example, have studied the effects
of the competition between disorder and nonlinearity in
one and two-dimensional disordered systems [19,20,23].
In particular, they followed the wave packet spreading
of an initially localized state. They observed that, for
nonlinear strengths exceeding a critical value, there is a
counter-intuitive sub-diffusive spreading of the wave func-
tion with no indication of saturation in long time runs. In
this sense, a more realistic model that takes into account
the electron-phonon interaction, supports the existence of
states that are not exponentially localized in disordered
low-dimensional system.

Experimentally the competition between nonlinearity
and disorder has been investigated showing that, in cou-
pled waveguides patterned on an AlGaAs substrate, the
presence of nonlinear perturbations enhance the localiza-
tion of the linear model while, on the other hand, they
induce delocalization of the nonlinear modes [24]. It is
worth to keep in mind that the study of wave propagation
in nonlinear media is an important issue in many branch
of physics. It has been investigated, for example, within
the context of the propagation of electromagnetic waves
in nonlinear disordered media [25,26]. The effects on local-
ization of nonlinearity coming from anharmonic terms in
phonon-phonon interaction have also been explored [27].
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In general, one assumes that the nonlinearity arisen from
the electron-phonon interaction is instantaneous. How-
ever, this adiabatic approximation is very limited since the
effective electron-phonon interaction is limited by the re-
sponse time of the medium. In fact, models considering the
relaxation of the effective nonlinearity have been reported
in the literature [28–31]. It has been demonstrated that
when relaxation process of the nonlinearity is taken into
account in a two-level system, there is a stationary self-
trapping regime and a coexistence of static and dynam-
ical transitions depending on the degree of nonlinearity
as well as on the relaxation time [28]. Recently, it was re-
ported the influence of the non linear response time on the
one-electron wave packet dynamics in linear chains [31].
Considering the delayed nonlinear term coupling the elec-
tronic wave function at time t with the electronic density
at t − τ , the authors reported that the tendency of self-
trapping is reduced for long response times. On the other
hand, it is the critical nonlinear strength needed to pro-
mote self-trapping that becomes smaller in the regime of
small, although finite, nonlinear response times [31]. More
recently, the effects of a Debye-like relaxation of the non-
linearity was considered [32]. It was shown that the delay
of the nonlinear response potentializes the occurrence of
self-focusing, thus strongly reducing the critical nonlinear
strength above which the wave packet becomes localized.

In this work, we advance in the investigation of the
influence of the non-instantaneous character of the non-
linear coupling on the electronic wave packet dynamics on
linear chains. We investigate the combination of the above
three ingredients, namely, disorder, nonlinearity and non-
adiabatic process. We follow the time evolution of the
second moment of the wave packet distribution in order
to characterize its spreading behavior. The wave packet
dynamics will be considered to obey a discrete nonlin-
ear Schrödinger equation which effectively takes into ac-
count a diagonal disorder and a nonlinear contribution
arising from an underlying electron-phonon interaction in
the limit of a non-adiabatic coupling. Our calculations nu-
merically reveal that the sub-diffusive spreading of the sec-
ond moment of the wave packet distribution does not take
place beyond the adiabatic regime where a finite nonlinear
response time has to be considered.

2 Model and formalism

We effectively take the non-adiabatic behavior of the
electron-phonon interaction into account by introducing a
relaxation function in the nonlinear Schrödinger equation,
following the same lines developed in references [28,29]. In
this approximation, the dynamics is governed by the non-
linear Schrödinger equation given by:

iψ̇n(t) = εnψn(t) + V (ψn+1(t) + ψn−1(t)) + βfn(t)ψn(t)
(1)

where we consider � = 1. εn’s are the on site ener-
gies taken from a white noise distribution in the range
−W

2 ≤ εi ≤ W
2 , V is the hopping overlap integral, which

we set to be the energy unit, β is the nonlinearity strength

and fn(t) is the function that introduces the relaxation in
the nonlinearity. The Schrödinger equation must be solved
concomitantly with the relaxation equation [28,29]:

ḟn(t) = −1
τ

(
fn(t) − |ψn|2

)
(2)

where τ is the relaxation time which is related with the
time response of the medium. τ = 0 corresponds to the
adiabatic case because it implies in fn(t) = |ψn(t)|2 in
order to have a finite evolution rate of the nonlinearity.
The second equation describes the dynamics of the lattice
vibrations. The nonlinear parameter β is proportional to
the local electron-phonon coupling under an adiabatic ap-
proximation [28,29], which occurs when fn(t) = |ψn(t)|2
and/or τ = 0. The delayed DNLSE model used here
was derived following the assumptions put forward in
reference [28]. The model starts by considering a set of
2N coupled equations. Half of them corresponds to the
wave packet dynamics of the moving quantum particle.
The other half corresponds to the motion equation of
Einstein-like site oscillators. fn(t) is the displacement of
the oscillator at site n, which has a typical frequency ω
and is damped at a rate α. By assuming the oscillators
to reach their equilibrium position much faster than the
typical time scale for the quantum particle evolution, the
time derivative of fn(t) can be disregarded, thus resulting
in the well known adiabatic DNLSE with a nonlinear con-
tribution to the on-site energy given by |ψn(t)|2 [28]. In
the strong damping regime the set of coupled equations
reduces to the delayed DNLSE (Eqs. (1) and (2)) with
τ = ω2/α. The non-adiabatic character is incorporating
by explicitly solving the relaxation equation considering
a finite response time τ �= 0. Systems with slow non lin-
ear response have large values of τ . In order to solve the
above equations, we use seventh order Taylor expansion
with time step Δt = 0.01 for both equations. This proce-
dure allows us to achieve a precision of the order of 10−6

in the norm of the wave function for times up to 107. The
quantity that we use to characterize the spreading of the
wave function is the second moment of the probability
function, defined as:

σ(t) =
N∑

n=1

(xn − x̄(t))2|ψn(t)|2 (3)

where ¯x(t) =
∑N

i xi|ψi(t)|2 is the centroid of the wave
packet at the time t.

3 Results

We start solving equations (1) and (2) for an initially
localized state at the center of the chain: |ψ(t = 0)〉 =∑

n ψn|n〉, with ψn = δn,n0 , where n0 is the center of the
chain. The non linearity and disorder strength are β = 3
and W = 4, respectively. It is important to stress that
our results are still qualitatively valid for other parame-
ter sets that we tested. In the adiabatic regime, the elec-
tronic wave packet starts the spreading following an initial
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Fig. 1. Time dependence of the second moment of the proba-
bility distribution for disorder strength W = 4 and β = 3. Data
are from a single disorder configuration. The continuous line
is the second moment considering an instantaneous response.
It shows a sub-diffusive spreading due to the interplay of dis-
order and nonlinearity. Delayed responses are shown for three
different response times: τ = 0.1 (dotted), τ = 1 (dashed)
and τ = 10 (dotted-dashed). These curves show that the sub-
diffusive spreading is destroyed when the nonlinear response
is delayed. Circles and arrows indicate the points where the
wave functions are shown in Figures 3 and 4. Inset: a dynami-
cal instability present for τ = 0.1 coming from the competition
between disorder and nonlinearity.

ballistic regime. As soon as the electron experiences the
disorder, it goes through a crossover regime for a short
period (between t = 1 and t ∼ 10 and finally it achieves a
sub-diffusive regime, in agreement with references [19,22].
This behavior is shown as a continuous line in Figure 1. On
the other hand, when the relaxation process is taken into
account, although the initial and intermediary spreading
regimes of the electronic packet remain the same, the sub-
diffusive spreading is replaced by a saturation of the wave
packet width, signaling an ultimate localization. This be-
havior is shown in Figure 1 for three different response
times: τ = 0.1 (dotted), τ = 1 (dashed) and τ = 10
(dotted-dashed). It is noticeable that there is a strong in-
dication that the wave packet remains localized and the
sub-diffusive spreading does not take place for any value
of τ . It is interesting to see that σ(t) for τ = 0.1 is almost
equal to the adiabatic case up to t = 102, even within the
sub-diffuse regime. However this behavior is destroyed and
a localized regime takes place after a long run.

Figure 2 shows the wave packet at different times (indi-
cated by arrows in Fig. 1). The first two are in the ballistic
regime and the others are in the intermediary regime. One
can see that the wave packet splits into two well localized
peaks. Such splitting of the wave packet is strongly de-
pendent of the particular disorder configuration around
the initial wave packet position.

One interesting aspect coming from the nonlinearity is
the emergence of some anomalous behavior where there
would be an apparent stability. A representative case is
found for τ = 0.1 and reported in details in the inset
of Figure 1. Such instability is associated to the inter-
play between the effective disorder (on site potential and
the nonlinear term) and the relaxation process. A better
understand can be gotten by looking the wave packet at

Fig. 2. Wave packet distribution calculated in a system with
W = 4, β = 3, and τ = 0.1 at four distinct instants: t = 0.05,
t = 1.02, t = 6.68 and t = 15.5 (these times are indicated
by arrows in Fig. 1). The first two are in the ballistic regime
and the other two are in the sub-diffusive regime. One can
see that the wave packet is spreading at these initial moments
developing a structure with two peaks.

Fig. 3. Wave packet distribution calculated in a system with
W = 4, β = 3, and τ = 0.1 at four distinct instants: t = 8610,
t = 27 780, t = 30 650 and t = 68 740 (these times are indicated
by circles at the inset of Fig. 1). These wave packet distribu-
tions are in the region of the dynamical instability shown in the
inset of Figure 1. It can be seen that probability distribution
initially depicts two similar peaks. One peak becomes unstable
and starts to spread. Finally, it focuses again resulting in a
quite asymmetric two peak distribution.

the times indicated by circles in the inset of Figure 1.
These are shown in Figure 3. Initially there are two peaks
with roughly the same height. However, the relaxed non-
linear potential (not shown here) originates a strong disor-
der spur at the first peak enhancing the localization of the
wave packet around this region. The second peak spreads
out over a small region. Nevertheless, it localizes due to
the disorder and keeps this configuration up to long time
runs.

The results that we have been discussed up to here
were obtained from a single disorder configuration. Quan-
titatively, those results are strongly dependent on the dis-
order configuration. However sub-diffusive spreading was
not found for any disorder configuration that we have
checked. Figure 4 shows the second moment of the proba-
bility distribution averaged over seven disorder configura-
tions for three different response times: τ = 0.1 (continu-
ous), τ = 1 (dotted) and τ = 10 (dashed). One can clearly
notice that there is no spreading of the wave packet up to
t = 107 indicating that none of the disorder configurations
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Fig. 4. The second moment of the wave packet probability
distribution as a function of time, with W = 4 and β = 3.
Data were averaged over seven different disorder configura-
tions. Three distinct response times are shown in this figure:
τ = 0.1 (continuous), τ = 1 (dotted) and τ = 10 (dashed).
The absence of sub-diffusion, even on the average, indicates
that wave packet localization is achieved for any disorder con-
figuration.

supports a sub-diffusive spreading. A more refined statis-
tics is necessary in order to get the quantitative informa-
tion about the dependence of the asymptotic localization
length on the relaxation time.

4 Summary and conclusions

In summary, we studied the dynamics of an electronic
wave packet in a linear random chain with non-adiabatic
electron-phonon interaction. By using the discrete nonlin-
ear Schrödinger equation we investigated the competition
of diagonal disorder and electron-phonon interaction in
the limit of non-adiabatic coupling. In conclusion, we have
qualitatively demonstrated that the sub-diffusive spread-
ing of the second moment of the wave packet probabil-
ity distribution does not take place if a finite nonlinear
response time is considered. This effect appears for any
finite response time with no indication of a threshold in
the response time. It is important to keep in mind that,
although this work particularly addressed the nonlinear-
ity arisen from an underlying electron-phonon interaction,
the results showed here are valid for any nonlinear system
with a finite response time. Therefore, one expects the
general aspects of wave propagation in disordered non-
linear systems to be substantially modified when a finite
response time is included to push the analysis beyond the
adiabatic regime. Let us stress that the adiabatic limit of
our model has been widely explored in connection with
Bose-Einstein condensates, optical and transport proper-
ties of biological systems. Therefore, our results points out
to a not intuitive phenomenology related to the slow re-
sponse of the nonlinearity that can drastically modify the
transport properties of low-dimensional random systems.
We hope that the present work will stimulate further stud-
ies along this line.
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