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a b s t r a c t

We investigate a tight-binding chain featuring diagonal and off-
diagonal disorder, these being modeled through the long-range-
correlated fractional Brownian motion. Particularly, by employing
exact diagonalization methods, we evaluate how the eigenstate
spectrum of the system and how its related single-particle dynam-
ics respond to both competing sources of disorder. Moreover, we
report the possibility of carrying out efficient end-to-endquantum-
state transfer protocols even in the presence of such generalized
disorder due to the appearance of extended states around the
middle of the band in the limit of strong correlations.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the past few decades, there has been a growing interest in investigating quantum trans-
port properties of low dimensional disordered lattices [1–16], most of them based on Anderson
scaling theory. In general lines, it is well established that there are no extended eigenstates in
low-dimensional systems for any amount of uncorrelated disorder. The breakdown of standard
Anderson localization theory was put forward about thirty years ago by Flores and Dunpap [17,18].
They pointed out that the presence of short-range correlations in the disorder distribution yielded
the appearance of extended states in the spectrum of disordered chains. That could explain to a
great extent some unusual transport properties of several types of polymers [17,18]. Right after
this discovery, a handful of works came along to investigate the role of disorder correlations, either
short- or long-ranged, in a wide variety of physical systems [19–40]. Particularly, it was shown in
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Refs. [19,21] that long-range correlated random potentials can actually allow for mobility edges in
1D disordered models. In Ref. [19], that specific kind of fluctuations was generated using the trace
of a fractional Brownian motion whose intrinsic correlations decay following a power-law. Through
numerical renormalization methods, it was show that this model exhibits a phase of extended states
around the center of the band [19]. Tackling the same problem, the authors in [21] applied an
analytical perturbation technique and came up with a direct relationship between the localization
length and the characteristics of the intrinsic correlations in the disorder distribution. A few years
later, the above resultswere validated through experiments carried out inmicrowave guides featuring
correlated scatters [41]. The authors demonstrated that intrinsic long-range correlations within
the scatters distribution ultimately improve the wave transmission. On the theoretical side, the
Andersonmodel with long-range correlated hopping fluctuations (off-diagonal disorder) was studied
in Refs. [20,32]. Likewise, it was found that strong correlations promote the appearance of a phase of
extended states close to the center of the band.

In this work we provide further progress along those lines. In particular, we consider two sources
of disorder acting simultaneously on the potentials as well as on the hopping strengths of the chain,
both exhibiting long-range correlated fluctuations generated by the fractional Brownian motion. This
model embodies a generalized disordered scenario which we aim to push on its capability of support-
ing extended states in the middle of the band thereby weakening Anderson localization. By looking
at the participation ratio of eigenstates and also at the dynamics of the system through its mean
square displacement for a delta-like initial state we find out that the chain allows for propagating
modes if substantial long-range correlations are taking place in both sources of disorder. Looking
forward possible applications in the field of quantum-information processing, we also investigate
whether such a model of generalized disorder would allow for realizing standard quantum-state
transfer protocols [42–49], particularly those relying on weak-coupled parties [44–46,48]. The point
is that when designing chains for transmitting quantum states from one point to another – which
is a crucial requirement in quantum networks [50] –one should take into account the possibility
of undesired fluctuations taking place due to experimental errors [40,46,51–58], that including
correlated noise [40,51,52,58]. Our calculations reveal that an electron (or a properly encoded qubit)
can be almost fully transferred through the noisy bulk of the chain depending upon specific sets of
parameters.

2. Model and formalism

We consider a N-site linear chain described by the electronic tight-binding Hamiltonian (h̄ = 1)

H =

N∑
n=1

ϵn|n⟩⟨n| +

N−1∑
n=1

Jn(|n⟩⟨n + 1| + h.c.), (1)

written in the Wannier basis set {|n⟩} accounting for the electron position, where ϵn is the on-site
potential and Jn is the hopping strength, those being the source of static disorder. Those parameters
are here expressed in terms of energy unit J ≡ 1. Specifically, we assume that both quantities fluctuate
such that their corresponding disorder distributions come with intrinsic long-range correlations
modeled via the fractional Brownian motion [19,22,24,25]

ϵn, Jn =

N/2∑
k=1

1
kγ /2

cos

(
2πnk
N

+ φk

)
. (2)

We emphasize that the sequence generated by the equation above exhibits a power-law spectrum
1/kγ and φk represents a random phase uniformly distributed within the range [0, 2π ]. For γ = 0,
the sequence is fairly uncorrelated. On the other hand, γ > 0 brings about long-range correlations
in the disorder sequence. Therefore, exponent γ stands out as a very important parameter since it
controls the degree of correlations within the disordered sequence. Hereafter, Eq. (2) will be used for
generating disorder distributions for both ϵn and Jn but with a few remarks: (i) for ϵn we attribute
γ → α and normalize the entire sequence so that ⟨ϵn⟩ = 0 and ⟨ϵ2n⟩ = 1; (ii) for Jn we set γ → β and
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redefine Jn → tanh(Jn)+2 after normalization in order to rule out possible null hopping strengths. It is
also important to note that each sequence for ϵn and Jn is generated using distinct sets of phases, {φk}.
In summary, the model contains two independent parameters α and β that account for the degree of
correlations for both diagonal and off-diagonal sources of disorder.

The quantities of interest are all obtained through exact diagonalization of Hamiltonian (1) which
gives us the eigenvalues {Ej} and its corresponding eigenvectors |ψ j

⟩ = f jn|n⟩. Our first task will be
evaluating the participation ratio defined as [24]

ξ j =
1∑

n |f jn|
4 . (3)

This measure provides an estimate of the number of bare states a given eigenstate is spread on,
i.e., it quantifies the degree of localization. In particular, the participation number becomes size-
independent for localized wave-packets and diverges with N for extended ones. In addition, we
investigate the electronic time evolution through the chain. We initialize the initial wave-packet in
|ψ(0)⟩ =

∑
ncn(0)|n⟩ where cn(0) = δn,n0 . The electronic state at time t can thus be obtained from

|ψ(t)⟩ =
∑

ncn(t)|n⟩ = e−iHt
|ψ(0)⟩, where

cn(t) =

∑
j

f j ∗n0 f
j
ne

−iEjt . (4)

By using the relations above we can compute the width σ of the electronic wave-packet through [59]

σ (t) =

√∑
n

(n − ⟨n(t)⟩)2|cn(t)|2, (5)

where ⟨n(t)⟩ =
∑

nn|cn(t)|
2 is the electronic average position. Note that σ (t) goes from 0, for a wave

function confined to a single site, to O(N) for a wave extended over the whole system. Note that we
can also compute the time-dependent participation number defined as ξ (t) = 1/

∑
n|cn(t)|

4. Both
quantities are distinct ways to obtain an estimate of the size of the wave-packet at time t [24,59].

3. Results

After having introduced the main tools in the previous section, we now provide a detailed investi-
gation of the actual role played by diagonal and off-diagonal sources of disorder acting simultaneously
in the chain.

3.1. Localization properties

We start our analysis showing results for the participation ratio of the entire eigenstates set. It
should be emphasized that every quantity evaluated in this work was properly averaged over many
distinct realizations of disorder. The total number of eigenstates NE = NM was larger than 105 for
all calculations,M being the number of samples. We averaged ξ j over a small window around energy
E and therefore we are looking towards the quantity ξ (E) = (

∑Ej<E+∆E
Ej>E−∆Eξ

j)/n(E), where n(E) is the
number of eigenvalues {Ej} within the interval [E − ∆E, E + ∆E]. Herein we fix ∆E = 0.2 which
was chosen much smaller than the total bandwidth but large enough to contain a large number of
eigenstates to produce a good statistical average.

In Fig. 1(a)–(c) we plot the rescaled mean participation number ξ/N versus energy E for many
combinations of α and β . Calculations were done for N = 1000 up to 8000 sites. We observe in
Fig. 1(a) and (b) that ξ/N decreases as the system size N is increased regardless of the E value.
That is a clear signature that all eigenstates become localized in the thermodynamic limit. On the
other hand, Fig. 1(c) reveals a rather interesting behavior. Close to the band center, the rescaled
participation number remains constant thus indicating the appearance of extended states at this
region. For |E| ≫ 0 we observe that ξ/N decreases slowly with N what indicates the presence of
localized states far from the band center. However, these localized states are not size independent,
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Fig. 1. Rescaled participation number ξ/N versus E for (a) α = 3, β = 0; (b) α = 0, β = 3; and (c) α = 3, β = 3 for several
system sizes. Notice that for α = β = 3 delocalized states appear near the band center.

as it is usual in systems with uncorrelated disorder. They depict a sub-linear scaling due to the size-
dependent rescaling of the coupling constants [60]. The size dependence of the participation number
for some typical energies is shown in Fig. 2(a). In order to clearly locate the mobility edges in the
case of strong disorder, the normalized localization length L/N is a more appropriate measure. The
localization length Lwas obtained using a standard transfer matrix formalism (cf. Ref. [2] for details).
Even in the regime of weak localization with power-law growth of the participation number, the
localization length remains finite because it is mainly associated with the behavior of the eigenstates
on their exponentially decaying tails. In Fig. 2(b)we report the spectrumof the normalized localization
length for α = β = 3 which clearly signals the mobility edges. Thereby, our calculations show that
one-dimensional systems featuring both diagonal and off-diagonal disorder only display extended
states whenever both sources of fluctuations are augmented with strong long-range correlations. If
only either α or β is greater than zero, the electron transport can be suppressed by the presence of
uncorrelated randomness in the lattice.

We can further observe that feature by analyzing Fig. 3, where we plot the mean participation
number around the band center ξ0/N ≡ ξ (E ≈ 0)/N versus α and β for N = 8000. We note that only
for α and β larger than 2 we obtain the rescaled participation number ξ0/N ≈ 0.58(2) which is very
close to the corresponding value of extended states in ordered chainswith open-boundary conditions,
that is 2/3. Our outcomes are also in agreement with the rescaled participation number for extended
states in disordered systems [22,24,32].

Furthermore, it is relevant to point out that, generally speaking, γ is related to the so-called Hurst
exponent H through H = (γ − 1)/2 which describes the long-term memory of a given series. The
set spanned by Eq. (2) is said to be nonstationary when γ > 1 and persistent (anti-persistent) when
γ > 2 (γ < 2). When α = 2 the series corresponds exactly to the trace of the Brownian motion.
H = 1 for γ ≥ 3 signaling that the generated series becomes locally completely correlated with no
local roughness in the thermodynamic limit. However, global disorder still persists due to the random
nature of the phases used to generate the full series. Moreover, as shown in [19] in the case of on-site
disorder only, α = 2 marks the transition point between Anderson-like insulator and metallic phases
with sharp mobility edges.

3.2. Time dynamics and quantum-state transfer

The interplay between localized and delocalized stateswe have seen in the previous section allows
for a rich variety of dynamical regimes [25]. Our goal now is explore how the competition between
two independent sources of correlated disorder reflects upon the spreading profile of the initial state
of a single electron. Right after that, we will tackle a very appealing application of such platforms in
the context of quantum information processing.

Figs. 4 and 5 show a summary of our calculations for the time-dependent spread and participation
number for an initial delta-like state prepared at the (N/2)th site, that is cn(0) = δn,N/2 . Those
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Fig. 2. In (a) we show the size dependence of the participation number for some typical energies evidencing the sub-linear
scaling of the weakly localized states near the band edge. The spectrum of the normalized localization length L/N is shown in
(b) which clearly signals the mobility edges. Here we fixed α = β = 3.

Fig. 3. Rescaled participation number around the band center, ξ (E ≈ 0)/N = ξ0/N , versus α and β for N = 8000 sites. The
chain is able to support extended states around the center of the band only when both diagonal and off-diagonal sources of
disorder are both long-range correlated obeying, roughly, α, β > 2.

Fig. 4. Rescaled square root of the mean square displacement (σ/N) versus rescaled time (t/N) for (a) α = 3, β = 0; (b) α = 0,
β = 3; and (c) α = 3 , β = 3.
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Fig. 5. Rescaled participation number (ξ/N) versus rescaled time (t/N) for (a) α = 3, β = 0; (b) α = 0, β = 3; and (c) α = 3 ,
β = 3.

coefficients at a later time are evaluated through Eq. (4) for N = 1000 up to 8000 for various
combinations ofα andβ . For comparison purposes, time and functions of interestwere rescaled by the
system sizeN .We computed cn(t) until a stationary state could be reached aftermultiple reflections of
the wavepacket on the lattice boundaries. Therefore, for α and β larger than 2 [see Figs. 4(c) and 5(c)]
we obtained a sharp curve collapse thus implying that the wavepacket spreads ballistically before
reaching the boundaries of the chain. Notice, however, that the collapse of the participation number
data is less striking because this quantity is more affected by statistical fluctuations. For α or β less
than 2, on the other hand, panels (a) and (b) of Figs. 4 and 5 there is clearly no collapse, thus suggesting
a much slower electronic dynamics along the chain [22].

In general lines, our results show that chains with correlated disorder in both diagonal and off-
diagonal terms can only support the presence of extended states once both sources of disorder display
strong enough correlations, that is α, β > 2. Still, it is very impressive that two competing and
independent sources of noise allow for coherent transmission of electronic excitations through the
chain. That could, for instance, find many applications in quantum communication protocols using
solid-state devices [61]. Now, we evaluate the robustness of a quantum-state transfer protocol [42]
against such generalized disorder sources.

First, let us make further assumptions towards the configuration of the system. We now consider
a chain made up by N + 2 sites [described by the very same Hamiltonian in Eq. (1) now with
N → N + 2], such that the first and last one will act as, respectively, sender and receiver parties.
For those, particularly, we set ϵ1 = ϵN+2 = 0 and J1 = JN+1 = g that is, disorder is only present along
the communication channel itself (sites 2 to N + 1). The transfer scheme we employ here is based on
the weak-coupling model [44,45,62] – usually worked out in the context of spin chains – where g is
set several orders ofmagnitudeweaker than the energy scale of the channel. That forces both end sites
to span their own subspace, with a couple of eigenstates taking the form |ψ±

⟩ ≈ (|1⟩±|N+2⟩)/
√
2 so

that state transmission takes place via coherent dynamics between themafter time τ ∼ π/δλ, with δλ
being the (usually very small) energy gap between those states. Naturally, nearly-perfect transmission
shall be expected in ordered chains. If that is not the case, the presence of generalized disorder breaks
down the mirror and particle–hole symmetries of the system thus damaging the effective two-body
coupling between the ends of the chain [45].

We are now about to show that a high-fidelity quantum-state transfer protocol can actually be
realized in the presence of correlated fluctuations, involving the whole channel. Let us outline the
transfer protocol following the original proposal from Ref. [42]. Suppose that Alice wishes to send
an arbitrary qubit |ϕ⟩1 = a|0⟩1 + b|1⟩1 to Bob, where |0⟩i (|1⟩i) denotes the absence (presence) of
an electron at site i. Then, she arranges for an initial state of the form |Ψ (0)⟩ = |ϕ⟩1|0⟩2 . . . |0⟩N+2.
By letting the system evolve following its natural Hamiltonian dynamics, she expects, in the best-case
scenario, to have |Ψ (τ )⟩ = |0⟩1|0⟩2 . . . |0⟩N+1|ϕ⟩N+2 so Bob can properly retrieve the qubit. Ameasure
for the figure ofmerit of the protocol can obtained by averaging the input fidelity over thewhole Bloch
sphere (for details, see [42]):

F (t) =
1
2

+
|cN+2(t)|

3
+

|cN+2(t)|2

6
, (6)
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Fig. 6. Maximum fidelity versus α averaged over 500 independent realizations of disorder in a 50-site channel (52 sites total)
for (a) β = 0 and (b) β = 3. Solid, dashed, dotted lines display results for g/J = 0.2, 0.1, 0.01, respectively. Fmax ≡ max{F (t)}
was evaluated over the time window tJ ∈ [0, 2 × 105

].

which is basically amonotonic function of the transition amplitude between sender and receiver sites,
cN+2(t) ≡

∑
jf

j ∗
1 f jN+2e

−iEjt [cf. Eq. (4)].
Here we are concerned with the maximum fidelity Fmax = max{F (t)} achieved during a given

interval since the dynamics time scale of the system varies considerably from sample to sample. In
particular, we evaluated Fmax over tJ ∈ [0, 2×105

] for about 500 independent realizations of disorder
and averaged them out for every system configuration as shown in Fig. 6. There, it is clear that an
efficient transfer protocol can be performed through such noisy channel once supported by prominent
intrinsic correlations in both sources of disorder [see Fig. 6(b)]. We observe that Fmax tends to saturate
after α > 2, thus pointing out the crucial role of extended states in the process. We also highlight in
Fig. 6(b) that we are able to achieve nearly perfect fidelities provided g is weak enough, in order to
avoid mixing between the channel and sender/receiver subspaces.

What is most impressive in the results shown above is that, even though the noisy channel must
be augmented with strong long-range correlations in order to establish successful quantum-state
transfer rounds, considerable amounts of global disorder are still present in the system due to the
random nature of the phases used to generate the potential landscape. That ultimately destroys the
mirror and particle–hole symmetries of the spectrum [54] and so, intuitively, it should not allow for an
effective resonant interaction between the outer ends of the chain. Fortunately, it actually does. A very
useful picture of this can be put forward by writing down the sender/receiver decoupled Hamiltonian
with renormalized parameters obtained through second-order perturbation theory in g [(for details,
see Ref. [45]), Heff = h1|1⟩⟨1| + hN+2|N + 2⟩⟨N + 2| − J ′(|1⟩⟨N + 2| + h.c.), where

h1 = −g2
∑
k

|f k2 |
2
/Ek, (7)

hN+2 = −g2
∑
k

|f kN+1|
2
/Ek, (8)

J ′ = g2
∑
k

f k2 f
k ∗

N+1/Ek, (9)

with the sum in k running over the normal modes of the channel only. Recalling that sites 1 (sender)
and N + 2 (receiver) are tuned to the middle of the band, ϵ1 = ϵN+2 = 0, the existence of delocalized
states at this region of the spectrum provided the degree of correlations α and β are high enough
(that is, greater than 2) is such that itmasks the overall asymmetric nature of the chain yielding rather
balanced distributions of amplitudes f k2 and f kN+1. Hence, h1 ≈ hN+2 what triggers an effective two-
site dynamics with negligible local impurities. Moreover, since the renormalized parameters [Eqs.
(7) through (9)] scales with E−1

k , the outskirts of the band, filled by localized-like states (thus more
spatially asymmetric), have a much weaker influence on them.
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Fig. 7. Fraction of samples (%) satisfying F (t) > 0.9 and F (t) > 0.95 versus time in units of τh = π J/g2 . We gathered 500
independent disorder realizations for α = 4, β = 3, N = 50, and g = 0.01J .

3.3. Timing

Previously, we discussed the state-transfer figure of merit by focusing on the fidelity statistics
over a fixed time interval. That allowed us to evaluate the prospect of generating an effective two-
state (Rabi-like) dynamics between the first and last sites of the chain under the influence of long-
range-correlated disorder. On the practical side, though, one should let Bob know in advance the
time (at least approximately) the state is supposed to arrive at his location. Disorder, however, will
unavoidably lead to timing errors unless precise knowledge over the configuration of the chain at
every realization is available. Still, it is convenient to establish a proper measurement time window
with higher chances of getting the state intended to, compatible to the type of disorder present in the
system.

To see about that, let us first discuss how the transfer time responds to the hopping strengths of
the chain. We recall that the transfer time for the effective two-site model is given by π/δλ, with the
gap δλ = 2|J ′| [see Eq. (9)]. Given a uniform distribution of on-site potentials (that is, ϵn = ϵ) in a
channel featuring an evennumber of sitesN , it has been shown inRef. [62] that the effective coupling J ′
between the outer ends of the chain can be expressed through a surprisingly simple formula (see [62]
for details),

J ′ = g2 J3J5 · · · JN−1

J2J4 · · · JN
(−1)

N
2 (10)

Therefore, we readily see that for homogeneous couplings, say Ji = 2J above, the transfer time is
τh = π J/g2. Taking our disorder configuration into account, we expect that the transfer time τ
associated with higher fidelities (close to unity) falls within the vicinity of τh.

Fig. 7 shows the fraction of samples displaying F (t) > 0.9 and F (t) > 0.95 at times ranging from
t = 0.5τh to t = 1.5τh. We readily note that about 50% of the disorder realizations had fidelities
above 0.9 at specific times close to τh. Upon increasing this threshold to 0.95, the fraction reaches
slightly over 30%. This is expected because the fidelity here is largely an oscillating function and so as
we look towards the peak at some well defined time, the number of samples satisfying the threshold
will decrease.

Last, we mention that, on the one hand, quantum communication protocols via weak-coupled
ends [44,45,62] requires characteristically long times to perform the transfer when compared to
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fully-engineered schemes [43]. On the other hand, it is shown to be very robust against static
perturbations [55]. The transfer time can be substantially shortened by optimizing the outer couplings
in order to achieve the so-called ballistic regime for quantum-state transfer [63]. The influence of
correlated disorder on this regime is a subject worth to investigate in the future.

4. Conclusions

In this work we considered an electronic tight-binding chain with correlated disorder in both
diagonal and off-diagonal terms of the Hamiltonian. The fractional Brownian motion was used to
generate each corresponding disorder distributions. We analyzed the localization properties of the
system, accounted by the participation ratio of its entire spectrum, and also evaluated the electronic
dynamics profile along the chain. We showed that such model supports extended states only if both
sources of disorder contain strong intrinsic long-range correlations with both α > 2, and β > 2.
We also investigated a possible application for this class of chains in the context of quantum-state
transfer protocols. By perturbatively coupling both communicating parties to the noisy chain, it is
possible to transmit an excitation from one end of the chain to another with very high fidelities as
long as a proper set of delocalized states is available in the spectrum in order to overcome the spatial
asymmetry induced by disorder.

By tackling the properties of a standard electronic hopping model augmented with twofold long-
range-correlated disorder, we set the ground for further studies along that direction involving other
classes ofmany-body interactingmodels. Moreover, we also highlight the importance of investigating
special types of disorder that might occur in real solid-state devices for quantum information
processing tasks [40].
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