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Abstract

In this work, we investigate the effects of correlated disorder on the
quantum Heisenberg spin chain. The exchange couplings between adja-
cent spins are modeled as a disordered distribution with inverse linear
correlation function controlled by a parameter γ. The Cholesky decompo-
sition method is employed to generate the spin-spin coupling that adheres
to this correlation structure. By analyzing the autocorrelation function,
we observe the influence of the correlation parameter γ on the decay be-
havior of the autocorrelation. Furthermore, we study the eigenstates of
the Hamiltonian in the one-magnon subspace and calculate the density of
states and the participation ratio, providing insights into the localization
properties of the system. Our findings suggest that introducing corre-
lated disorder significantly alters the physical properties of the spin chain,
which could have implications for understanding disordered quantum sys-
tems and developing state transfer protocols with reasonable fidelity.
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1 Introduction

The phenomenon of Anderson localization, first introduced by P. W. Anderson
in 1958 [Anderson 1958], describes the suppression of electronic wave diffusion in
a disordered medium due to quantum interference. In one-dimensional 1D sys-
tems, the presence of uncorrelated disorder leads to the exponential localization
of all electronic states, independent of disorder strength [Abrahams et al. 1979].
However, the introduction of correlated disorder complicates the scenario, giv-
ing rise to novel localization phenomena. Correlated disorder introduces spatial
correlations between the disorder potentials, thereby influencing the localization
properties of electronic states in profound ways. For instance, long-range corre-
lations can induce extended states even in 1D systems, which stands in contrast
to the expectations from the theory of uncorrelated disorder [Izrailev & Krokhin 1999,
Rodriguez et al. 2003]. The nature and extent of these correlations are critical
in determining both the localization length and the overall transport character-
istics of the system. Recent studies have examined the effects of various types of
correlated disorder, such as power-law correlated disorder [Izrailev et al. 2012],
Lorentzian-distributed disorder [Mourik et al. 2023], and random dimer mod-
els [Dunlap et al. 1990], on the localization behavior of 1D systems. These
investigations have offered deeper insights into how correlations modify key
parameters associated with localization, including the localization length and
the structure of the localized states. A particularly interesting development is
the interplay between correlated disorder and non-Hermitian effects, explored
in recent works [Longhi 2019]. In these systems, localization properties are
markedly altered, leading to phenomena such as the non-Hermitian skin ef-
fect [Yao & Wang 2018], where bulk states become localized at the system
boundaries. Additionally, external fields or particle interactions in the presence
of correlated disorder can further enrich the localization landscape [Luitz et al. 2015,
Modak & Mukerjee 2015], either enhancing or diminishing localization, depend-
ing on the system’s specific attributes.

The reduction of thermal conductivity in insulators and semiconductors through
the incorporation of spatial correlations within intrinsic disorder has been ex-
tensively studied using large-scale simulations, involving tens of millions of
atoms [Thébaud et al. 2023]. These simulations showed that isotropic long-
range correlations in defect distributions could substantially reduce phonon life-
times and thermal conductivity, potentially by an order of magnitude at room
temperature. This research established a framework for modulating thermal
transport via structural correlations and identified optimal correlation patterns
for minimizing thermal conductivity. Experimental realizations of these struc-
tures for practical applications were also discussed. Furthermore, in [Yang et al. 2024],
it was shown that correlated disorder critically affects photonic transport. Quasiperi-
odic lattices exhibit nearly ballistic transport, while amorphous lattices show
partial transport disruption, and fully random lattices deviate entirely from
ballistic behavior. The photon spreading coefficient was found to depend on the
characteristic length scale of the disorder, offering a clear classification of disor-
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der types in materials. Numerical studies in [Duthie et al. 2022] revealed that
an unusual and robust multifractal regime emerges in a one-dimensional quan-
tum chain with exponentially correlated disorder, beyond a threshold disorder
strength. Below this threshold, mixed and extended regimes exist at weaker
disorder strengths. In this multifractal regime, the states are uniformly spread
across a continuous segment of the chain, with lengths that scale in a nontriv-
ial manner with system size. This anomaly influences the system dynamics,
enabling ballistic transport of a localized wavepacket, in contrast to the subdif-
fusive behavior typically observed in multifractal systems. A novel paradigm of
dynamical quantum phase transitions driven by internal disorder potential cor-
relations was proposed in [Khan et al. 2023], which explored anomalous phase
transitions due to infinite disorder correlations and quench dynamics between
random and pure Hamiltonians. Additionally, phase transitions involving a
prequench white-noise potential and delocalization features in the correlated
Anderson model were investigated. In [Neverov et al. 2024], the effects of cor-
related disorder on the superconducting properties of disordered superconduc-
tors were analyzed using an attractive Hubbard lattice Hamiltonian with point
interactions, designed to model s-wave Cooper pairing. The study examined
how spatial correlations in disorder influence the density of states and the su-
perconducting coupling constant matrix elements. It was demonstrated that
surface superconductivity can persist in the presence of weak to moderate bulk
disorder [Bragança et al. 2024]. Interestingly, under moderate disorder condi-
tions, the surface critical temperature may increase depending on the disorder’s
intensity and correlation characteristics.

The long-held belief that all states in 1D disordered systems with short-range
hopping and uncorrelated potential are localized was challenged in [Lin & Gong 2024].
By coupling a disordered chain (with localized states) to a free chain (with ex-
tended states), distinct localization behaviors were observed in overlapped and
non-overlapped regimes, without a phase transition. A significant suppression of
localization occurred in the non-overlapped regime, influenced by the strength
of inter-chain coupling and the energy shift between chains, suggesting local-
ization lengths comparable to system sizes even under strong disorder. This
was verified through extensive numerical simulations. Similarly, localization-
delocalization transitions in double-chain models with long-range correlations
were investigated in [Zhao et al. 2020]. The exact positions of mobility edges
were identified, with results consistent with numerical transfer matrix meth-
ods. A second-order quantum phase transition due to inter-chain correlations
in on-site energies was discovered, indicated by a critical exponent jump in lo-
calization length. Without inter-chain correlation, the critical exponent was
determined by the chain with the weaker long-range correlation. Finally, the
transfer of a magnon state across a quantum Heisenberg model with correlated
disorder and random magnetic fields was examined in [Junior et al. 2023]. The
disorder followed a power-law spectrum distribution, while the magnetic fields
were uniformly random. Numerical analyses focused on the interplay between
disorder and correlation in transferring the magnon state along the chain, eval-
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uating transfer fidelity and end-to-end concurrence to identify conditions under
which high-fidelity state transfer protocols are feasible despite the disorder.

In recent years, exploring entanglement as a tool for studying localization in
disordered quantum chains has gained significant attention [Mohdeb et al. 2020,
Lin & Chen 2023]. The role of entanglement measures, such as concurrence and
entanglement entropy, has become crucial in characterizing quantum phases and
understanding the transitions between localized and extended states in these sys-
tems. These works demonstrate how these measures provide insights into the im-
pact of disorder correlations on quantum state transfer and localization, opening
new avenues for analyzing quantum transport in disordered systems. The au-
thors in ref. [Lin & Chen 2023] modifies a quantum algorithm for many-body
localization (MBL) by adding a measurement on a quantum ancilla, enabling
the determination of dynamics through both ensemble averages and quantum
interference. The approach enhances dephasing and accelerates entanglement
growth, significantly reducing saturation times in the deep MBL phase. Nu-
merical simulations support these findings, showing entanglement enhancement
even for smaller disorder strengths. This method provides a faster means to
investigate long-time MBL behavior. The ref. [Mohdeb et al. 2020] explores en-
tanglement measures, specifically concurrence and entanglement entropy (EE),
in quantum spin chains with random long-range couplings decaying spatially as
a power law. Using the strong disorder renormalization group (SDRG) method
and numerical diagonalization, the work uncovers a critical behavior with loga-
rithmic EE enhancement and power-law decay in concurrence, influenced by the
coupling decay exponent α. It also identifies distinctions in results from SDRG,
numerical diagonalization, and DMRG for varying α.

In this work, we present new results in the context of localization and quantum
state transfer in models with correlated disorder. Specifically, we investigate the
effects of correlated disorder on the quantum Heisenberg spin chain, where the
exchange couplings between adjacent spins are modeled using a disordered dis-
tribution with an inverse linear correlation function, parameterized by γ. To
ensure the spin-spin couplings adhere to this correlation structure, we employ
the Cholesky decomposition method [Fritzsche et al. 2024]., which allows us to
generate a correlated disorder with a desired covariance matrix. The Cholesky
decomposition factorizes the correlation matrix into a product of a lower tri-
angular matrix and its transpose, ensuring that the resulting disorder config-
uration maintains the prescribed correlation characteristics. This approach is
particularly useful for generating large systems with correlated disorder, as it
efficiently captures the spatial correlation between adjacent spins while adhering
to the statistical properties dictated by the inverse linear correlation function.
Our analysis begins with the autocorrelation function, which we use to exam-
ine how the parameter γ influences the decay behavior of correlations. This
approach provides insight into how different levels of correlation affect the sta-
tistical properties of disorder in the spin chain. We then focus on the eigenstates
of the Hamiltonian in the one-magnon subspace, analyzing the behavior of the
participation ratio and the state transfer fidelity. The participation ratio cal-
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culations shed light on the system’s localization characteristics, revealing how
correlated disorder impacts the spatial distribution and extent of the eigenstates.
Using the eigenstates obtained through exact diagonalization, we compute the
evolution operator to investigate the transfer of an initially localized spin state
from one end of the chain to the opposite end, spanning approximately 100 sites.
Our numerical calculations demonstrate the specific limits of disorder and cor-
relation required to achieve maximized state transfer fidelity. These calculations
provide valuable benchmarks for understanding the interplay between disorder
and quantum transport, contributing to the broader field of research on corre-
lated disordered systems.

2 Model and Formalism

We considered a disordered chain of N Heisenberg spins (S = 1/2). The Hamil-
tonian for this model was given by [Nunes et al. 2016, Kosevich & Gann 2013,
de Moura et al. 2002, Evangelou & Katsanos 1992]:

H = −
N∑
n=1

[
Jn~Sn · ~Sn+1

]
(1)

where Jn represents the exchange couplings connecting sites n and n+1. In our
work, we considered Jn as a correlated disordered distribution with correlations
between Jn and Jm defined by the function C(r = |n − m|) = 1

1+γr , where
γ is a tunable parameter that controls the correlation strength. To generate
the sequence Jn with this correlation, we employed the Cholesky decompo-
sition method [Fritzsche et al. 2024]. The process began by constructing the
covariance matrix C with elements Cnm = C(|n −m|). This matrix was then
decomposed using the Cholesky decomposition into the product of a lower tri-
angular matrix L and its transpose, C = LLT . Given a vector U of independent
standard normal random variables, the correlated sequence Zn was obtained as
Zn = L · U . This ensures that the sequence Zn has the desired correlations.
After generating Zn, we normalized it to have zero mean and unit variance,
〈Zn〉 = 0 and 〈Z2

n〉 − 〈Zn〉2 = 1. The spin coupling distribution was therefore
generated as Jn = 2 + W tanh (Zn) where W is a tunable parameter that con-
trols the strength of the correlation. The Cholesky decomposition is a useful
method for generating correlated disorder however, for long chains (large N),
this method can become inefficient and is not highly recommended. The primary
limitation is that the Cholesky decomposition has a computational complexity
of O(N3), making it increasingly slow and resource-intensive as the system size
grows. We would like to emphasize that it is now experimentally possible to
produce correlated disorder in various types of systems. For example, a re-
cent study [Vynck et al. 2023] investigated a broad range of optical systems
featuring various types of correlated disorder. In optical systems, several key
techniques are used to study correlated disorder: Optical lattices create con-
trollable disorder patterns via laser interference. Disordered photonic crystals
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Figure 1: Autocorrelation function C(r) versus r = |i − j| and γ. The figure
shows different decay behaviors depending on the value of γ.

and waveguide arrays introduce variations in dielectric properties or waveguide
parameters to explore light propagation and localization. Random media exper-
iments involve adding scatterers to study wave scattering, while metamaterials
with engineered disorder reveal novel optical phenomena. Nonlinear optical
systems provide insights into how disorder affects nonlinear interactions. Thus,
it is now experimentally feasible to generate various forms of correlated disor-
der, including those with unusual correlation functions. We will explore now the
behavior of Jn and its dependence on the correlation parameter γ. The autocor-
relation function C(r) = [〈JnJn+r〉 − 〈Jn〉〈Jn+r〉]/[〈J2

n〉 − 〈Jn〉2] was computed
as a function of r for several values of γ. The main results of these calculations
can be found in Fig. 1. We observed that for γ →∞, the function C(r) decayed
rapidly, indicating a short-range correlated disorder. As γ decreased, the cor-
relations became longer-ranged, affecting the physical properties of the system.

We were interested in studying the one-magnon subspace of this Hamiltonian.
The ground state |0〉 of the system contained all spins pointing in the same
direction. If a spin deviation occurred at a site n, this excited state was
described by |n〉 = S+

n |0〉. The eigenstates of the Hamiltonian were there-

fore given by |Ψj〉 =
∑N
n=1 f

j
n|n〉, where the coefficients f jn satisfied the equa-

tion [Nunes et al. 2016, Evangelou & Katsanos 1992]:

(Jn + Jn−1)f jn − Jnf
j
n+1 − Jn−1f

j
n−1 = 2Ejf

j
n (2)

We express the previous equation in matrix form and use exact diagonalization
to solve the disordered Heisenberg chain. This method allows us to compute
the eigenvalues and eigenvectors of the Hamiltonian matrix, which are essen-
tial for analyzing the system’s behavior. By obtaining the eigenstates, we can
calculate various system properties, including the density of states (DOS), de-
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noted as DOS(E) =
∑
j δ(E − Ej), where {Ej} represents the eigenvalues.

We can also calculate the participation ratio, which measures the spread of the
wave function across the Hilbert space of the system. The participation ra-

tio is defined by Pj =
[∑N

n=1 |f jn|4
]−1

. It is important to note that Pj re-

mains constant for localized states and is proportional to N for extended states
(source: [Izrailev et al. 2012]). In general, calculations of the participation ratio
require many averages (typically 200 to 400 samples, or sometimes even more).
Therefore, our study did not focus directly on the participation Pj of each eigen-
value. Instead, we used different samples to calculate an average participation
ratio, 〈P 〉. Specifically, for a given energy E, the average 〈·〉 was computed
using all data obtained within a small energy window, i.e., considering all the
eigenvalues in the region [E − δE/2, E + δE/2] with δE ≈ 0.05.

The efficiency of quantum state transfer in this system is studied by adding the
terms −g~S0 · ~S1+h0~S0 and −g~SN · ~SN+1+hN+1

~SN+1 to the initial Hamiltonian
(eq. 1). Here, the parameter g represents the coupling between the additional
spins and the system, while h0 and hN+1 are external magnetic fields that we
adjust to ensure the diagonal energy terms for spins 0 and N + 1 match a
target energy E. To investigate the quantum state transfer from spin 0 to spin
N + 1, we diagonalize the complete Hamiltonian, now composed of spin 0, the
channel with N spins, and the final spin N + 1. In this context, the model
defined in eq. 1 with N spins effectively functions as a channel connecting spin
0 to spin N + 1. We stress that in the context of quantum state transfer, the
spins 0 and N + 1 added to the model serve as the source S and the receiver
R , respectively, where spin 0 acts as the source S and spin N + 1 acts as the
receiver R. Once this modified Hamiltonian, denoted HQST , is diagonalized,
we compute the time evolution operator e−iHQST t, which governs the system’s
dynamics. This operator is used to evolve the state from the initial configuration,
|Ψ(t = 0)〉 =

∑N+1
n=0 fn(t = 0)|n〉, with fn(t = 0) = δn,0, to the final state. The

efficiency of the quantum state transfer is quantified using the fidelity function
F (t), which measures the overlap between the initial and final states. Specifically,

we use the expression F (t) = 1
2 + |fN+1(t)|

3 + |fN+1(t)|2
6 to assess the success of

the state transfer [Bose 2003]. The maximum fidelity, Fmax, is determined as
the highest value of F (t) over the time interval [105, 106].

3 Results

In this section, we present numerical calculations to investigate the behavior of
the density of states (DOS(E)), participation ratio 〈P 〉(E), and fidelity Fmax
in a Heisenberg model with inverse linear correlations in the spin-spin cou-
pling. The density of states (DOS(E)) and the participation ratio are analyzed
using the exact diagonalization of the Hamiltonian (eq. 1). The fidelity is com-
puted through the temporal evolution operator, obtained by diagonalizing the
modified Hamiltonian of the full system, which includes the boundary spins
(0 and N + 1) and the N internal spins as described in equation 1. These
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Figure 2: Participation ratio 〈P 〉 as a function of system size N for γ = 0.01
and 0.5 with W = 0.5 and 1. For γ = 0.5, the ratio shows minimal dependence
on N , indicating localization, while for γ = 0.01, it increases with N , suggesting
a possible transition to extended states.

methods allow us to explore the system’s behavior across various disorder pa-
rameters and system sizes. In our initial analysis, we examine the behavior
of the participation ratio 〈P 〉(E) as a function of energy E for various system
sizes N and two different values of the parameter γ. We consider system sizes
N = 1000, 2000, 4000, 8000, 16000, and 24000, with γ set to 0.01 and 0.5, and
W = 0.5 and W = 1. The participation ratio is a key quantity for under-
standing localization in disordered systems, reflecting the spatial extent of the
wavefunctions. For γ = 0.5, the participation ratio for E > 0 shows a relatively
weak dependence on the system size N , suggesting a localized phase where
wavefunctions are spatially confined. As N increases, the participation ratio
remains relatively constant, indicating that the localization length is roughly
independent of system size. In contrast, for γ = 0.01, the participation ratio
shows significant dependence on N , particularly in the low-energy region. The
increase in 〈P 〉(E) with N suggests a potential transition to extended states,
though this may be influenced by finite-size effects. Further investigation is
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Figure 3: (a-b) Participation ratio 〈P 〉 versus system size N for various disorder
strengths W and energies E. The data shows strong localization at W = 0.5
and E = 0.25 with 〈P 〉 ∼ N0.90, and saturation at W = 1, indicating robust
localization. (c-d) Participation ratio 〈P 〉(E) versus disorder parameter γ for
E = 0.25 and 0.5. For γ > 0, 〈P 〉 remains strongly localized, while for γ close
to zero, it increases with N0.9, but still indicates localization.

needed to determine if this trend reflects a true delocalization transition or if it
is merely an artifact of finite-size effects. Analyzing the scaling of 〈P 〉(E) with
N in more detail will be crucial to understanding the system’s behavior.

We present figures (see fig. 2) showing the participation ratio 〈P 〉 as a function of
system size N for γ = 0.01 with W = 0.5, W = 1, and E = 0.25, 0.5, 0.75, 1. For
W = 0.5 and low energy, particularly E = 0.25, the participation ratio follows
a power law 〈P 〉 ∼ N0.90, indicating strong localization in the large N limit.
For W = 1, the participation ratio shows signs of saturation as N increases,
confirming localization in the thermodynamic limit. These results suggest that
localization persists for both disorder strengths, with W = 1 showing clearer
evidence of saturation.

We also examine in fig. 3 〈P 〉(E) as a function of the disorder parameter γ for
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Figure 4: (a-b)Probability distribution of Fmax for E = 1 and varying disorder
parameters γ. For γ = 0.1, Fmax is predominantly less than 1, indicating limited
state transfer, while for γ = 0.01, Fmax is closer to 1, suggesting enhanced state
transfer. c) Fidelity Fmax as a function of disorder strength W for E = 1 and
varying γ. At W = 0.25 and W = 0.5, the fidelity remains high for moderate γ,
but decreases for W > 0.5, even for γ < 1, indicating reduced state transfer.

E = 0.25 and E = 0.5, with system sizes ranging from N = 1000 to N = 24000.
For γ > 0, the participation ratio does not show substantial growth with N ,
indicating Anderson localization. For γ values close to zero, the participation
ratio increases approximately as N0.9, reinforcing the localization observed in
previous results.

Regarding quantum state transfer, we consider a system of N = 102 spins with
energy E = 1. In the quantum state transfer experiment, we introduced two
additional spins to the previously studied model: one at position n = 0, acting
as the source for the initial quantum state, and a receiver spin at the far right
of the chain. Thus, the system now includes these two additional spins. For
our study, we set N = 102, where the two additional spins are combined with
the internal chain of 100 spins, identical to those described by the Hamiltonian
in equation 1. The external fields h0 and hN+1 are adjusted such that the
diagonal energy terms associated with spins 0 and N + 1 match the energy E.
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The probability distribution of Fmax as a function of Fmax for E = 1 and varying
γ shows that, for γ = 0.1, a large portion of the distribution is concentrated at
Fmax � 1, indicating limited quantum state transfer. However, for γ = 0.01
and low energies, the distribution shifts closer to Fmax ≈ 1, suggesting enhanced
state transfer and potential delocalization. The figure 4 illustrates Fmax at
E = 1 as a function of γ for different disorder strengths: W = 0.25, 0.5, 0.75,
and 1. For W = 0.25 and W = 0.5, the fidelity remains near 0.9, indicating
efficient state transfer. However, for W > 0.5, even when γ < 1, the fidelity
begins to deviate from 1, indicating reduced state transfer. As γ approaches
zero, the fidelity Fmax approaches 1 even in the presence of strong disorder,
highlighting enhanced state transfer at low γ. It is important to note that these
state transfer experiments were conducted at E = 1, higher than the uniform
mode at E = 0, to investigate the impact of disorder correlations on quantum
state transfer in regions away from very low energy, where disorder effects are
less pronounced. We also performed quantum state transfer experiments for
slightly larger N values (202− 502), and the results are qualitatively the same:
(i) low fidelity for γ > 0 and non-zero energy E, and (ii) fidelity close to 1 as
γ → 0 and in the low-energy region. For all values of γ considered, we can
observe a slight decrease in Fmax as N increases. However, for very small γ (for
example, 0.01 and 0.1), despite this decrease, we still find a reasonable level of
fidelity in the quantum state transfer process.

4 Summary

In this study, we have explored the behavior of a disordered 1D system with
non-reciprocal disorder, focusing on the participation ratio 〈P 〉 and its depen-
dence on energy E, system size N , and disorder strength parameter γ. Our
analysis revealed distinct phases based on the value of γ. For higher values of
γ, the system exhibits localization, as indicated by a participation ratio that
becomes independent of system size for E > 0. This suggests a localized phase
where wavefunctions remain spatially confined, with the localization length not
depending significantly on N . On the other hand, for smaller values of γ, the
participation ratio increases with system size, particularly at low energies, sug-
gesting a potential transition to extended states. This behavior raises the possi-
bility of a delocalization transition, although finite-size effects need to be further
investigated to confirm this trend. The scaling of the participation ratio with
system size is a key tool in understanding the nature of these transitions and
requires further detailed analysis. The study also examined the effect of disorder
on quantum state transfer in a chain of N = 102 spins, where two additional
boundary spins were introduced to control the energy levels at both ends of the
chain. The results showed that the fidelity of quantum state transfer, measured
by Fmax, exhibits strong dependence on γ. For γ = 0.1, a large portion of the
fidelity distribution was concentrated at low values (Fmax � 1), indicating poor
state transfer. However, for smaller values of γ (e.g., 0.01), the fidelity increased
significantly, suggesting enhanced state transfer and potentially indicating de-
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localization. The results also demonstrated that disorder strength W plays a
critical role in the efficiency of state transfer, with higher disorder values leading
to reduced fidelity.

The results of this study are significant in understanding the interplay between
disorder, system size, and the localization-delocalization transition in disordered
quantum systems. The transition between localized and extended states is a
central phenomenon in condensed matter physics, particularly in systems where
disorder plays a crucial role in the system’s properties. The observation that
the participation ratio remains constant for larger systems at higher γ and in-
creases with system size at lower γ is consistent with the expected behavior of
Anderson localization in disordered systems. These findings are particularly rel-
evant for quantum information processing and quantum state transfer, as they
suggest that minimizing disorder could be a strategy for enhancing quantum
coherence and fidelity of information transfer. The enhanced state transfer ob-
served at lower γ could be useful in the development of quantum communication
protocols, where maintaining high fidelity is essential for efficient data transmis-
sion. Our study also contributes to the ongoing research on the role of disorder
in quantum systems, offering new perspectives on how non-reciprocal disorder
impacts quantum state transfer and the localization behavior.

Furthermore, our results open several exciting directions for future research.
One promising avenue is to extend the study of non-reciprocal disorder to
higher-dimensional systems, which could offer insights into the robustness of
the delocalization transition in more complex geometries. Additionally, a more
comprehensive exploration of the finite-size effects and their impact on the lo-
calization transition would help in better understanding the scaling behavior
of quantum systems in the presence of disorder. Finally, experimental realiza-
tions of disordered quantum systems, such as those based on ultracold atoms or
superconducting qubits, could offer an experimental platform to test the theo-
retical predictions made here, allowing for a deeper understanding of the role of
disorder in quantum state transfer and other quantum phenomena.

In conclusion, this work provides significant contributions to our understanding
of the complex interplay between disorder, system size, and quantum state trans-
fer. The results suggest that minimizing disorder may be crucial in enhancing
quantum coherence and improving the efficiency of state transfer, which is vital
for the development of future quantum technologies. With continued research
in this area, we can expect further advances in our understanding of disordered
quantum systems, offering new insights into localization phenomena and the
transmission of quantum information in disordered media.

5 Acknowledgments

This work was supported by CNPq, CNPq-Rede Nanobioestruturas, CAPES,
FINEP (Federal Brazilian Agencies), FAPEAL (Alagoas State Agency), and
FACEPE (Pernambuco State Agency).

12



References

[Abrahams et al. 1979] ABRAHAMS E, ANDERSON PW, LICCIARDELLO
DC & RAMAKRISHNAN TV 1979. Scaling Theory of Localization: Ab-
sence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 42: 673-
676.

[Anderson 1958] ANDERSON PW 1958. Absence of Diffusion in Certain Ran-
dom Lattices. Phys. Rev. 109: 1492-1505.

[Bragança et al. 2024] de BRAGANÇA RH, de MORAES LMT, ROMA-
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PÉREZ LS, SCHEFFOLD F, SAPIENZA R, VIGNOLINI S & SÁENZ JJ
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