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Magnon-lattice propagation in a Morse chain:
the role played by the spin-lattice interaction
and the initial condition

MARCONI SILVA SANTOS JUNIOR, MESSIAS DE OLIVEIRA SALES &
FRANCISCO ANACLETO BARROS FIDELIS DE MOURA

Abstract: Our research focuses on studying magnon dynamics in a Morse lattice. We used
a Heisenberg Hamiltonian to represent the spins while a Morse formalism governed the
lattice deformations. The strength of the spin-spin interaction depended on the distance
between neighboring spins, which followed an exponential pattern. We explored various
initial conditions for the lattice and spin wave function and observed how they affected
the magnon-lattice propagation. Additionally, we analyzed the impact of the parameter
that controlled the difference in time scales between spin and lattice deformation
propagation.
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INTRODUCTION

The magnon dynamics under the effect of magnetoelastic coupling has attracted a high interest
Masciocchi et al. (2022), Chen et al. (2023), Luo et al. (2023), Gries et al. (2022), Cong et al. (2022),
Challali et al. (2023), Sun et al. (2022), Holanda et al. (2018), Xiong et al. (2017), Li et al. (2020), Hayashi
& Ando (2018), Weiler et al. (2012), Zhang et al. (2019, 2020), Sasaki et al. (2021), Mingran et al. (2020),
Morais et al. (2021), Sales et al. (2018, 2023). In Chen et al. (2023), the authors investigate the magnon
propagation using a Boltzmann method framework which includes magnon-phonon interaction and
diverse scattering terms. They solved the effective equations and detailed some abnormal phenomena
observed in several experiments. Zhang et al. (2019) demonstrates that the magnon-phonon coupling
controls the thermal Hall effect on a ferromagnetic square lattice featuring Dzyaloshinskii-Moriya
interaction. Li et al. (2020) reported the existence of collective antiferromagnetic magnon-phonon
pair formation in an insulator 𝐶𝑟2𝑂3. The results in ref. Hayashi & Ando (2018) indicate that the
magnon-phonon coupling could amplify spin pumping in a Pt/YIG bi-layer film. Mingran et al. (2020)
reported the first observation of the magneto-rotation coupling in a perpendicularly anisotropic
magnetic film. They also introduce the theoretical background. Sales et al. (2018) investigated the
magnon propagation in a Fermi-Pasta-Ulam. They studied the spin dynamics using a quantum
Heisenberg Hamiltonian with the ferromagnetic ground state. The magnon-lattice interaction was
introduced by considering the spin-spin interaction terms as a function of the distance between the
spins. Solving the dynamics equations, they demonstrated the existence of a magnon-soliton mode.
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Morais et al. (2021) investigate the propagation of magnon states coupled to the harmonic modes of a
linear lattice. It was considered an adiabatic approximation to deduce an effective quantum equation
to describe the magnon dynamics. The authors demonstrate the existence of a self-trapping transition
to the magnon state. Sales et al. (2018), the dynamics of magnon-lattice it was considered by writing
the Heisenberg Hamiltonian in a nonlinear Morse chain. The authors demonstrate that the lattice
deformation embodies a finite fraction of the spin wave function in the robust spin-lattice coupling
regime, generating a mobile magnon-lattice excitation.

In this work, we revisit the problem of magnon dynamics in a Morse lattice. We designed the
spin-spin coupling using a Heisenberg model. The intensity of the spin-spin interaction fits an
exponential dependent on the distance between nearest-neighbor spins. This framework provides
an effective spin-lattice interaction, and a single tunable parameter controls the intensity of this
interaction. We will investigate the magnon-lattice dynamics considering a wide range of initial
conditions. Our calculations indicate that the magnon-lattice pair formation strongly depends on the
initial condition’s width. We will also investigate the dependence of the magnon-lattice propagations
as a function of the time-scales difference between spin and lattice propagation. Our results suggest
that magnon-lattice pair formation occurs for a small amount of magnon-lattice interaction as the
time scale difference increases.

MODEL

Our model is a quantum one-dimensional Heisenberg model with 𝑁 spin 1/2 on a nonlinear Morse
chain. The spin-spin interaction is strongly dependent on the distance between nearest-neighbor
spins. The complete quantum Hamiltonian is given by Evangelou & Katsanos (1992), de Moura et al.
(2002):

𝐻𝑆 = −
𝑁

∑
𝑦=1
{𝐽𝑦,𝑦+1 ⃗𝑆𝑦 ⃗𝑆𝑦+1}. (1)

The interaction between spins 𝑦 and 𝑦 + 1 is given by 𝐽𝑦,𝑦+1 = 𝐽𝑒
−𝛼(𝑋𝑦+1−𝑋𝑦). 𝑋𝑦 is the displacement of

spin 𝑦 from it equilibrium position. We emphasize again that we are dealing with a one-dimensional
geometry. Therefore, without lattice vibrations, all spins are in equally spaced positions (in
equilibrium, the distance between nearest-neighbor spins is the lattice spacing, an adimensional
parameter 𝑙𝑠 = 1). However, our model will consider that the spins can move around their equilibrium
position. The spatial movement of the spins produces variations in the value of the spin-spin
interaction. Our model will consider that these variations follow this exponential dependence shown
earlier. The parameter 𝛼 characterizes this exponential dependence within this formalism, thus
controlling the effective spin-lattice interaction. The lattice dynamics here will be governed by a Morse
potential represented by the classical Hamiltonian Hennig et al. (2007), Ikeda et al. (2007), de Lima &
de Cavalho (2012), Carrillo et al. (2013):

𝐻𝐿 =
𝑁

∑
𝑦=1

𝑃2𝑦
2

+
𝑁

∑
𝑦=1

{1 − 𝑒𝑥𝑝[ − (𝑋𝑦 − 𝑋𝑦−1)]}
2. (2)
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Here, 𝑃𝑦 represents the particle moment at site 𝑦. We emphasize that we are using the dimensionless
representation considered in ref. Hennig et al. (2007). The time is scaled as 𝑡 → 𝜔𝑡, with𝜔 representing
the frequency of oscillations around the minimum of the Morse potential. The energy scale is
measured in units of the depth of the Morse potential Hennig et al. (2007). The magnon dynamics
is represented by the time-dependent Schrödinger equation for (ℏ = 1) defined as Sales et al. (2018):

𝑖
𝑑𝑢𝑦(𝑡)

𝑑𝑡
= 𝜏

2
{[𝑒𝑥𝑝(−𝛼(𝑋𝑦+1 − 𝑋𝑦))

+ 𝑒𝑥𝑝(−𝛼(𝑋𝑦 − 𝑋𝑦−1))]𝑢𝑦(𝑡)
− 𝑒𝑥𝑝(−𝛼(𝑋𝑦 − 𝑋𝑦−1))𝑢𝑦−1(𝑡)
− 𝑒𝑥𝑝(−𝛼(𝑋𝑦+1 − 𝑋𝑦))𝑢𝑦+1(𝑡)}. (3)

Figure 1. The lattice deformation 𝑍𝑛 versus 𝑡 and 𝑛 where 𝑛 = 𝑦 − 𝑁/2 = 0 represents the center of the chain.
Calculations were done for 𝑣0 = 1, 𝜎𝑆 = 0.5, 𝜎𝐿 = 0.5, 𝜏 = 10 and 𝛼 = 0, 1, 2, 3

To clarify, we want to point out that the previous equations were written considering a
ferromagnetic ground state denoted as |0⟩ and a set of kets represented by |𝑦⟩ = 𝑆+𝑦|0⟩. Therefore, the
𝑢𝑦(𝑡) value corresponds to the wave function amplitude associated with the spin deviation at position
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Figure 2. Magnon and lattice deformation velocities [𝑉𝑆(black solid line) and 𝑉𝐿(red dotted line)] versus 𝛼. We have
considered 𝑣0 = 1, 𝜎𝑆 = 0.5, 𝜎𝐿 = 0.5 and 𝜏 = 2.5 up to 15.

𝑦. By utilizing the Hamilton formalism, we have derived the equations governing the dynamics of the
lattice:

𝑑2𝑋𝑦
𝑑𝑡2

= {1 − 𝑒𝑥𝑝[−(𝑋𝑦+1 − 𝑋𝑦)]}𝑒𝑥𝑝[−(𝑋𝑦+1 − 𝑋𝑦)]

− {1 − 𝑒𝑥𝑝[−(𝑋𝑦 − 𝑋𝑦−1)]}𝑒𝑥𝑝[−(𝑋𝑦 − 𝑋𝑦−1)]

+ 𝐽𝛼
2
[𝑒−𝛼(𝑋𝑦−𝑋𝑦−1)(𝑢∗𝑦𝑢𝑦 + 𝑢

∗
𝑦−1𝑢𝑦−1)

− 𝑒−𝛼(𝑋𝑦+1−𝑋𝑦)(𝑢∗𝑦𝑢𝑦 + 𝑢
∗
𝑦+1𝑢𝑦+1)

+ 𝑒−𝛼(𝑋𝑦+1−𝑋𝑦)(𝑢∗𝑦+1𝑢𝑦 + 𝑢
∗
𝑦𝑢𝑦+1)

− 𝑒−𝛼(𝑋𝑦−𝑋𝑦−1)(𝑢∗𝑦−1𝑢𝑦 + 𝑢
∗
𝑦𝑢𝑦−1)]. (4)

It’s important to note that we changed the time scale in the previous equation by rescaling 𝑡 to𝜔𝑡, with
𝜔 representing the frequency of oscillations around the minimum of the Morse potential Hennig et
al. (2007). This step is necessary to account for the difference in timescale between electron dynamics
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Figure 3. The normalized distante between the Magnon and the lattice deformation (𝐷/𝐷𝑚𝑎𝑥) versus 𝛼. Calculations
done for 𝑣0 = 1, 𝜎𝑆 = 0.5, 𝜎𝐿 = 0.5 and 𝜏 = 2.5 up to 15.
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Figure 4. The critical value 𝛼𝑐 versus 𝜏 for 𝜎𝑆 = 𝜎𝐿 = 0.5.

(which is faster) and lattice vibrations (which is slower) Hennig et al. (2007), Davydov (1991), Scott (1992).
To put it simply, this framework involves a factor 𝜏 = 𝐽/(ℏ𝜔) that multiplies the spin equation Hennig
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Figure 5. Magnon and lattice deformation velocities [𝑉𝑆(black solid line) and 𝑉𝐿(red dotted line)] versus 𝛼 computed
using 𝑣0 = 1, 𝜎𝑆 = 0.5, 𝜎𝐿 = 1 and 𝜏 = 2.5 up to 15.

et al. (2007), Davydov (1991), Scott (1992). In our work, we will use 𝐽 = 0.1, which is in alignment
with previous research Hennig et al. (2007), Davydov (1991), Scott (1992), Korotin et al. (2015), Satija
et al. (1980), Hutchings et al. (1979), Kadota et al. (1967). The value of 𝜏 will be adjustable, but in
previous works, it was typically chosen to be around 10 Hennig et al. (2007), Ranciaro-Neto & de
Moura (2016), Sales et al. (2018) due to potential differences in time scales between quantum and
classical propagation. However, we will explore the effects of varying 𝜏 around this value. Our initial
conditions will be 𝑢𝑦(𝑡 = 0) = 𝐴𝑒

−(𝑦−𝑁/2)2/(4𝜎2𝑆), 𝑋𝑦(𝑡 = 0) = 0, and 𝑃𝑦(𝑡 = 0) = 𝑒
−(𝑦−𝑁/2)2/(4𝜎2𝐿 ), with 𝐴 as a

normalization constant. We will use a Taylor procedure de Moura (2011) to solve the set of equations
3, and a standard second-order Verlet’s like procedure Allen & Tildesley (1987), da Silva et al. (2019)
to solve the lattice dynamics. Our analysis will focus on magnon propagation and lattice deformation
dynamics along the chain, which can be observed using the quantity 𝑛𝑆 defined as Sales et al. (2018):

𝑛𝑆 = ∑
𝑦
(𝑦 − 𝑁/2)|𝑢𝑦(𝑡)|

2. (5)
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Figure 6. The normalized distante between the Magnon and the lattice deformation (𝐷/𝐷𝑚𝑎𝑥) versus 𝛼 computed for
𝑣0 = 1, 𝜎𝑆 = 0.5, 𝜎𝐿 = 1 and 𝜏 = 2.5 up to 15.
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Figure 7. The critical value 𝛼𝑐 versus 𝜏 for 𝜎𝑆 = 0.5 and 𝜎𝐿 = 1.
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Figure 8. The velocities [𝑉𝑆(black solid line) and 𝑉𝐿(red dotted line)] versus 𝛼 computed using 𝑣0 = 1, 𝜎𝑆 = 1, 𝜎𝐿 = 1
and 𝜏 = 2.5 up to 15.

The lattice properties can be analyzed using the mean position of the lattice deformation defined as:

𝑛𝐿 =
∑𝑦(𝑦 − 𝑁/2)[1 − 𝑒

−(𝑋𝑦−𝑋𝑦−1)]2

∑𝑦[1 − 𝑒
−(𝑋𝑦−𝑋𝑦−1)]2

. (6)

We want to emphasize that 𝑛𝑆 and 𝑛𝐿 represent the mean position of the spin-wave excitation and
the lattice deformation, respectively. These measurements generally are in units of lattice spacing
(𝑙𝑠 = 1). Using these quantities, we can obtain the magnon and the lattice deformation velocities 𝑉𝑆
and 𝑉𝐿 using fittings of the curves 𝑛𝑆 × 𝑡 and 𝑛𝐿 × 𝑡. We stress that here we will use a methodology
similar to that was used in the previous literature Hennig et al. (2007), Sales et al. (2018). We will
follow the propagation of the magnon and the lattice deformation to describe the existence (or not)
of magnon-lattice coupled movement. Generally, stable dynamics with 𝑛𝑆 ≈ 𝑛𝐿 and 𝑉𝑆 ≈ 𝑉𝐿 indicate
the presence of magnon-lattice pair formation. The nonlinear Morse chain considered here contains
a solitonic mode propagation along the chain. We can see this solitonic mode by calculating the
lattice deformation 𝑍𝑦; this quantity represents a generalized probability that deformation around
site 𝑦 occurs. This is obtained by normalizing 𝐵𝑦 = (1 − 𝑒

[−𝑋𝑦+𝑋𝑦−1])2, that is 𝑍𝑦 = 𝐵𝑦/∑𝑦(𝐵𝑦). We will plot
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Figure 9. The normalized distante between the Magnon and the lattice deformation (𝐷/𝐷𝑚𝑎𝑥) versus 𝛼 computed for
𝑣0 = 1, 𝜎𝑆 = 1, 𝜎𝐿 = 1 and 𝜏 = 2.5 up to 15.
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Figure 10. The critical value 𝛼𝑐 versus 𝜏 for 𝜎𝑆 = 𝜎𝐿 = 1.
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Figure 11. a) The critical value 𝛼𝑐 versus 𝑣0;b) The magnon-soliton velocity 𝑉𝑆𝐿 versus 𝑣0. Calculations were done for
𝜎𝐿 = 𝜎𝑆 = 1 and 𝜏 = 10.

𝑍𝑛 ×𝑡×𝑛 where 𝑛 = 𝑦 −𝑁/2 (i.e., 𝑛 = 0 represents the center of the chain). In fig. 1 we plot our results for
𝛼 = 0, 1, 2, 3, 𝑣0 = 1, 𝜎𝑆 = 0.5, 𝜎𝐿 = 0.5 and 𝜏 = 10. We can see that independent of the value of 𝛼, the
lattice deformation exhibits a stable solitonic mode propagating along the chain. Therefore, the main
focus of our work is investigating the existence of a possible magnon-soliton pair formation and its
dependence on all tunable parameters.

RESULTS AND DISCUSSION

Our findings on the velocities 𝑉𝑆 and 𝑉𝐿 in relation to 𝛼 are presented below. We obtained 𝑉𝑆 and
𝑉𝐿 through the linear fitting of the curves 𝑛𝑆 × 𝑡 and 𝑛𝐿 × 𝑡. Our calculations of 𝑛𝑆 and 𝑛𝐿 suggest
that both quantities exhibit long-term linear behavior, consistent with the solitonic dynamics found
in references Sales et al. (2018). We performed these calculations using a time limit of 𝑡𝑚𝑎𝑥 ≈ 10

4.
The linear fitting was conducted using the last 20% of the complete time interval, roughly within the
time interval [8000, 10000]. We used a Taylor expansion up to the tenth order to solve the quantum
equations and a second-order Verlet-like method to solve the classical equations. We performed
our numerical procedure using a time step of Δ𝑡 = 0.001. It is important to emphasize that this
method is faster than the Runge-Kutta formalism de Moura & Domínguez-Adame (2008) for this
type of problem. The initial condition was given by : 𝑢𝑦(𝑡 = 0) = 𝐴𝑒

−(𝑦−𝑁/2)2/(4𝜎2𝑆), 𝑋𝑦(𝑡 = 0) = 0 and
𝑃𝑦(𝑡 = 0) = 𝑣0𝑒

−(𝑦−𝑁/2)2/(4𝜎2𝐿 ). Here, 𝐴 is a normalization constant, 𝑣0 is a tunable parameter, and the
𝜎𝐿 and 𝜎𝑆 are larger than zero. We varied the parameter 𝜏 within the interval [1, 15]. We considering
initially 𝑣0 = 1, 𝜎𝑆 = 0.5, 𝜎𝐿 = 0.5 and several values of 𝜏. We show our results in figs. 2(a-d). We
emphasize that the curves indicate the velocities 𝑉𝑆 (black solid line) and 𝑉𝐿 (red dotted line) versus 𝛼
for several values of 𝜏. To construct these curves, we calculate the dynamics of the spin and the lattice
for long times for several values of 𝛼 and 𝜏. We calculate the 𝑉𝑆 and 𝑉𝐿 curves versus 𝛼 using a linear
fitting. We can see that 𝑉𝐿 is roughly independent of 𝛼. On another side, spin propagation strongly
depends on the spin-lattice interaction parameter 𝛼. Let us clarify this important matter in simpler
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terms. The lattice’s deformation is governed by eq. 4. We can see that when 𝛼 is small, the nonlinear
Morse terms, i.e., the first two terms, dominate over the terms that depend directly on 𝛼 and the wave
functions. Therefore, the soliton velocity remains roughly constant; however, when 𝛼 increases, the
final terms become more significant and have a greater impact on the soliton propagation, causing a
slight increase in velocity. On a different note, the behavior of spin dynamics is dictated by equation 3,
which shows a significant dependence on the magnitude of 𝛼 in both the diagonal (first term) and the
off-diagonal (last two terms). As such, it was indeed expected that the value of 𝛼 would influence the
magnon’s velocity. By analyzing all curves for several of 𝜏 we have considered, there is a matching of
the magnon’s and lattice’s velocity (𝑉𝑆 ≈ 𝑉𝐿) for a specific value of 𝛼. This result suggests that for this
particular value of 𝛼, the magnon and the lattice deformation travel at the same velocity. We stress
that it is the first indication that magnon and lattice may move in a kind of ”correlated propagation”
(like a magnon-lattice pair formation). We can also see that as the parameter 𝜏 has increased, this
value of 𝛼 in which the velocities are the same become smaller. To comprehend this phenomenon, we
need to emphasize that when 𝜏 increases, the off-diagonal terms in the Schrödinger equation become
more effective. This results in a stronger coupling with the lattice deformation even for smaller values
of 𝛼.

We also calculate the long-time mean distance between the magnon and the lattice deformation.
The distance is defined as 𝐷 = |𝑛𝐿(𝑡 → ∞) − 𝑛𝑆(𝑡 → ∞)|. We emphasize that 𝐷 represents also an
measurement of the possible existence of the magnon-soliton pair state. In general, bound states
exhibit a smaller value of intrinsic internal distances. Dias et al. (2007) used this kind of measure to
detect the existence of electron-electron bound states in the low-dimensional two-electron Hubbard
model. We emphasize that we will plot (see figs. 3(a-d)) 𝐷/𝐷𝑚𝑎𝑥 versus 𝛼 where 𝐷𝑚𝑎𝑥 represents the
maximum of the distance between the magnon and the lattice position. We can observe that for
the same value of 𝛼 in which that 𝑉𝐿 ≈ 𝑉𝑆, we can see that 𝐷/𝐷𝑚𝑎𝑥 ≈ 0, i.e., the magnon and the
lattice position are close, thus suggesting the existence of magnon-lattice pair formation. We can
see that the critical value of 𝛼 in which 𝐷/𝐷𝑚𝑎𝑥 ≈ 0 is in good agreement with the critical value
found using the velocity curves versus 𝛼 (see fig. 2). Therefore all measures of 𝐷/𝐷𝑚𝑎𝑥, 𝑉𝑆, and 𝑉𝐿 are
topological quantities that characterize the propagation of the magnon and the lattice deformation.
Our calculations numerically demonstrate that for some specific values of 𝛼 = 𝛼𝑐, the distance D is
small, and the magnon and the lattice deformation travel at the same velocity. This result strongly
indicates a magnon-soliton pair formation for these special situations.

In fig. 4, we collect the critical value of 𝛼 versus 𝜏. We stress that for 𝛼 = 𝛼𝑐 the system exhibits a
magnon-lattice pair formation, i.e., the magnetic excitation moves along with the lattice vibration and
at the same velocity. We emphasize again that the decreasing of 𝛼𝑐 with 𝜏 is a direct consequence of
the role played by 𝜏 at the off-diagonal terms at eq. 3. As the 𝜏 is increased, the effective off-diagonal
term also increases. Increasing the effective spin-spin interaction makes coupling between the spin
and the lattice deformations easier. In figures 5 and 6 we consider again 𝑣0 = 1 and change the values
of 𝜎𝑆 and 𝜎𝐿 respectively to 0.5 and 1; we kept the same range of values of 𝜏. We can observe that
the results are qualitatively the same obtained in figs. 2 and 3 i.e.: as the value of 𝜏 is increased, the
magnon-lattice pair formation is obtained for a specific value of 𝛼 = 𝛼𝑐. We also obtained that as 𝜏
is increased 𝛼𝑐 decreases (see fig. 7). In figures 8 and 9, we show our results considering 𝜎𝑆 = 1 and
𝜎𝐿 = 1, and we kept the same range of values of 𝜏 and 𝑣0. The results obtained are similar to those
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in the previous figures. It appears that the magnon-lattice pair only exists when 𝛼 equals the critical
value 𝛼𝑐. This critical value decreases as 𝜏 increases, as shown in figure 10.

To summarize the previous results, an initial vibrational Gaussian velocity pulse was introduced
into the lattice, and a finite amount of the initial energy propagated along the lattice through the
nonlinear solitonic mode. This behavior was observed by tracking the lattice position over time, with
our calculations indicating that a finite fraction of the initial energy remained trapped in a finite
region of the lattice. This localized pulse could travel along the lattice with a constant velocity of 𝑉𝐿.
Additionally, the quantum equation was initialized using a Gaussian initial magnon wave packet, and
our calculations showed that the dominant wave packet exhibited a solitonic profile with a position
given by 𝑛𝑆(𝑡) ≈ 𝑉𝑆𝑡. By computing 𝑉𝑆 and 𝑉𝐿, we numerically demonstrated that depending on the value
of magnon-lattice coupling, we could obtain a good indication of magnon-soliton pair formation. For
certain values of 𝛼 = 𝛼𝑐, our calculations indicated that 𝑛𝑆 ≈ 𝑛𝐿 and 𝑉𝑆 ≈ 𝑉𝐿. In ref. Sales et al. (2018),
the possibility of magnon-soliton propagation in nonlinear lattices was demonstrated considering
localized initial states (i.e., 𝜎𝐿 = 𝜎𝑆 = 0). However, we have discovered that broad initial conditions can
also lead to magnon-soliton propagation. The critical value for the occurrence of magnon-solitons
depends on the width of the initial conditions and the value of 𝜏. The parameter 𝜏 measures the time
scale difference between the magnon and lattice deformation and acts as the intensity of the effective
spin-spin interaction within the quantum equations. This spin-spin interaction is also the key to the
magnon-lattice interaction. As 𝜏 increases, the spin-lattice terms become stronger, making it easier to
promote magnon-soliton pair formation.

Before we finish our work, we need to examine how our results vary with the value of 𝑣0.
Specifically, we want to see how the formation of magnon-soliton pairs is affected by the strength
of the initial impulse. To do this, we conducted many numerical experiments with different values of
𝑣0, which allowed us to observe the signatures of magnon-soliton pairs. We discovered that within
the range of 𝑣0 values between 1 and 10, a magnon-soliton pair exists when 𝛼 equals a certain value,
denoted as 𝛼𝑐. However, this critical value depends on the value of 𝑣0. For instance, the results we
obtained for 𝜎𝑆 = 𝜎𝐿 = 1 and 𝜏 = 10 (refer to fig. 11(a)) revealed that when 𝑣0 is low (less than 3), the
critical value remains stable at around 𝛼𝑐 = 1.205, while for 𝑣0 values greater than 3, the critical value
decreases by approximately half. This decrease in 𝛼𝑐 with increasing 𝑣0 may seem counterintuitive,
but we believe it is mainly due to the intensity of the solitonic mode. As the initial impulse grows,
the soliton gains more intensity, resulting in an increased spin-lattice interaction that favors the
magnon-soliton pairing. Our calculations show that regardless of the values of 𝜎𝐿 and 𝜎𝑆, the results
remain qualitatively the same. The velocity of the magnon-soliton pair (𝑉𝑆𝐿) is also dependent on
the initial velocity 𝑣0. In fig. 11(b), we observe that for small 𝑣0, 𝑉𝑆𝐿 ∝ 𝑣0. For 𝑣0 > 3, 𝑉𝑆𝐿 ∝ 𝑣0.55(5)0 . It is
essential to note that the results shown in fig. 11 do not depend on the values of 𝜎𝐿, 𝜎𝑆, and 𝜏. Generally,
as velocity increases, the solitonic mode becomes faster, resulting in a faster magnon-soliton pair.

SUMMARY AND CONCLUSIONS

Our research delves into the behavior of a single magnon state in a nonlinear Morse chain, considering
the magnon-lattice coupling through the Heisenberg spin-spin term that directly depends on the
spin positions. We begin with a Gaussian wave packet for the magnon state and a Gaussian impulse
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packet for the lattice. The velocity intensity and width of these initial Gaussian pulses are adjustable
parameters in our model. We also vary the time scales between the magnon and lattice dynamics. We
provide a detailed numerical analysis of how magnon-soliton pairs propagate and their dependence
on these parameters. Our findings reveal that magnon-soliton propagations are attainable for specific
values of the magnon-lattice interaction (called 𝛼𝑐 in our model) and that this critical value is highly
reliant on the width of the initial Gaussian pulses. Our numerical calculations indicate that increasing
the velocity of the initial Gaussian pulse decreases the critical value of spin-lattice interaction
(𝛼𝑐). Furthermore, as the time difference between the magnon and lattice dynamics increases, the
intensity of magnon-lattice coupling needed to promote pair formations decreases. Overall, our study
underscores the importance of the initial conditions and the specifics of the magnon/lattice dynamics
in the existence of magnon-soliton pairs in nonlinear chains. We demonstrate that a time difference of
𝜏 ≥ 10 yields a more reliable existence of magnon-lattice coupling, consistent with previous research.
Our work is intended to inspire further research in this area.

Acknowledgments
This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Financiadora de Estudos e Projetos (FINEP),
CNPq-Rede Nanobioestruturas, as well as FAPEAL (Alagoas State Agency).

REFERENCES

ALLEN MP & TILDESLEY TJ 1987. Computer Simulation of
Liquids. Oxford University Press, p. 71-80.

CARRILLO JA, MARTIN S & PANFEROV V 2013. A new interaction
potential for swarming models. Physica D: Nonlinear
Phenomena 260: 112-126.

CHALLALI R, SAIT S, BOURAHLA B & FERRAH L 2023. Localized
Surface Magnon Modes in Cubic Ferromagnetic Lattices.
SPIN 13: 2350001.

CHEN C, LI Y & ZHANG J 2023. Characteristics of
magnon-phonon coupling in magnetic insulator based
on the Boltzmann equation. AIP Advances 13: 025221.

CONG A, LIU J, XUE W, LIU H, LIU Y & SHEN K 2022.
Exchange-mediated magnon-phonon scattering in
monolayer 𝐶𝑟𝐼3. Phys Rev B 106: 214424.

EVANGELOU SN & KATSANOS DE 1992. Super-diffusion in
random chains with correlated disorder. Phys Lett A 164:
456-464.

DA SILVA LD, RANCIARO-NETO A, SALES MO, DOS SANTOS JLL &
DE MOURA FABF 2019. Propagation of vibrational modes in
classical harmonic lattice with correlated disorder. Ann
Braz Acad Sci 91(2): e20180114.

DAVYDOV AS 1991. Solitons in Molecular Systems. 2nd ed.,
Reidel, Dordrecht.

DE LIMA EF & DE CARVALHO RE 2012. Effects of oscillatory
behavior of the dipole function on the dissociation
dynamics of the classical driven Morse oscillator. Physica
D: Nonlinear Phenomena 241: 1753-1757.

DE MOURA FABF, COUTINHO-FILHO MD, RAPOSO EP & LYRA
ML 2002. Delocalization and spin-wave dynamics in
ferromagnetic chains with long-range correlated random
exchange. Phys Rev B 66: 014418.

DE MOURA FABF 2011. Dynamics of one-electron in a
one-dimensional systems with an aperiodic hopping
distribution. Int J M Phys C 22: 63-69.

DE MOURA FABF & DOMÍNGUEZ-ADAME F. 2008. Extended
modes and energy dynamics in two-dimensional lattices
with correlated disorder. Eur Phys J B 66: 165-169.

DIAS WS, NASCIMENTO EM, LYRA ML & DE MOURA FABF 2007
Fequency doubling of Bloch oscillations for interacting
electrons in a static electric field. Phys Rev B 76: 155124.

GRIES L, JONAK M, ELGHANDOUR A, DEY K & KLINGELER R
2022. Role of magnetoelastic coupling and magnetic
anisotropy in 𝑀𝑛𝑇𝑖𝑂3. Phys Rev B 106: 174425.

HAYASHI H & ANDO K 2018. Spin Pumping Driven by Magnon
Polarons. Phys Rev Lett 121: 237202.

HENNIG D, CHETVERIKOV A, VELARDE MG & EBELING W 2007.
Electron capture and transport mediated by lattice
solitons. Phys Rev E 76: 046602.

An Acad Bras Cienc (2023) 95(Suppl. 2) e20230408 13 | 15



MARCONI SILVA SANTOS JUNIOR et al. MAGNON-LATTICE PROPAGATION IN A MORSE CHAIN

HOLANDA J, MAIOR DS & AZEVEDO A 2018. Detecting
the phonon spin in magnon-Phonon conversion
experiments. Nature Phys 14: 500-506.

HUTCHINGS MT, MILNE JM & IKEDA H 1979. Spin wave energy
dispersion in KCu𝐹3: a nearly one-dimensional spin-1/2
antiferromagnet. Journal of Physics C: Solid State Physics
12: L739.

IKEDA K, DOI Y, FENG BF & KAWAHARA T 2007. Chaotic
breathers of two types in a two-dimensional Morse
lattice with an on-site harmonic potential. Physica D:
Nonlinear Phenomena 225: 184-196.

KADOTA S, YAMADA I, YONEYAMA S & HIRAKAWA K 1967.
Formation of One-Dimensional Antiferromagnet in KCu𝐹3
with the Perovskite Structure. Journal of the Physical
Society of Japan 23: 751-756.

KOROTIN DMM, MAZURENKO VV, ANISIMOV VI & STRELTSOV
SV 2015. Calculation of exchange constants of the
Heisenberg model in plane-wave-based methods using
the Green’s function approach. Phys Rev B 91: 224405.

LI J, SIMENSEN HT, REITZ D, SUN Q, YUAN W, LI C, TSERKOVNYAK Y,
BRATAAS A & SHI J. 2020. Observation of Magnon Polarons
in a Uniaxial Antiferromagnetic Insulator. Phys Rev Lett
125: 217201.

LI Y, ZHAO C, ZHANG W, HOFFMANN A & NOVOSAD V. 2021.
Advances in coherent coupling between magnons and
acoustic phonons. APL Materials 9: 060902.

LUO J ET AL. 2023. Evidence for Topological
Magnon-Phonon Hybridization in a 2D Antiferromagnet
down to the Monolayer Limit. Nano Lett 23: 2023-2030.

MASCIOCCHI G ET AL. 2022. Control of magnetoelastic
coupling in Ni/Fe multilayers using He+ ion irradiation.
Appl Phys Lett 121: 182401.

MINGRAN X, KEI Y, JORGE P, KORBINIAN B, BIVAS R, KATSUYA
M, HIROMASA T, DIRK G, SADAMICHI M & YOSHICHIKA O. 2020.
Nonreciprocal surface acoustic wave propagation via
magneto-rotation coupling. Science Advances 6: 32.

MORAIS D, LYRA ML, DE MOURA FABF & DIAS WS. 2020.
The self-trapping transition of one-magnon excitations
coupled to acoustic phonons. Journal of Magnetism and
Magnetic Materials 506: 166798.

MORAIS D, DE MOURA FABF & DIAS WS. 2021. Magnon-polaron
formation in XXZ quantum Heisenberg chains. Phys Rev
B 103: 195445.

RANCIARO-NETO A & DE MOURA FABF. 2016. Electronic
dynamics under effect of a nonlinear Morse interaction
and a static electric field. Commun Nonlinear Sci Numer
Simulat 40: 6-14

SALES MO, NETO AR & DE MOURA FABF. 2018. Spin-wave
dynamics in nonlinear chains with spin-lattice
interactions. Phys Rev E 98: 062136

SALES MO, NETO AR & DE MOURA FABF. 2023. Magnon-lattice
dynamics in a Heisenberg-Morse model with spin-lattice
interaction. Physica D: Nonlinear Phenomena 443: 133564.

SASAKI R, NII Y & ONOSE Y. 2021. Magnetization control by
angular momentum transfer from surface acoustic wave
to ferromagnetic spin moments. Nat Commun 12: 2599.

SATIJA SK, AXE JD, SHIRANE G, YOSHIZAWA H & HIRAKAWA
K. 1980. Neutron scattering study of spin waves in
one-dimensional antiferromagnet KCu𝐹3. Phys Rev B 21:
2001.

SCOTT AC. 1992. Davydov’s soliton. Phys Rep 217: 1-67.

SUN Y-J, LAI J-M, PANG S-M, LIU X-L, TAN P-H & ZHANG J 2022.
Magneto-Raman Study of Magnon?Phonon Coupling in
Two-Dimensional Ising Antiferromagnetic 𝐹𝑒𝑃𝑆3. Phys
Chem Lett 13: 1533-1539.

WEILER M, HUEBL H, GOERG FS, CZESCHKA FD, GROSS R &
GOENNENWEIN STB. 2012. Spin Pumping with Coherent
Elastic Waves. Phys Rev Lett 108: 176601.

XIONG Z, DATTA T, STIWINTER K & YAO D-X 2017.
Magnon-phonon coupling effects on the indirect
𝐾-edge resonant inelastic x-ray scattering spectrum of a
two-dimensional Heisenberg antiferromagnet. Phys Rev
B 96: 144436.

ZHANG X, ZHANG Y, OKAMOTO S & XIAO D. 2019. Thermal Hall
Effect Induced by Magnon-Phonon Interactions. Phys Rev
Lett 123: 167202;

ZHANG S, GO G, LEE K-J & KIM SK. 2020. SU(3) Topology of
Magnon-Phonon Hybridization in 2D Antiferromagnets.
Phys Rev Lett 124: 147204.

How to cite
SANTOS JUNIOR MS, SALES MO & DE MOURA FABF. 2023. Magnon-lattice
propagation in a Morse chain: the role played by the spin-lattice
interaction and the initial condition. An Acad Bras Cienc 95: e20230408.
DOI 10.1590/0001-3765202320230408.

Manuscript received on April 12, 2023;
accepted for publication on August 31, 2023

MARCONI SILVA SANTOS JUNIOR1
https://orcid.org/0009-0001-1932-6559

MESSIAS DE OLIVEIRA SALES2
https://orcid.org/0000-0001-5116-0301

FRANCISCO ANACLETO BARROS FIDELIS DE MOURA1
https://orcid.org/0000-0002-4446-0450

An Acad Bras Cienc (2023) 95(Suppl. 2) e20230408 14 | 15



MARCONI SILVA SANTOS JUNIOR et al. MAGNON-LATTICE PROPAGATION IN A MORSE CHAIN

1Universidade Federal de Alagoas, Instituto de Física, Av. Lourival
Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL,
Brazil
2Instituto Federal do Maranhão, Campus São João dos Patos, Rua
Padre Santiago, s/n, Centro, 65665-000 São João dos Patos, MA,
Brazil

Correspondence to: Francisco Anacleto Barros Fidelis de Moura

E-mail: fidelis@fis.ufal.br

Author contributions
M.S.S. Junior and F. A. B. F. de Moura did all calculations of the
figures; M.O. Sales and F. A. B. F. de Moura written the manuscript.

An Acad Bras Cienc (2023) 95(Suppl. 2) e20230408 15 | 15


