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Abstract
We study the emergence of bipartite entanglement between a pair of spins weakly
connected to the ends of a linear disordered XY spin-1/2 channel. We analyze how
their concurrence responds to structural and on-site fluctuations embodied by long-
range spatially-correlated sequences. We show that the end-to-end entanglement is
very robust against disorder and asymmetries in the channel provided that the degree
of correlations are strong enough and both entangling parties are tuned accordingly.
Our results offer further alternatives in the design of stable quantum communication
protocols via imperfect spin channels.

Keywords Quantum entanglement · Anderson localization · Quantum state transfer

1 Introduction

Transmittingquantumstates and establishing entanglement betweendifferent quantum
processing units are essential ingredients toward the implementation of large-scale
quantum computing [1]. In this context, a promising approach relies on using solid-
state devices such as spin chains with pre-engineered interactions as quantum channels
[2] for quantum communication protocols. In such, the information is usually encoded
locally and after proper channel initialization and subsequent time evolution, the initial
state (say, a qubit) can be retrieved at the desired location, or entanglement can be
created during the process. The key point is to devise the protocols whose working
principle is based solely uponhow the chain is engineered, avoiding the needof external
control as much as possible. After the overall concept was put forward by Bose in Ref.
[2], much effort has been devoted to find out further schemes for performing quantum
state transfer (QST) [3–15] and entanglement creation/distribution protocols [16–21].
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The versatility offered by spin chains comes with a price though. The lack of
dynamical control implies that the manufacturing process of the chain must be very
accurate [22,23]. Otherwise, the appearance of imperfections (e.g., disorder) should
compromise the desired output. There lies the importance of evaluating the robustness
of such quantum communication protocols in the presence of noise [21,24–31].

Here, we go along that direction and address the influence of disorder in weakly
coupled spin models [5–7]. In the QST framework, a pair of spins are perturbatively
connected to, say, each end of a XY spin-1/2 chain thereby spanning a decoupled
Hamiltonian involving both spins only or added with a given normal mode of the
channel once their frequency goes in resonancewith it [6]. Ideally, that is, in a noiseless
channel, this decoupling process yields the appearance of maximally entangled Bell-
type eigenstates which are responsible for Rabi-like oscillations between the sender
and receiver spins thus allowing for high-fidelity QST performances [13]. Random
fluctuations, on the other hand, will act on the channel by shuffling the spectrum,
promoting localization, and destroying the mirror symmetry of every eigenstate in the
system [28].

When correlated fluctuations—say, spatially dependent—are present the scenario is
rather different. For instance, it was shown that short-range correlations in the disorder
distribution promotes the breakdown of Anderson localization in 1Dmodels [32]. The
effect of long-range correlations is even more dramatic as it induces a metal–insulator
transition with sharp mobility edges [33,34]. The coexistence between localized and
delocalized states hence provides a rich set of dynamical regimes to explore [34–36].

Properties and dynamics of entanglement in disordered spin chains have attracted a
great deal of interest in the past few years [26,37,38]. In [39–41], the scaling behavior
of the ground-state entanglement entropy of a spin block was studied for certain
types of correlated random critical chains. It was shown that disorder may improve
the amount of entanglement shared by the subsystems (see [39]). From the quantum
networking perspective, it was found that many classes of weakly coupled spin models
support the existence of long-distance entanglement in its ground state [18,19,42] (see
[43] for a recent experimental realization) which in turn can serve as a resource for
quantum teleportation protocols. Its resilience against static disorder was investigated
in detail in [42]. There, it was evaluated that the entanglement quality depends upon
the intensity of disorder, as expected. In some cases though, imperfections may not
be detrimental to the system. Local defects, for instance, can be harnessed to control
and enhance entanglement on demand [17,44]. Quite recently, it has been reported
that the emergence of long-range-correlated fluctuations in the local magnetic fields
is capable of modifying the entanglement distribution profile in XY spin chains [21].

In this work, we investigate how correlated diagonal (local magnetic fields) and
off-diagonal (spin couplings) disorder affect the stability of the eigenstate entangle-
ment developed from both end spins perturbatively coupled to the noisy channel, in
the single-excitation manifold. We consider fluctuations which follow a power-law
spectrum of the form S(k) ∝ 1/kα , with k being the corresponding wave number
and α is an exponent that characterizes the degree of those correlations with α = 0
standing for the uncorrelated case. For high-enough values of α we find that the end-
to-end concurrence reaches about its maximum value despite the fact that significant
amounts of disorder are still present. We further discuss what kind of profile a given
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channel must have in order to mediate entanglement in the presence of imperfections.
The emergence of a set of delocalized states in the middle of the spectrumwhen α > 2
[33] becomes crucial in generating an effective resonant coupling between both dis-
tant parties. Our findings settle a resilient framework for carrying out long-distance
quantum communication protocols through highly disordered quantum channels.

2 Hamiltonian

Throughout the paper,we consider a one-dimensional isotropic XY spin-1/2 chainwith
open boundaries featuring N + 2 spins labeled by i = 0, 1, 2, . . . , N , N + 1, with
spins 0 and N + 1 denoting the parties aimed to get entangled. The full Hamiltonian
of the system reads (� = 1)

Ĥ =
N+1∑

i=0

ωi

2
(1̂ − σ̂ z

i ) −
N∑

i=0

Ji
2

(σ̂ x
i σ̂ x

i+1 + σ̂
y
i σ̂

y
i+1), (1)

where σ̂
x,y,z
i comprise the Pauli operators for the i th spin,ωi is the localmagnetic field,

and Ji is the nearest-neighbor exchange coupling rate (all those being real parameters).
For simplicity, we set the above Hamiltonian to be expressed in terms of an arbitrary
energy unit J = 1. Hereafter, we relabel 0 → s and N + 1 → r and assume those to
be weakly coupled to each end of the channel, hence fixing J0 → gs and JN → gr ,
both being much smaller than any other Ji , and free of imperfections alongside ωs and
ωr . Therefore, we consider disorder to take place in the channel only (that is, from
spins 1 to N ). This is a reasonable assumption in the sense that spins s and r are the
only components of the system supposed to feature a higher degree of control due
to the need of performing state preparation and read-out protocols on them. We will
specify the disorder distribution later on.

Note that
[
Ĥ ,

∑
i σ̂

z
i

]
= 0 and hence Hamiltonian (1) is made up by independent

blocks with fixed number of excitations. In standard QST protocols [2], one wishes
to transmit the state of a single qubit through an initially polarized channel such that
|Ψ (0)〉 = |φ〉s | ↓1, . . . ,↓N ,↓r 〉 with |φ〉s = a| ↓s〉 + b| ↑s〉. The goal is to achieve
|Ψ (t)〉 = | ↓s,↓1, . . . ,↓N 〉|φ〉r in a given time t . The whole process takes place in
subspaces with none and single flipped spins, the latter being the only component
which actually evolves in time. We thus carry out our investigation on the subspace
spanned by |i〉 ≡ | ↓s,↓1,↓2, . . . ,↓i−1,↑i ,↓i+1, . . . ,↓r 〉.

In this work, we consider the presence of static disorder in the channel, taking
place either in the local magnetic fields or in the spin couplings. We model that by
sequences featuring long-range correlations following a power-law spectrum of the
form S(k) ∝ 1/kα as generated from [33,34]

ωn, Jn =
N/2∑

k=1

k−α/2cos

(
2πnk

N
+ φk

)
, (2)
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where n = 1, . . . , N , {φk} are random phases uniformly distributed in the interval
[0, 2π ] and α stands for the degree of those underlying correlations. We remark that
the above distribution possess no typical length scale, as does many natural stochastic
series [45]. Uncorrelated disorder, i.e., white noise, is recovered when α = 0. Indeed,
α is directly related to the so-called Hurst exponent H [46] through H = (α − 1)/2
which characterizes self-similarity of a given series. The sequence spanned by Eq.
(2) becomes nonstationary when α > 1 and is said to be persistent (anti-persistent)
when α > 2 (α < 2). The α = 2 case is where the sequence corresponds exactly to
the trace of the Brownian motion. In our calculations, we set the disorder sequence
to have zero mean and unit variance, Xn → (Xn − 〈Xn〉) /

√〈X2
n〉 − 〈Xn〉2, with Xn

representing any stochastic variable. When considering disorder in the spin couplings,
we also recast Jn → Jn+4.5. This is done tomake all the couplings positive so that the
ground state is ferromagnetic. Also, the weak-coupling regime implies that the outer
couplings g/Jn 	 1. Thereby, in order to keep g about the same order of magnitude
in each diagonal (for which Jn ≡ 1) and off-diagonal disorder configurations, it turns
out to be necessary to shift 〈Jn〉 away from zero.

3 Perturbation theory

Now, we proceed by carrying out a perturbative approach in order to find an equivalent
Hamiltonian that effectively couple the sender/receiver pair of spins. To do so, we go
along the procedure used in Ref. [6]. The first step is to diagonalize Hamiltonian (1)
in the channel sector (comprising states |1〉 through |N 〉), thus obtaining the channel
normal modes {|Ek〉} and their associated frequencies {Ek}, which we assume to be
nondegenerate (we do not need to worry about their exact form at this point). Wiring
up spins s and r to the channel we express the full Hamiltonian in a very convenient
form Ĥ = Ĥ0 + V̂ , where

Ĥ0 = ωs |s〉〈s| + ωr |r〉〈r | +
∑

k

Ek |Ek〉〈Ek |, (3)

V̂ = ε
∑

k

(gsask |s〉〈Ek | + grark |r〉〈Ek | + H.c.) , (4)

with ask ≡ 〈1|Ek〉, and ark ≡ 〈N |Ek〉 being real-valued coefficients. Note that we
have introduced a perturbation parameter ε in order to assure that spins r and s do not
disturb the band. Therein, we highlight two possibilities, namely (i) both spins are out
of resonance with all the normal modes of the channel, or (ii) they eventually meet
one of those such that ωs = ωr = Ek′ . Let us treat each case separately.

In the first scenario (i), we define Ĥeff = ei Ŝ Ĥe−i Ŝ with Ŝ being a Hermitian
operator with entries 〈ν|Ŝ|Ek〉 = iεgνaνk/(Ek − ων), where ν ∈ {s, r} (see [6,7]).
Expanding Ĥeff up to second order in ε we get

Ĥeff = Ĥ0 + V̂ + i[Ŝ, Ĥ0] + i[Ŝ, V̂ ] + i2

2! [Ŝ, [Ŝ, Ĥ0]] + O(ε3). (5)
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Due to the choice of Ŝ, the first-order terms in the above expression vanish, V̂ +
i[Ŝ, Ĥ0] = 0. Then, by inspecting Eq. (5), we now have Ĥeff = Ĥsr ⊕ Ĥch, where
[6]

Ĥsr = hs |s〉〈s| + hr |r〉〈r | − J ′ (|s〉〈r | + H.c.) , (6)

thus describing a two-level system with effective local potentials and coupling given
by, respectively,

hν = ων − ε2g2ν
∑

k

|aνk |2
Ek − ων

, (7)

J ′ = ε2gsgr
2

∑

k

(
askark
Ek − ωs

+ askark
Ek − ωr

)
. (8)

At this point, we mention that the precise condition of validity for the above pertur-
bative approach is εgs,r 	 |Ek − ωs,r |. The eigenstates of Hamiltonian (6) can be
easily handled out analytically, yielding

|ψ±〉 = 2J ′|s〉 + (Δ ± Ω)|r〉√
(Δ ± Ω)2 + 4J ′2 , (9)

where Δ ≡ hs − hr is the effective detuning and Ω = √
Δ2 + 4J ′2 is their corre-

sponding Rabi-like frequency. In order to achieve a maximally entangled state, one
then needs Δ = 0 (or, at least, |Δ| 	 |J ′|) which results in |ψ±〉 ∼ (|s〉 ± |r〉)/√2.

In case (ii) where both outer spins achieves resonance with a particular mode of the
channel (say, labeled by k′), leaving the rest of the band untouched so thatwe can safely
neglect off-resonant, fast-rotating interactions, an effective three-level Hamiltonian
can be obtained [6],

Ĥsk′r = ε (gsask′ |s〉〈Ek′ | + grark′ |r〉〈Ek′ | + H.c.) , (10)

where we have shifted the local frequencies (diagonal terms) Ek′ → 0 with no loss of
generalization. Note that the above Hamiltonian is of first order in g, in contrast with
the off-resonant regime which is of second order.

Hamiltonian (10) can be worked out exactly. Particularly, we are interested in the
zero eigenstate |ψ0〉 ≡ (d1, d2, d3) which fulfills Ĥsk′r |ψ0〉 = 0. Thereby, one must
have d2 = 0 (no component in |Ek′ 〉) and d1gsask′ + d3grark′ = 0. After proper
normalization, the eigenstate reads

|ψ0〉 = |s〉 − η|r〉√
1 + η2

, (11)

where η ≡ gsask′/grark′ accounts for the balance between both effective couplings.
Obviously, when η = ± 1 the zero mode becomes fully entangled.
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Note that up to now we have not made any specific assumptions toward the profile
of the channel eigenstates so that the above formulas hold for any arbitrary network
and provide us great insight about how the entanglement between the outer spins s
and r depends upon the spectrum properties of the channel.

4 End-to-end concurrence

A powerful tool to quantify bipartite entanglement between two qubits in an arbi-
trary mixed state is the so-called concurrence [47]. Consider an arbitrary quantum
state written on the computational basis, |ψ〉 = ∑

i di |i〉, with di being, in gen-
eral, a complex coefficient. The input information we need to proper characterize
entanglement between a given pair of spins i and j is found in their correspond-
ing reduced density matrix ρi j defined in basis {| ↓i↓ j 〉, | ↑i↓ j 〉, | ↓i↑ j 〉, | ↑i↑ j 〉},
which is obtained by tracing out all the remaining sites. Concurrence is then defined as
C(ρi j ) = max{0,√λ1 − √

λ2 − √
λ3 − √

λ4} [47], where {λi } are the eigenvalues, in
decreasingorder, of the non-Hermitianmatrixρi j ρ̃i j ,with ρ̃i j = (σ̂y⊗σ̂y)ρ

∗
i j (σ̂y⊗σ̂y).

In the single-excitation manifold, the concurrence reads (for details, see [16])

Ci, j ≡ C(ρi j ) = 2|did∗
j |, (12)

which gives Ci, j = 0 for non-entangled (separable) spins andCi, j = 1 for maximally
entangled parties.

By inspecting Eqs. (9) and (11) from the previous section, one gets

C (i) ≡ Cs,r = 2√
(Δ/J ′)2 + 4

, (13)

C (i i) ≡ Cs,r = 2|η|
1 + η2

, (14)

for the effective two-level description given by Hsr [Eq. (6)] for the three-level regime
expressed by Hsk′r [Eq. (10)], respectively. Therefore, we verify that the quality of
entanglement between spins s and r will be ultimately dictated by the quantities
Δ/J ′ or η, depending on the interaction regime we are dealing with. Setting gs = gr
and ωs = ωr , we note that for noiseless mirror-symmetric channels the conditions
for maximal entanglement are readily fulfilled, since |ask | = |ark | ∀ k, which gives
Δ = 0, |η| = 1, and thus Cs,r = 1.

Fluctuations in the parameters of the chain can then seriously damage the above
(very suitable) scenario. Uncorrelated disorder (α = 0) in 1D hopping models is
known to induce the phenomenon Anderson localization [48] when every eigenstate

of the system acquires the form 〈x |Ek〉 ∼ e
− |x−x0 |

ξk , thus becoming exponentially
localized around a given position x0 with ξk accounting for the localization length.
As a consequence, it becomes extremely unlikely to find eigenstates |Ek〉 featuring
comparable amplitudes ask and ark anywhere in the spectrum, given the length of the
chain is much larger than the localization length. In principle, one could fight against
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Fig. 1 End-to-end concurrence for the effective two-level case, C(i) = 2[(Δ/J ′)2 + 4]−1/2, versus α

averaged over 500 independent realizations of on-site disorder for various channel sizes N = 50, 100, 150,
and 200. We set ωr = ωs = 0, gs = gr and Jn/J = 1. The input parameters of the channel, aνk and Ek ,
were obtained directly from exact numerical diagonalization of Hamiltonian (1) without the outer spins
(Color online)

that by locally tuning either gν and/or ων to compensate such distortion [28]. In the
effective three-level regime described by Hsk′r , that shouldworkwell since all we need
is η = gsask′/grark′ ≈ 1 given a fixed frequency Ek′ , otherwise we must also reset
ων to find another mode to tune with, for each disorder configuration. In the effective
two-level case, though, the situation is more subtle. First of all, note that the ratioΔ/J
does not depend upon a single channel eigenstate but on the entire spectrum [see Eqs.
(7) and (8)] weighted by the inverse of the “distance” between Ek and ων . In addition,
in this case, there is no freedom in manipulating gν since it might lead to a mixing
between the channel and sender/receiver subspaces, thus invalidating Hamiltonian (6).
Despite all that, since there is no way to exactly predict a given disorder configuration,
it should be much more preferable to fix ων , gν and make sure that, statistically, the
protocol yields successful outcomes up to a given user-defined threshold. This also
rules out the need of additional resources.

5 Results and discussion

5.1 On-site disorder

We are now about to discuss the effects of long-range correlated disorder in the gen-
eration of entanglement. Let us start by considering noise on the local magnetic fields
distribution {ωn} [given by Eq. (2)] and fixing Jn = 1 (in units of J ). Note that
regardless of the parity of the chain size, disorder shuffles every natural frequency of
the channel and so there will be no unique level to satisfy Hamiltonian (10). For this
reason, in the case of on-site disorder, we only address the likelihood of entanglement
taking place in the effective two-level scenario [Eq. (6)].

In Fig. 1, we show the resulting behavior of the disorder-averaged concurrence
as a function of the degree of correlations α for different sizes of the channel, N .
It starts off with a very poor figure of merit for lower values of α, as expected, and
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Fig. 2 End-to-end concurrence for the effective two-level case, C(i) = 2[(Δ/J ′)2 + 4]−1/2, for varying α

and frequency ω = ωr = ωs averaged over 500 independent realizations of on-site disorder for N = 100,
gs = gr , and Jn/J = 1. Therein, we certify that maximal entanglement can only be achieved when tuning
spins s and r around the center of the band. For the range of α considered here, the bandwidth goes from
about − 3.5J to 3.5J (Color online)

reaches about its maximum, C (i) ≈ 1, when α = 4. As N increases—thus weakening
finite-size effects—we also note that the concurrence begins to suddenly build up
after α = 1. This is related to the fact that the series generated by Eq. (2) becomes
nonstationary, preceding the appearance of a set of delocalized states around the center
of the band, induced by the persistent character of the series when α > 2 [33]. This
region of the spectrum thus offers a suitable ground for creating entanglement since
the corresponding channel eigenstates {|Ek〉} are expected to feature more balance
between ask and ark , this way increasing the possibilities of having |Δ/J ′| 	 1.
The outer parts of the band, still composed by strongly-localized modes, have a much
weaker influence on that since the terms inside the sum in Eqs. (7) and (8) decreases
following E−1

k . Because of that, the sender/receiver local frequencies must be set as
close as possible to the center of the band (as in Fig. 1). If they do not, Fig. 2 shows
exactly what happens. As we shift ω = ωs = ωr away from 0, the concurrence drops
very rapidly since the effective coupling between both spins becomes more sensitive
to the imperfections and asymmetries of the channel.

It is worth mentioning that for a fully uniform (ordered) channel, the concurrence
would be maximum, in the weak-coupling limit, for the entire range of ω as long as
it does not match any of the channel natural frequencies Ek so as to secure the off-
resonant, two-level regime. In this particular case, we always have Δ = 0 and a finite
J ′ that gets extremely small as |ω| 	 |2J | (the bandwidth of a uniform channel goes
from − 2J to 2J ). The above situation is very different from that involving correlated
disorder where set of (asymmetric) delocalized states is only available around the
middle of the band.

5.2 Coupling disorder

Now let us move on to the case of structural disorder, i.e., fluctuations affecting the
spin-coupling strengths of the channel, {Jn}. First, we must have in mind that this kind
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Fig. 3 End-to-end concurrence
for the effective three-level
regime, C(i i) = 2|η|(1 + η2)−1,
versus α averaged over 500
independent realizations of
spin-coupling strength disorder
for various channel sizes N =
51, 101, 151, and 201. We set
ωs = ωr = 0 (matching the
central anomalous mode),
gs = gr , and ωn = 0 (channel
local magnetic fields) (Color
online) 0 1 2 3 4
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of disorder, despite breaking the spatial mirror symmetry of the system, it preserves
particle–hole symmetry meaning that Ek = −E−k and |aνk | = |aν−k | for every
eigenstate, considering an even N . Therefore, in the off-resonant two-level interaction
regime, we trivially get Δ/J ′ = 0 and so C (i) = 1 provided ων = 0 and gν is small
enough, so as to justify the two-level approximation [Eq. (6)].

Another very relevant aspect of nearest-neighbor off-diagonal disorder in tight-
bindings models is the emergence of an anomalous mode at the very center of the
band featuring a diverging localization length. Indeed, the density of states shows a
logarithmic singularity in this region [49]. For odd values of N , we thus get a fixed
energy level Ek′ = 0 for every realization of disorder Thereby, this time we focus
on the effective three-level scenario, Hamiltonian (10), with ωs = ωr = Ek′ . Note
that this regime can be also achieved for even N . The reason we chose to restrict the
following discussion to odd N is partly to bypass the need to reset ω sample after
sample in order to meet a given channel’s normal mode around the center of the band.

Figure 3 shows the behavior of concurrence C (i i) with α. We note that uncorre-
lated disorder (α = 0) already offers a reasonable amount of entanglement though it
diminishes with increasing N . This is due to the finiteness of the system added by the
unusual properties of the corresponding channel eigenstate at Ek′ = 0 that acts as sort
of a pseudo-delocalized state with a stretched exponential envelope [49]. For N = 151
and 201, we again spot a pronounced increase in the concurrence when α > 1. This
naturally comes out as a response to the emergence of delocalization around the cen-
ter of the band. We shall, however, remark that the regime 1 < α < 2 does not
actually provide true extended states [50], though the participation number increases
quite considerably [51]. In this effective three-level (sender–channel–receiver reso-
nant) scenario though, the outer entangling spins are being mediated solely by the
anomalous eigenstate at Ek′ = 0. We thus realize that this state is very sensitive to
α in such a way that α > 2 guarantees the necessary symmetry, |η| ≈ 1, to support
maximal entanglement between both parties.Wemust stress, however, that this behav-
ior could have also been seen if we had set ωs in resonance with some other nearby
mode. In fact, although the anomalous eigenstate shows very peculiar features for
uncorrelated structural disorder [49,50], the overall trend when α > 0 is—similarly
to what happens in the on-site disorder case—the appearance of delocalized states in
the neighborhood of Ek′ = 0, including the anomalous mode itself, with roughly the
same localization length [35].
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The major difference between both diagonal and off-diagonal disorder cases is how
fast delocalization is built with α. This can be seen indirectly through the stabilization
of the end-to-end concurrence by comparing Figs. 1 and 3. In order to further illustrate
that, in Fig. 4 we show a typical (single) realization of the wavefunction (its squared
modulus) corresponding to a given channel mode selected at Ek′ ≈ 0 for both kinds
of disorder and N = 201. As expected, in the case of spin-coupling disorder (Fig. 4a),
the wavefunction features a much larger localization length than the on-site disorder
counterpart (Fig. 4b) already for α = 1. When α = 2, we note in Fig. 4a that the
state shows fairly balanced overlaps |ask′ | = |〈1|Ek′ 〉| and |ark′ | = |〈N |Ek′ 〉|, which
is crucial for having |η| ≈ 1 [cf. Eq. (11)] and hence C (i i) ≈ 1. That explains the
behavior seen in Fig. 3. On the other hand, the wavefunction in Fig. 4b when α = 2
still features a reminiscent localized-like profile. Things get more alike only at higher
values of α as seen in the bottom panels of Fig. 4 for α = 3. At this point, note that
|ask′ | ≈ |ark′ | for both types of disorder. While this is responsible for yielding very
high concurrences (see Figs. 1 and 3), as long as we depend upon a single mode of
the channel such as in the effective three-level regime [Eq. (10)] and this very state
happens to be a suitable one, there is no need to worry about the rest of the spectrum,
unlike in the two-level regime where the effective detuning between |s〉 and |r〉 is
largely influenced by the modes lying around ων , weighted by (Ek − ων)

−1 [see Eqs.
(7) and (8)]. Still, in this case, one can achieve nearly maximal entanglement provided
α is high enough, as seen in Figs. 1 and 2.

5.3 End-to-end concurrence and quantum state transfer

Last, we discuss the relationship between the end-to-end entanglement evaluated in the
previous section and the prospects of performing high-fidelity QST protocols [2]. The
standard quantifier to access the channels’ capacity of transmitting an arbitrary qubit
state is given by the so-called input-averaged fidelity F(t) = 1/2 + f (t) cos(ϕ)/3 +
f (t)2/6, which in turn depends on the transition amplitude f (t) = |〈r |e−i Ĥ t |s〉|
between the sender and receiver and its associate phaseϕ, though this one can generally
be ignored by a convenient choice of the of the on-site potentials (cosϕ ≡ 1) [2]. Note
that if the phase is completely randomized, the fidelity becomes the classical one
F = 2/3.

Working out the eigenproblem for both Hamiltonians (6) and (10), we get, respec-
tively,

f (i)(t) ≡ C (i)

∣∣∣∣∣sin
(√

Δ2 + 4J ′2
2

t

)∣∣∣∣∣ , (15)

f (i i)(t) ≡ C (i i)

2

∣∣∣∣cos
[√

(gsask′)2 + (grark′)2 t

]
− 1

∣∣∣∣ . (16)

Note that the transition amplitude for each scenario, (i) and (i i), is directly proportional
to the corresponding concurrence, this quantity thus being a primary indicator of
the transfer quality in weak-coupling models. Taking gs = gr = g, whenever f (t)
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Fig. 4 Squaremodulus of thewavefunction |〈n|Ek′ 〉|2 versus n for several values ofα for a single realization
of a spin-coupling disorder and b on-site disorder. The corresponding eigenstate of the channel, |Ek′ 〉, was
picked from the middle of the band, Ek′ ≈ 0 and the size of the chain was N = 201 (Color online)

reaches its maxima, that is at τ = π/
√

Δ2 + 4J ′2 = π/Ω for f (i)(τ ) and τ =
π/(g

√
a2sk′ + a2rk′) for f (i i)(τ ), the transition amplitude becomes the concurrence

itself.
Wemust recall that all the above is valid once g is treated perturbatively in compar-

ison with all the other coupling parameters. If that is not the case, we should expect the
end-to-end concurrence to drop down due to themixing between |s〉, |r〉 and the normal
modes of the channel. In Fig. 5 we show the behavior of the end-to-end concurrence
against α for several values of g for N = 50 (Fig. 5a) and N = 51 (Fig. 5b) (plus the
sender and receiver), in the case of on-site and coupling disorder, respectively, now
considering the full Hamiltonian, Eq. (1). For comparison, there we also show the
curve (solid black line) obtained directly from the effective descriptions (previously
shown in Figs. 1 and 3). Naturally, it fits very well with the plot corresponding to
the lowest value of g in Fig. 5a and b. Still, despite the considerable weakening of
entanglement upon increasing g, we note that the way the concurrence builds up with
α remains the same.

Finally, note that the transfer time goes ∼ g−2 for the off-resonant regime and
∼ g−1 for the resonant case [6]. Since high fidelities outcomes requires very small
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Fig. 5 End-to-end concurrences a C(i) and b C(i i) versus α averaged over 500 independent realizations
of a a 50-site channel featuring on-site disorder and a b 51-site channel with spin-coupling disorder with
fixed ωr = ωs = 0 . The solid black curve corresponds to the solution obtained directly from the effective
Hamiltonians, Eqs. (6) and (10), that is, without explicitly setting a value for g (cf. Figs 1, 3). Symbols
depict the results from exact numerical diagonalization of the full Hamiltonian, Eq. (1) with g = 0.01 (red
squares), 0.1 (blue spheres), 0.2 (green triangles), and 0.3 (yellow diamonds) in units of J (4.5J ) in panel
(a) [(b)]. In the case of on-site disorder (a), in each realization we chose the highest C(i) outcome among
the states lying around the center of the band (due to the lack of particle–hole symmetry in the spectrum)
and averaged it over all the samples (Color online)

values of g, weak-coupling models in general will demand longer operation times
(especially in the off-resonant scenario) when compared to other schemes (cf. [30]),
what could potentially damage the performance of the channel due to decoherence
effects [52]. A possible way around is to bring the channel to operate in the ballistic
regime by optimizing the outer couplings [9,53] in order to ease the fidelity-speed
cost. The requirement for g shall also be relaxed by locally modifying a few coupling
strengths in the channel [15] Still, weak-coupling configurations are very appealing
for it offers great resilience against various forms of noise [28,54,55], as we have also
showed here in the presence of correlated disorder.

6 Concluding remarks

We investigated the emergence of eigenstate entanglement between the two weakly
coupled ends of a disordered linear XY spin-1/2 chain in two different interaction
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regimes, namely when both outer spins are off-resonantly coupled to the channel
and when they are put in narrow resonance with one of its natural modes. In both
cases, we found that quantum channels presenting long-range correlated fluctuations
is capable ofmediating extremely high amounts of pairwise entanglement through long
distances, thus embodying a robust platform for carrying out quantum communication
tasks in the presence of imperfections. We also showed that spin-coupling strengths
(structural) fluctuations are less detrimental than on-site disorder since the former
assures particle–hole symmetry and induces the appearance of an eigenstate at the
very center of the band showing ubiquitous localization properties.

One of the advantages of such a class of weakly coupled spin models offers is that
the communicating parties only have access to the spectrum of the channel locally
through the sites they are coupled to. Therefore, perfect spatial mirror symmetry can
be put aside as long as a proper set of delocalized states are available in the spectrum,
thus leading to an effective resonant coupling between both outer spins no matter their
distance.
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