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Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network

I. N. de Oliveira,1 T. B. dos Santos,1 F. A. B. F. de Moura,1 M. L. Lyra,1,2 and M. Serva3,4

1Instituto de Fı́sica, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
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We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in
the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-
particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum.
The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A
finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise
estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical
exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to
those of the ideal Boson gas in lattices with spectral dimension ds = 2ln(3)/ln(9/5) � 3.74.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is one of the most
remarkable quantum phenomena on which a macroscopic
fraction of the bosonic particles constituting a physical system
occupies a single quantum state, thus leading to the emergence
of macroscopic spontaneous coherence. The production of
gaseous BEC of cold weakly interacting atoms in a magnetic
trap [1,2] represented a landmark in the physics history
corroborating that the BEC is a purely quantum phenomenon
that can take place even when interparticle interactions are
negligible. Nowadays, BEC has also been reported in solid-
state quasiparticles systems such as excitons, antiferro, and
ferromagnetic magnons [3–6], which has stimulated additional
studies concerning the universal features in the vicinity of the
BEC transition.

The scaling behavior characterizing the Bose-Einstein
condensation of an ideal gas has been a longstanding
issue addressed by several authors in the framework of
phase transitions and critical phenomena [7–12]. It has been
demonstrated that there is a precise correspondence between
the asymptotic properties of the thermodynamic quantities
in the vicinity of the transition temperature and those of
the spherical model of ferromagnetism [7]. Considering a
single-particle density of states (DOS) having a power-law
behavior DOS ∝ Eσ at the band bottom, the exponents
characterizing the singular behavior of several quantities
have been obtained [7,8], with σ = d/2 − 1 for particles
enclosed in a d-dimensional box. One remarkable result is
that the condensed fraction vanishes linearly as the reduced
temperature t = (Tc − T )/Tc → 0 irrespective to the value of
σ , where Tc is the transition temperature below which a finite
fraction of the particles condensate at the ground state. On the
other hand, the correlation length diverges as ξ ∝ t−ν , with
ν = 1/2σ for 2 < d < 4 and ν = 1/2 for d > 4. The specific
heat exponent is finite at the transition. For d < 4, the specific
heat is continuous and a negative exponent α = −(1 − σ )/σ
characterizes its cusp singularity, where Cv(T ) − Cv(Tc) ∝
|t |−α . For d > 4, it develops a jump discontinuity with α =
−(σ − 1). At d = 4, a logarithmic singularity sets up in the

specific heat. These exponents are modified by the presence
of interparticle interactions. In particular, the condensed
fraction decreases sublinearly, as reported in superfluid helium
experiments [9].

In spite of the well-established critical behavior of the ideal
gas BEC transition in homogeneous lattices, the corresponding
scenario in complex inhomogeneous lattices is still under-
explored. Within this context, exact analytical expressions for
the thermodynamic properties of the ideal gas on the star and
wheel networks have been recently reported [13]. The presence
of a gap between the ground and excited states is responsible
for the emergence of a low-temperature condensed phase, a
feature also shared by networks composed of interconnected
linear chains [14–18]. In the star and wheel networks, the
critical behavior is mean-field-like. The condensed fraction
vanishes linearly when approaching the transition, the specific
heat is discontinuous, and the condensed fraction at the
transition temperature scales with the number of lattice sites
as N−1/2.

BEC in scale-free networks are much less understood.
These complex networks having a power-law distribution of
site connectivity represent an important class of lattice models,
which has contributed to the understanding of transport and
information flow within systems of many degrees of freedom
[19–23]. In this context, the deterministic Apollonian network
has attracted much attention due to its scale-free and small-
world properties [24–28]. The thermodynamic properties of
the ideal electron gas on the Apollonian network reflects the
complex structure of the single-particle DOS, such as the
presence of δ-like singularities, gaps, and mini-bands [29,30].
On the other hand, when considering the same hopping
amplitude between any pair of connected sites, the ideal
boson gas was shown to present only a condensed phase
in the thermodynamic limit, with no finite-temperature BEC
transition [31]. This feature is related to the divergence of
the ground-state energy with the network size due to the
presence of sites with a diverging number of connections in the
thermodynamic limit. Therefore, the actual critical behavior of
the BEC transition of the ideal gas in scale-free networks is
still an open issue.
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Here, we fulfill this gap in the statistical mechanics
description of the ideal boson gas by showing that a proper
rescaling of the hopping couplings leads to a finite BEC
transition temperature in the deterministic scale-free Apollo-
nian network. After analytically demonstrating that the energy
spectrum can be obtained from a nonlinear mapping, we will
explore the scaling form of the condensed fraction density and
specific heat in the vicinity of the transition to provide accurate
estimates for some relevant critical exponents. In particular,
we will show that the critical exponents, as well as the overall
power-law behavior of the density of states near the band
bottom, indicates that the BEC condensation in the Apollonian
network belongs to the universality class of the ideal BEC in
lattices with spectral dimension ds = 2ln(3)/ln(9/5) � 3.74.

II. TIGHT-BINDING HAMILTONIAN
IN THE APOLLONIAN NETWORK

The Apollonian network in its two-dimensional version is
generated recursively starting from a single equilateral triangle
considered as generation g = 0. For the (g + 1)th generation,
the network is obtained by inserting a site within each triangle
of the gth generation, and connecting it to each of the triangle
corners [see Fig. 1(a)]. The total number of network sites
is then Ng = (3g + 5)/2, while the total number of edges is
Ug = (3g+1 + 3)/2. This network has a scale-free character.
There are sites with distinct degrees of connectivity whose
probability decays asymptotically as p(k) ∝ k−(1+γ ) with
γ = ln 3/ ln 2 = 1.5849 . . . .

We consider a tight-binding single-particle Hamiltonian in
the above Apollonian network. Each site of the network will
be considered as having a single orbital, whose onsite energy
will be taken as εi = 0 without loss of generality. Only first-
neighbors hopping are included. Therefore the nondiagonal
elements of the Hamiltonian matrix will be non-null only
between directly connected sites. However, as the degree of
connectivity of the network sites varies over a wide spectrum,
each non-null off-diagonal element of the Hamiltonian matrix
linking a pair of sites (i,j ) will be rescaled by the geometric
average of the connectivities of these two sites. In this way,
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FIG. 1. (Color online) (a) Apollonian network with g = 3. P1,P2,
and P3 are the sites of the original triangle at the zeroth generation.
(b) Integrated density of states (IDOS) within the tight-binding
approximation for a single particle in an Apollonian network with
g = 15 generations. Degenerescences and gaps are signaled by
vertical and horizontal segments, respectively. The inset shows the
power-law behavior near the band bottom IDOS ∝ (E − E0)1+σ [1 +
σ = ln (3)/ ln (9/5) � 1.87] modulated by a fractal-like structure.

the Hamiltonian assumes the form

H =
N∑
i,j

hi,j |i〉〈j |. (1)

Here, |i〉 represents the state where the particle is localized at
site i. The hopping amplitudes hi,j = hj,i are non-null only
between the connected sites of the network. We will consider
two models; in model A it is assumed that the hopping energies
are rescaled according to hi,j = t/

√
kikj , while in model B,

such rescaling is slightly modified when the three sites at the
corners are concerned as it will be explained in Sec. III. The
parameter t is the only relevant microscopic energy scale while
the rescaling of the off-diagonal Hamiltonian elements avoids
the divergence of the ground-state energy while keeping the
energy bandwidth finite in the thermodynamic limit. Rescaling
of the microscopic energy scale is commonly used in model
systems presenting highly connected sites in order to keep
the thermodynamic limit well defined as, for example, in
spin models with long-range connections [32–36]. The present
procedure extends that employed in the study of BEC transition
in the star and wheel networks [13].

A. Exact mapping for the energy spectrum

Let us start by summarizing a few relevant properties of the
Apollonian network:

(i) The number of sites at generation g � 0 is Ng = (3g +
5)/2. For g large one has Ng ∼ 3g/2.

(ii) The number of new sites created at generation g is 3g−1

for g > 0, while the number of older sites is (3g−1 + 5)/2 ∼
3g−1/2.
(iii) The number of sites with coordination k is m(k,g),

which equals 3s−1 if k = 3 · 2g−s with s = 1, . . . ,g, equals
3 (the three corners) if k = 1 + 2g and equals 0, otherwise.

(iv) The number of edges at generation g � 0 is Ug =
(3g+1 + 3)/2. For g large one has Ug ∼ 3g+1/2.

(v) The number of new edges created at generation g is 3g

for g > 0, while the number of older edges is (3g + 3)/2 ∼
3g/2.

We emphasize that, according to the above definitions,
generation g = 0 corresponds to the network with 3 sites.
Notice that for any g all newly created 3g−1 sites have
coordination 3. Also notice that connectivity of older sites is
increased by a factor 2 by generation upgrading with exception
of the three corners (connectivity goes as k = 1 + 2g).

In order to derive analytically the energy spectrum of the
tight-binding Hamiltonian on the Apollonian network, we
define two slightly different rescaling schemes for the hopping
energies:

(A) Model A is defined assuming that hopping energies are
t/

√
kikj , where ki and kj are the connectivities of the two

linked sites. In particular, the hopping energies connecting a
corner to another site j are t/

√
(1 + 2g)kj , while the hopping

energies connecting two corners are t/(1 + 2g).
(B) Model B differs from model A only because the hopping

energies connecting a corner to another site j are t/(
√

2gkj ),
while the hopping energies connecting two corners are t/2g+1.
All the other hopping energies are t/

√
kikj as in model A.
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Models A and B are identical in the thermodynamic limit
(g → ∞). Furthermore, their difference for finite values of g is
very small since they differ only slightly for hopping energies
concerning corner sites. Both models have Ng = (3g + 5)/2
eigenvalues of the Hamiltonian. Model B has the relevant
property that generation upgrading (from g − 1 to g) modifies
all hopping energies of older edges (included those edges
linking corners) simply multiplying them by a factor 1/2.

B. Eigenvalues of model B

In this subsection, we will assume t = 1 without loss of
generality (in case t 	= 1 these eigenvalues must be simply
multiplied by t). Model B at generation g = 0 is a fully
connected three sites network with the three hopping energies
all equal to 1/2. The eigenvalues of the Hamiltonian are:
−1/2, − 1/2, 1.

Then, eigenvalues of generation g are obtained from
eigenvalues of generation g − 1 by the following rule:

(i) From any eigenvalue E′ of the Ng−1 = (3g−1 + 5)/2
eigenvalues of generation g − 1, two rational numbers are
generated by

E1,2 = 1

4

[
E′ ±

√
(E′)2 + 8

3
(2 E′ + 1)

]
, (2)

and, therefore, 2 × Ng−1 numbers are generated.
(ii) Among these 2 × Ng−1 numbers, only those which are

nonvanishing are retained and they are all eigenvalues of
generation g.
(iii) The list of the Ng = (3g + 5)/2 eigenvalues of genera-
tion g is completed adding vanishing eigenvalues.

At generation g = 1, eigenvalues are: −1/4, − 1/4 −
1/2, 1; at generation g = 2, there are 7 nonvanishing eigenval-
ues; while for generations g � 2, vanishing eigenvalues start
to appear. In the thermodynamic limit, 1/3 of the eigenvalues
are vanishing.

C. Proof of the nonlinear mapping

Here, we will follow a recursive method similar to the one
adopted in the past literature to determine the spectrum of
harmonic excitations in hierarchical Sierpinski gaskets [37].
To proof the above nonlinear mapping for the energy spectrum
of model B, we consider an older site (a site that is not newly
created at last generation g). Let us call this site 0 and let
us consider all its k0 connected sites i; the local Schrödinger
equation centered over site 0, correspondingly to an eigenvalue
E, reads

E ψ0 =
k0∑

i=1

h0,i ψi . (3)

Assume that site 0 is not a corner, then k0 is even and among
the k0 connected sites there are nn = k0/2 newly created sites
at generation g and n0 = k0/2 older sites. Let us assume that
even values of i corresponds to newly created sites, then one
has h0,2i = 1/

√
3k0, which implies n0 (h0,2i)2 = 1/6.

Assume, on the contrary, that site 0 is a corner, then
k0 = 2g + 1 is odd and among the k0 = 2g + 1 connected
sites there are nn = 2g−1 newly created sites at generation

g and n0 = 2g−1 + 1 older sites (of which two are corners
themselves). Let us again assume that even values of i

corresponds to newly created sites, then one has h0,2i =
1/

√
3 × 2g , which implies also in this case n0 (h0,2i)2 = 1/6.

Let us now consider the nn local Schrödinger equations
centered over newly created sites connected to site 0. Let us
use for them the even index 2i, then for 2i = 2,4, . . . 2 nn, we
have

E ψ2i = h0,2i ψ0 + h2i−1,2i ψ2i−1 + h2i+1,2i ψ2i+1, (4)

where, in the case that 0 is not a corner, we use the convention
ψ2nn+1 = ψ1 and h2nn+1,2nn

= h1,2nn
.

Assume that E 	= 0. In this case (and only in this case)
the ψ2i can be integrated; i.e., they can be substituted from
Eq. (4) into Eq. (3). In this way, we obtain an equation that
connects site 0 with sites with an odd i index, i.e., an equation
which only concerns those n0 older sites already existing at
generation g − 1.

We remark that hj,2ih0,2i = 1
3hj,0 always holds unless 0

and j are both corners; in this last case one has h1,2ih0,2i =
2
3h1,0 and h2g+1,2ih0,2i = 2

3h2g+1,0. Using these relations and
the previously shown relation nn (h0,2i)2 = 1/6, which holds
both if 0 is corner site or it is not, we straightforwardly obtain(

E − 1

6E

)
ψ0 =

no∑
i=1

(
1 + 2

3E

)
h2i−1,0 ψ2i−1. (5)

The above equation, provided that E 	= 0, holds at any
of the sites that were already present at generation g − 1
and, therefore, it can be compared with the local Schrödinger
equation centered on site 0 at generation g − 1:

E′ ψ0 =
no∑

i=1

h′
2i−1,0 ψ2i−1. (6)

The hopping energies h′
2i−1,0 of model B at generation

g − 1 are twice the hopping energies h2i−1,0 of generation g,
then the two equations coincide provided that

2

(
E − 1

6E

)
= E′

(
1 + 2

3E

)
, (7)

which immediately gives Eq. (2). Since the assumption was
that E 	= 0, Eq. (2) only gives the nonvanishing eigenvalues
of generation g, given the eigenvalues (vanishing and nonva-
nishing) of generation g − 1. If there are missing eigenvalues
after using Eq. (2), they must be vanishing eigenvalues. We
finally remark that Eq. (2) maps real numbers in the interval
[−1/2,1] into real numbers in the same interval; therefore,
since the three eigenvalues corresponding to g = 0 are in the
interval, and at any generation only vanishing eigenvalues can
be added, the density of states (DOS) must have a support
contained in [−1/2,1].

The integrated density of states (IDOS) for the generation
g = 15 (N = 7 174 456 sites) is shown in Fig. 1(b) with
eigenenergies ranging in a finite window from −1/2 < E/t <

1, contrasting with the diverging bandwidth that results
when the off-diagonal terms are not properly rescaled [31].
The energy spectrum has a complex fractal-like aspect with
degenerescences, gaps, and mini-bands with many distinct
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scales. The inset shows a magnification of the IDOS near the
band bottom E0 = −1/2. Its presents an overall power-law
behavior IDOS ∝ (E − E0)1+σ modulated by a scale invariant
structure. The degradation very near the band bottom is a
finite-size effect. The power-law exponent of the IDOS can be
analytically derived from the exact iterative mapping for the
energy eigenvalues given by Eq. (2). The eigenvalues close to
the band bottom E/t = −1/2 at generation g + 1 came from
eigen-energies that were close to the top of the band E/t = 1
at generation g. Linearizing relation Eq. (2) in the vicinity of
E/t = 1, one obtains that the eigenstates that are at a small
distance ε from the top of the band at generation g − 1 are
compressed to a distance 5ε/9 at generation g. Therefore,
the total number of states close to the band bottom shall
satisfy Ng−1(ε) = Ng(5ε/9). Recalling that the total number
of states grows by a factor 3 and assuming a power-law
behavior of the IDOS at the band bottom, one directly
obtains 1 + σ = ln (3)/ ln (9/5) = 1.869 . . . . The straight line
in Fig. 1(b) represents such analytical scaling behavior and fits
the overall initial growth of the IDOS.

III. THE BEC TRANSITION IN THE
APOLLONIAN NETWORK

The above supralinear energy dependence of the IDOS
at the band bottom points toward the occurrence of a BEC
transition of the ideal boson gas with a fixed number Np of
particles. The thermodynamic properties in finite networks
with g generations can be directly obtained from the corre-
sponding energy spectrum. Within the framework of the grand
canonical ensemble, the average number of particles at the ith
energy state is given by

〈ni〉 = 1

eβ(Ei−μ) − 1
= 1

z−1eβ(Ei−E0) − 1
. (8)

Here, μ is the chemical potential and β = 1/kBT . z =
eβ(μ−E0) is a properly defined fugacity that, in the thermody-
namic limit of g → ∞, shall become unit in the condensed
phase. Following the standard grand-canonical ensemble
procedure, the fugacity can be obtained as a function of
temperature and particle density by imposing that Np =∑N

i=1〈ni〉. Values of z were numerically computed with an
accuracy of 10−12.

In order to identify the occurrence of a BEC transition, we
computed the average number of particles N0 condensed in the
ground state from N0 = z/(1 − z). In Fig. 2(a), we show the
fraction of particles condensed in the ground state ρ0 = N0/Np

as a temperature function for Apollonian networks with
distinct generations. We considered a representative particle
density Np/N = 1/2. Except by a finite-size rounding off,
a clear BEC transition develops at a finite temperature as
the network size grows. The inset shows the same data
near the transition in a universal finite-size scaling form
(see following discussion). The dependence of the condensed
fraction on temperature for distinct particle densities is shown
in Fig. 2(b). As expected, the transition temperature is an
increasing function of the particle density. Using a finite-size
scaling approach (see following discussion) to precisely locate
the transition temperature, we show in the inset its dependence
on the particle density. It is straightforward to show that
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FIG. 2. (a) Condensed fraction N0/Np as a function of temper-
ature for networks with distinct number of generations, g = 11 up
to g = 15. Here, we used a particle density Np/N = 1/2. The inset
shows the data in a universal finite-size scaling form. The straight lines
are consistent with the expected scaling behavior below and above
the transition (see text); (b) Condensed fraction N0/Np as a function
of temperature in a network with g = 15 generations and different
particle densities: Np/N = 2 (solid line), Np/N = 1 (dotted line),
Np/N = 1/2 (dashed line), and Np/N = 1/4 (dotted-dashed line).
The inset shows the density dependence of the transition temperature
Tc. The dashed lines correspond to the high density Tc ∝ Np/N and
low density Tc ∝ (Np/N )1/(1+σ ) behavior.

the transition temperature grows linearly with Np/N in the
high-density regime. In the opposite regime of low densities,
a slower (Np/N )1/(1+σ ) law sets up, according to the overall
IDOS behavior near the band bottom.

The temperature dependence of the specific heat can also
be used to signal the presence of the BEC transition. The
specific heat at a constant particle density on a network with
N sites can be written as Cv = ∂U (Np,T )/∂T |Np

, where the

internal energy U (Np,T ) = ∑N
i=1 εi〈ni〉. It is important to

stress that the implicit dependence of the fugacity z on the
temperature has to be taken into account. Figure 3 shows
the specific heat per particle (in units of kB) as a function
of temperature for Apollonian networks with distinct number
of generations and a fixed particle density Np/N = 1/2. In
the low-temperature regime, it displays a power-law behavior
in the form Cv ∝ T 1+σ , which is consistent with the main
power-law vanishing of the density of states at the band
bottom. Small deviations from the power-law regime at very
low temperatures are due to finite-size effects, which are also
evident near the peak signaling the BEC transition (shown
in detail in the inset). Although the maximum specific heat
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FIG. 3. The specific heat per particle (in units of kB ) as a function
of temperature for a fixed particle density Np/N = 1/2 in Apollonian
networks with distinct number of generations. The low-temperature
behavior Cv ∝ T 1+σ (shown as a straight dashed line) is consistent
with the low-energy overall power-law behavior of the IDOS. Near
the transition, the specific heat develops a peak rounded by finite-size
effects. The data point toward a saturation of the peak height in the
thermodynamic limit.

grows with the number of generations, the data point toward a
saturation in the thermodynamic limit.

IV. FINITE-SIZE SCALING AND CRITICAL EXPONENTS

Finite-size scaling arguments can be put forward to ac-
curately estimate the BEC transition temperature and the
relevant critical exponents. Assuming a single-parameter
scaling behavior, the condensed fraction in the vicinity of the
transition shall have the universal form

ρ0(N,T ) = N−ζ/ν̃h[(T − Tc)N1/ν̃], (9)

where an implicit dependence on the particle density is
assumed. ζ is the exponent governing the vanishing of the
condensed fraction as the transition is approached from below
[ρ0 ∝ (Tc − T )ζ ] in the thermodynamic limit. ν̃ is a typical
correlation exponent that plays a role similar to dν in regular d-
dimensional lattices. There are several techniques that explore
the above finite-size scaling hypothesis to compute the critical
parameters. Here, we analyze the temperature dependence of
the set of auxiliary functions

f (N,N ′,T ) = ln [ρ0(N,T )/ρ0(N ′,T )]

ln N/N ′ , (10)

computed for different pairs of network sizes (N,N ′). Ac-
cording to the scaling hypothesis, these functions become
independent of (N,N ′) at the transition temperature. Further,
this scale invariant value of f (N,N ′,Tc) = −ζ/ν̃.

The critical exponents characterizing the BEC transition
of the ideal Boson gas in dimension d < 4 are predicted to
be ζ = 1, 1/ν̃ = (d − 2)/d [7,8]. The specific heat is also
predicted to have a cusp singularity with and exponent α =
−(4 − d)/(d − 2). In the following, we are going to show that
these predictions hold for the Apollonian network when we
consider that the overall power-law behavior of the IDOS can
be associated to a spectral dimension ds = 2(1 + σ ) � 3.74.
This is not to be confused with the standard fractal dimension
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FIG. 4. (a) Auxiliary scaling functions f (N,N ′,T ) versus tem-
perature using N = 7 174 456 (g = 15) and distinct values of N ′

(g = 11,12,13, and 14). Here, the particle density of N/Np =
1/2 was used. The crossing point signals the BEC transition at
kBTc/t = 0.1136. It is also shown the finite-size scaling of (b) the
condensed fraction ρ0, (c) its logarithmic derivative d

dT
ln ρ0(N,T ),

and (d) the specific heat singularity Cv(N → ∞) − Cv(N ) at the
transition temperature. The power-law scaling correspond ζ/ν̃ =
1/ν̃ = (ds − 2)/dd � 0.46 and α/ν̃ = −(4 − ds)/ds � −0.07.

of hierarchical lattices related to the growth of the number of
sites with increasing system sizes. It has been evidenced that
anomalous diffusion can be observed in systems presenting
distinct values for the fractal and spectral dimensions [38,39].
The concept of spectral dimension is also important for several
models of equilibrium statistical physics including Gaussian
[40], spherical [41], and spin models [42,43]. The role played
by the spectral dimension on the thermodynamic properties
of the ideal Bose gas has been previously discussed in the
literature, with emphasis to the occurrence of BEC only for
ds > 2 [15].

In Fig. 4(a), we show a set of auxiliary functions
f (N,N ′,T ). In all of them we used N as the number of
sites of the network with generation number g = 15 (N =
7 174 456), while N ′ was taken from networks with generation
number ranging from g = 11 (N ′ = 88 576) up to g = 14
(N ′ = 2 391 487). Here, we also considered a constant particle
density Np/N = 1/2. Notice that all curves cross roughly
at the same point, thus indicating the BEC transition. Our
best estimate for the transition temperature for this particular
particle density is kBTc/t = 0.1136. In Fig. 4(b) we plot the
condensed fraction at Tc for distinct network sizes. The scaling
ρ0(N,Tc) ∝ N−ζ/ν̃ holds for several orders of magnitudes of
network sizes with some correction to scaling being present
when networks with a small number of generations (typically
g � 10) are considered. The straight line gives the predicted
exponent ζ/ν̃ = (ds − 2)/ds = 0.46 . . . .

The correlation exponent ν̃ can also be estimated by
noticing that the derivative of the logarithmic of the condensed
fraction with respect to temperature scales as d

dT
ln ρ0(N,T ) ∝

N1/ν̃ at the transition. This scaling behavior is depicted in
Fig. 4(c) together with the predicted power-law behavior
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with exponent 1/ν̃ = (ds − 2)/ds � 0.46. In order to test the
accuracy of the above critical parameters, we plotted the
condensed fraction data reported in the main frame of Fig. 2(a)
in a properly scaled form, namely Nζ/ν̃ρ0 versus N1/ν̃kB |T −
Tc|/t . According to the finite-size scaling hypothesis, data
from distinct network sizes shall collapse into a single curve
when the appropriate critical parameters are used. The data
collapse in the condensed phase is shown in the inset of
Fig. 2(a), on which the above values for the critical temperature
and exponents were used. The collapse is quite impressive, thus
supporting the accuracy of the present critical parameters. It
is interesting to notice that the present results indicate the
condensed fraction vanishes linearly as the BEC transition is
approached ζ = 1. This linear scaling-law is shown as the
straight upward dashed line in the inset of Fig. 2(a) and fits
perfectly well the collapsed data. This feature is consistent
with the value ζ = 1 for the BEC transition of the ideal gas in
lattice models with a pure power-law vanishing of the DOS at
the band bottom [7,8]. The downward dashed straight line has
a slope consistent with the 1/N vanishing of the condensed
fraction above the transition temperature.

Finally, similar finite-size scaling arguments can be used to
analyze the specific heat data. At the transition temperature,
the data reported in Fig. 3 indicates that Cv(N → ∞,Tc)
converges to a finite value, a feature shared by the ideal
gas BEC transition in regular lattices. The singular part of
the specific heat Cv(N → ∞,T ) − Cv(N,T ) also obeys a
single-parameter scaling form. At the critical point, it scales as
Cv(N → ∞,Tc) − Cv(N,Tc) ∝ N−α/ν̃ . The size dependence
of the singular contribution to the specific heat at the critical
point is shown in Fig. 4(d) for a particle density Np/N = 1/2
for which our best estimate was Cv(N → ∞,Tc)/kBNp =
0.813. We also show the predicted asymptotic power-law scal-
ing with exponent α/ν̃ = −(4 − ds)/ds � −0.07. Together
with the previous value of the correlation exponent, this
last result implies in α � −0.15. The hyperscaling relation
ν̃ = 2 − α is satisfied.

V. SUMMARY AND CONCLUSIONS

In conclusion, we showed that a finite-temperature BEC
transition of the ideal boson gas takes place in scale-free

networks when the off-diagonal elements of the one-particle
Hamiltonian are properly normalized by the geometric average
of the sites connectivities. We illustrated this feature by
computing the thermodynamic properties of the ideal gas
on the Apollonian network due to its deterministic nature
and simultaneous scale-free and small-world characteristics.
The one-particle energy spectrum has an overall power-law
behavior at the band bottom modulated by a fractal-like
structure signaling the hierarchical topology of the underlying
complex network. We analytically showed that the energy
spectrum can be obtained from a nonlinear mapping. A
finite-size scaling analysis of the condensed fraction and
specific heat near the transition temperature was employed
to provide accurate estimates of three critical exponents.
Strong corrections to scale are present, particularly in the
order parameter density and specific heat in networks with
a small number of generations (g < 10). The asymptotic
power-law behavior was probed using networks with sizes
ranging from 105 up to 107 sites. Such large network sizes
could only be addressed due to the analytical derivation of
the energy spectrum. A collapse of data from networks with
distinct sizes corroborates the estimated critical parameters.
In particular, the condensed fraction was found to vanish
linearly as the transition is approached, in agreement with the
behavior near the ideal gas BEC transition in regular lattices.
Further, the hyperscaling relation between the correlation
and specific heat critical exponents was verified. All results
indicate that the BEC transition in the Apollonian networks
belongs to the universality class of the ideal gas BEC in
lattices with spectral dimension ds = 2ln(3)/ln(9/5) � 3.74.
A systematic exploration of the ideal boson gas in distinct
topologies would be in order to elucidate the specific role
played by scale-free, small-world, and hierarchical properties
of complex networks on the universal behavior of the BEC
transition.

ACKNOWLEDGMENTS

This work was partially financed by the Brazilian Research
Agencies CAPES, CNPq, FINEP, and FAPEAL. M.L.L.
acknowledges the hospitality of the Condensed Matter Physics
group at Ecole Polytechnique, where part of this work was
developed.

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science 269, 198 (1995).

[2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995).

[3] L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard, and D. S.
Chemla, Nature (London) 417, 47 (2002).

[4] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,
J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André,
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