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We study numerically the effect of the on-site Hubbard interaction U on the dynamics of two electrons
subjected to an external electric field and restricted to move in a linear chain with open boundaries. We solve
the time-dependent Schrödinger equation to follow the time evolution of an initially localized two-electron
state. For electrons initially far apart, the wave packet develops Bloch oscillations whose characteristic fre-
quency is in agreement with a semiclassical calculation. For initially close electrons in a singlet state, a
frequency doubling sets up, which is more pronounced for intermediate couplings. We discuss this effect by
revealing the opposite trends the electron-electron coupling produces on the wave-packet components corre-
sponding to bounded and unbounded states.
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I. INTRODUCTION

The nature of one-electron eigenstates has a significant
influence on the electronic properties of solids. In pure peri-
odic systems, the one-electron eigenstates are Bloch waves
which are translational invariant and delocalized in the ther-
modynamic limit. In the absence of scattering or electron-
electron interaction, the system behaves as a perfect conduc-
tor whenever the Fermi energy falls into the conduction
band. This picture can be drastically changed in the presence
of disorder, interaction, or a dc external electric field.

In disordered systems, the one-electron eigenstates are ob-
tained using the well-known Anderson formalism.1–3 For
weak disorder, the electronic states in three-dimensional ge-
ometries display a localization-delocalization transition
�LDT�. It is well known that the LDT is absent for low-
dimensional systems with time-reversal symmetry at any dis-
order strength.1 Some years ago, it was reported that the
presence of short-range4–7 or long-range correlations8–17 in
disorder induces the appearance of truly delocalized states in
low dimensions. On the other hand, when the on-site
electron-electron interaction is turned on, the electronic sys-
tem can display a correlation-driven transition from a para-
magnetic metal to a paramagnetic insulator.18–22 This transi-
tion is called Mott transition, and its basic features can be
studied by employing the Hubbard model for electrons inter-
acting with each other through an extremely short-ranged
repulsive Coulomb interaction.18–22 The electronic states are
also influenced by the presence of a dc electric field. Under
this constraint, the electronic wave packet becomes localized
in a finite fraction of the lattice, an effect usually called
dynamical localization. The electron wave packet displays
the so-called Bloch oscillations,23–25 whose amplitude is pro-
portional to the bandwidth of electronic states. Electronic
Bloch oscillations were observed for the first time in semi-
conductor superlattices26 �for an overview, see Ref. 27�. A
similar phenomenon of sustained oscillations of the electro-
magnetic field, named photon Bloch oscillations, was also
reported in two-dimensional waveguide arrays and optical
superlattices based on porous silicon.28

A key problem in condensed matter physics is to under-
stand the electronic transport when the above ingredients

�disorder, interaction, and electric field� are simultaneously
present. The interplay between disorder and dynamical local-
ization due to an electric field was recently studied in Refs.
29 and 30. It was numerically proven that coherent Bloch
oscillations can appear whenever the disorder distribution
displays appropriated long-range correlations in both
one-dimensional29 and two-dimensional30 systems. The prob-
lem involving disorder and electron-electron interaction has
been a subject of great interest due to their competitive
role.31–44 It has been shown that on-site Coulomb interac-
tions weaken the Anderson localization induced by disorder.
Shepelyansky31 pioneered the study of two interacting elec-
trons moving in a disordered one-dimensional �1D� system,
and obtained an enhanced propagation effect of an interact-
ing electron pair over distances larger than the single-particle
localization length, as indeed predicted in disordered meso-
scopic rings threaded by a magnetic flux.33

Recently, the interplay between dynamical localization
and electron-electron interaction was reported in Refs.
45–48. By using numerical and analytical calculations, the
problem involving N interacting electrons moving along a
chain and subject to an external electric field was studied in
Ref. 45. It was shown that the N-particle problem is identical
to that of a single particle moving in an N-dimensional lat-
tice, with defect surfaces dividing the space in symmetric
domains. The authors have shown that in the limit of weak
hopping integral, the electron-electron interaction induces an
additional oscillation of the eigenstate drift velocity. The pe-
riod of this oscillation was found to be determined solely by
the range and strength of the electron-electron interaction.45

The spectral properties of the Bose-Hubbard Hamiltonian
under the additional action of a static field were studied in
Ref. 46. It was shown that for intermediate strengths of the
static field, a rapid decay of the Bloch oscillations of the
mean atomic momentum arises. It was also shown that the
time scale of this decay provides a direct measure for the
decay of particle-particle coherence across the lattice.46 By
using an extended dynamical mean-field theory,47 the effect
on a large electric field on interacting electrons was studied,
numerically demonstrating that the Bloch oscillations decay
due to electron correlations.

In this paper, we provide a detailed analysis of the phe-
nomenon of electronic Bloch oscillations in low-dimensional
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systems with two interacting electrons. To this end, we focus
on the electric-field-biased wave-packet dynamics of two
electrons moving in a 1D pure chain. We use numerical
methods to solve the Schrödinger equation and compute the
density of states, the stationary eigenstates, and the time evo-
lution of the two-electron wave packet. Starting from an ini-
tial Gaussian wave packet, we show that the electric field
promotes sustained Bloch oscillations, whose predominant
mode displays a frequency doubling depending on the rela-
tive contributions coming from bounded and unbounded
states. The values for the characteristic frequency and ampli-
tude of the Bloch oscillations will be discussed under the
light of a semiclassical approach.

II. MODEL AND FORMALISM

The Anderson-Hubbard tight-binding equation for two in-
teracting electrons in the presence of a static uniform electric
field F is given by43,44

H = �
n

�
s

W�cn+1,s
† cn,s + cn,s

† cn+1,s� + �
n

�
s

��n

+ eFan�cn,s
† cn,s + �

n

Ucn,↑
† cn,↑cn,↓

† cn,↓, �1�

where cn,s and cn,s
† are the annihilation and creation operators

for the electron at site n with spin s, n is the position opera-
tor, W is the hopping amplitude, and e is the electron charge.
As we will be mainly interested in the dynamical localization
induced by the external electric field applied parallel to the
chain length, we will consider open chains as the more ap-
propriate boundary condition. However, the actual boundary
condition has no significant influence on the numerical re-
sults concerning the dynamical localization induced by the
external field because the wave packet becomes trapped in a
segment much smaller than the chain length. In order to fol-
low the time evolution of wave packets, we solve the time-
dependent Schrödinger equation by expanding the wave
function in the Wannier representation

���t�� = �
n1,n2

fn1,n2
�t��n1s1,n2s2� , �2�

where the ket �n1s1 ,n2s2� represents a state with one electron
with spin s1 at site n1, and the other electron with spin s2 at
site n2. In order to allow for double occupancy of the on-site
orbital, we will consider in the following that the electrons
are in distinct spin states �singlet state�. Once the initial state
is prepared as a direct product of states, the electrons will
always be distinguishable by their spins since the Hamil-
tonian does not involve spin exchange interactions. The time
evolution of the wave function in the Wannier representation
becomes

i
dfn1,n2

�t�

dt
= fn1+1,n2

�t� + fn1−1,n2
�t� + fn1,n2+1�t� + fn1,n2−1�t�

+ �F�n1 + n2� + �n1,n2
U�fn1,n2

�t� , �3�

where we used units of �=W=e=a=1. The on-site energies
�n were taken as the reference energy ��n=0� without any

loss of generality. The above set of equations was solved
numerically by using a high-order method based on the Tay-
lor expansion of the evolution operator V��t�:

V��t� = exp�iH�t� = 1 + �
l=1

no �iH�t�l

l!
, �4�

where H is the Hamiltonian. The wave function at time �t is
given by ����t��=V��t����t=0��. The method can be used
recursively to obtain the wave function at time t. The follow-
ing results were taken by using �t=0.05, and the sum was
truncated at no=20. This cutoff was sufficient to keep the
wave-function norm conservation along the entire time inter-
val considered. We followed the time evolution of an initially
Gaussian wave packet with width �:

�n1s1,n2s2���t = 0�� =
1

A���
exp	−

�n1 − n1
0�2

4�2 

�exp	−

�n2 − n2
0�2

4�2 
 �5�

and computed the centroid of both electrons defined as

�ni�t�� = �
n1,n2

�ni − ni
0��fn1,n2

�t��2, i = 1 and 2. �6�

The initial positions �n1
0 ,n2

0� will be considered to be cen-
tered at �L /2−d0 ,L /2+d0�. In addition, we will apply a nu-
merical diagonalization procedure of the complete Hamil-
tonian in the absence of electric field to obtain all
eigenvectors �� j�=�n1,n2

fn1,n2

j �n1s1 ,n2s2� and eigenvalues Ej.
Further, we will compute the normalized density of states
�density of states per particle� defined as

DOS�E� =
1

L2�
j

��E − Ej� , �7�

and the average distance d�Ej� between the two electrons

d�Ej� = �
n1,n2

�n2 − n1��fn1,n2

j �2. �8�

The average distance brings information regarding the corre-
lation between the electrons so that a small d�Ej� signals a
bounded two-electron eigenstate.

III. RESULTS

We apply our numerical diagonalization to an open chain
with L=100 sites. In Fig. 1, we show results for the normal-
ized DOS versus energy E for U=0, 2, 4, and 6. For U=0,
the DOS is exactly the same as that obtained for the tight-
binding 2D Anderson Hamiltonian for one electron in a
square lattice geometry. For U	0, we observe the emer-
gence of a new subband. For U
4W, the new subband is
merged with the two-dimensional DOS. For U�4W, the
subband fully separates from the main band. According to
previous analytical calculations,45 this new subband shall
correspond to bound states and cover the energy range U
�E��U2+16W2, which is corroborated by our numerical
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result. In Fig. 2, we show the average distance d�Ej� between
the two electrons versus energy Ej for U=0, 2, 4, and 6. For
U=0, the electrons are noninteracting and the average dis-
tance is L /3. The structure seen in Fig. 2 reflects finite-size
and boundary effects. For U	0, the eigenstates within the
subband display small average distances d�Ej� �amplified in
the insets�. Therefore, the eigenstates within the subband are
indeed bounded �pairing� eigenstates.

The time evolution of the centroid �ni�t�� is shown in the
left panel of Fig. 3. We show results for a chain with L
=120 sites, wave-packet width �=1, d0=10, and �a� F=0.5,
U=0; �b� F=0.5, U=4; �c� F=0.75, U=0; and �d� F=0.75,
U=4. The centroid displays an oscillatory pattern. The Fou-
rier transform �see right panel� �ni���� clearly shows that the
predominant oscillation frequency is close to previous pre-
dictions using semiclassical arguments �=F.23–25 For such
large initial electron-electron distances d0�, the Bloch os-
cillations do not depend on the Coulomb interaction U once
the wave packet remains trapped by the electrical field
around its initial position, for which the double occupancy
probability is vanishingly small.

In Fig. 4, we show results for the centroid �ni�t�� com-
puted using a chain with L=120 sites, �=1, d0=0 �initially
close electrons�, F=0.5, and �a� U=0, �b� U=4, and �c�
U=10. For U=0, the centroid displays an oscillatory pattern
with frequency close to �=F. For U=4, the Fourier trans-
form �ni���� clearly shows that the centroid displays an
oscillatory pattern with a predominant frequency close to
�=2F. For much stronger interactions, the �=F frequency
is reamplified. The modulation in the oscillation pattern ob-
served at finite U is mainly related to the small splitting of
the peak at �=F. Such splitting is of the order of W2 /U
for large U. It is due to the electron-electron interaction,
which is also responsible for the emergence of an additional

oscillation frequency of the drift velocity of bounded
eigenstates.45

In order to understand the role played by the electron-
electron interaction in the emergence of the above described
frequency doubling process for intermediate interactions, we
computed the long-time average of the double occupancy
probability P2=� j=1

L ��f j,j�t��2� as a function of the Coulomb
interaction U for several initial wave-packet widths �=0, 1,
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2, 3, and 4, as reported in Fig. 5. For �=0, both electrons are
initially placed at the central site in such a way that the initial
double occupancy is P2�t=0�=1. Whenever U=0, the elec-
tron wave packets spread independently, although remaining
trapped over a finite segment due to the presence of the ex-
ternal field. Therefore, the long-time double occupancy prob-
ability becomes small �of the order of the inverse asymptotic
wave-packet width�. As the interaction is turned on, the
emergence of bounded states correlates the two-electron dy-
namics. For large interaction strengths, the initial state is
mostly superposed to bound states and, therefore, the double
occupancy remains close to unity. This means that the elec-

trons behave as a single particle executing coherent hop-
pings.

In the cases for which the initial wave packet has a finite
width, the initial double occupancy probability is smaller
than 1. At finite interaction strengths U, the contributions
coming from the wave-packet superposition with bounded
and unbounded states have opposite trends. While the inter-
action favors the coherent hopping associated with bounded
states, its repulsive character enhances the wave-packet
width. Such enhanced spread decreases the double occu-
pancy probability coming from the superposition with un-
bounded states. This competition results in a nonmonotonic
dependence of P2 on the Coulomb interaction U obtained in
Fig. 5 for finite initial wave-packet widths. The interaction
potential U corresponding to the maximum of the long-time
double occupancy probability represents also the physical
situation of maximal coherence between the two-electron
hopping. This maximum double occupancy probability as
well as the characteristic Coulomb interaction are decreasing
functions of the initial wave-packet width.

According to the above analysis, the wave-packet compo-
nent corresponding to bounded states will have a dynamical
evolution typical of a single particle composed of the elec-
tron pair. As such, the effective local electrical potential felt
by this composed particle will be 2eFan, thus explaining the
observed frequency doubling. This effect becomes more pro-
nounced for intermediate couplings that produce maximal
double occupancy. Another signature of the competition be-
tween bounded and unbounded states is also clearly seen in
the own time evolution of the one-particle centroid. Accord-
ing to the semiclassical prediction, the amplitude of the cen-
troid oscillations shall be proportional to the bandwidth. In
Fig. 4, one sees that the relation between the oscillation am-
plitudes for U=0 �unbounded states� and U=4 �predomi-
nance of bounded states� reflects the ratio between the width
of the bounded and unbounded energy bands.

IV. SUMMARY AND CONCLUSIONS

In summary, we studied the one-dimensional dynamics of
two interacting electrons with opposite spins under the influ-
ence of a static uniform electrical field F. When the electrons
are far apart, they develop Bloch oscillations induced by the
applied field whose characteristic frequency is given by �
=eFa /� according to a semiclassical approach,29 where e is
the electron charge and a the lattice spacing. For electrons
whose initial wave packets present a significant spatial su-
perposition with each other, the Bloch oscillations develop a
frequency doubled component which is more pronounced at
intermediate couplings. Such frequency doubling is associ-
ated with the emergence of bounded states of two electrons
in a singlet configuration. For electrons with parallel spins
�triplet state�, the local Coulomb interaction is ineffective
and no frequency doubling shall appear. By computing the
asymptotic double occupancy probability, we revealed two
opposite trends that the electron-electron interaction pro-
duces on the wave-packet dynamics. For the components as-
sociated with bounded states, the Coulomb interaction keeps
the electrons paired and produces coherent hoppings. For the
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unbounded components, the repulsive character of the inter-
action enhances the wave-packet width, thus diminishing the
double occupancy probability. The competition between
these two effects leads to an optimal coupling to obtain a
coherent dynamics of the two-electron system. The coupled
electrons effectively behave as a single particle with charge
2e, thus explaining the frequency doubling of the Bloch os-
cillations. The frequency doubling induced by the two-
particle interaction reported here seems to be quite a general
phenomenon, and can possibly be found in other systems
with bounded states, such as interacting spin waves and
phonons. This result will also be relevant to the analysis of
the interplay between interaction and disorder to the local-
ization theory of interacting electrons. Experimental testing

of the interaction-induced frequency doubling of Bloch os-
cillations would require systems with high densities of con-
ducting electrons in order to achieve the optimal coupling
condition. However, one shall keep in mind that additional
electron-electron correlations may need to be taken into ac-
count to properly analyze such a regime of strongly corre-
lated many-electron systems.
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