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We investigate several scaling aspects of the transmission spectrum of disordered one-dimensional dielectric
structures. We consider a binary stratified medium composed of a random sequence of N slabs with refraction
indices satisfying the Bragg condition. The mode for which the optical thickness corresponds to half wave-
length is insensitive to disorder and fully transparent. The average transmission in a frequency range around
this resonance decays as 1/N1/2, and the localization length diverges quadratically as this resonance mode is
approached. In the vicinity of the quarter-wavelength mode, the localization length diverges logarithmically
and the frequency averaged transmission exhibits an stretched exponential dependence on the total thickness.
At the quarter-wavelength resonance, the Lyapunov exponent for different realizations of disorder has a
Gaussian distribution leading to distinct scaling laws for the geometric and arithmetic averages of the trans-
mission. The scaling laws for the half- and quarter-wavelength modes are analogous to those found in elec-
tronic one-dimensional Anderson models with random dimers and pure off-diagonal disorder, respectively,
which are known to display similar violations of the usual exponential Anderson localization.
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I. INTRODUCTION

The study of wave transport in random media has been a
subject of renewable interest during the last decades, moti-
vated by its inherent importance to the understanding of elec-
tric, magnetic, mechanic, and optical properties of matter
with potential applications to the development of new de-
vices. Within this scenario, the Anderson theory for nonin-
teracting electrons in random media plays a central role.1–4

Although initially intended to study electronic transport in
random media, the predictions of the Anderson theory have a
quite broad range of applications which extend to general
wave transport phenomena.

According to scaling arguments,2 three-dimensional sys-
tems with weak disorder may sustain extended modes over
the whole sample, although with a finite coherence length. In
this regime, wave propagation can occur, thus leading to
most of the transport properties of condensed matter. For
strong disorder, the incoherent interference of waves scat-
tered by impurities leads to an exponential localization and,
consequently, to the absence of long distance transport. The
exponential localization is predominant in low-dimensional
systems. In particular, the scaling theory of Anderson local-
ization predicts that all wave modes shall be exponentially
localized for any amount of disorder in one dimension.2–4

Violations of the exponential localization in one-
dimensional �1D� disordered systems have been reported in a
series of model systems. The random-dimer model,5,6 which
consists of a random binary chain with one of the species
always appearing in pairs, has a resonant mode with no back-
scattering due to dimers that remain extended. In the Ander-
son chain with diluted disorder, i.e., with disorder present
just in a given sublattice, there is a Bloch state with vanish-
ing amplitudes at the disordered sublattice that also remains
delocalized.7–10 The presence of resonant delocalized modes
promotes a diffusivelike spread of initially localized wave
packets, thus being relevant for electronic transport. Models
that include long-range correlated disorder have also been

shown to display a band of extended states for strong enough
correlations which can sustain coherent Bloch oscillations in
the presence of a static electric field.11–13 Another class of
models that exhibit nonexponentially localized modes is that
with chiral symmetry, such as the tight-binding 1D model
with pure off-diagonal disorder and only first-neighbor
couplings.14,15 This model has a special mode at the band
center whose wave-function envelope has an asymptotic
stretched exponential tail. Another mechanism for the emer-
gence of nonexponentially localized states in 1D random
systems is through the hybridization of spatially separated
degenerate modes. Recently, the existence of these so-called
necklace states16 has been reported by transmission measure-
ments in random dielectric multilayers.17

Actually, the propagation of electromagnetic waves in
random media corresponds to the ideal physical scenario to
apply the concepts of Anderson localization, since photons
are truly noninteracting particles.18 Anderson localization of
light waves has indeed been observed in disordered
materials.19–21 In 1D disordered system, the localized modes
decay exponentially and, as a consequence, the ensemble av-
erage of the transmission logarithm over many realizations
of the disorder usually decays linearly with the sample thick-
ness L.16 The simplest 1D optical disordered system corre-
sponds to a sequence of thin dielectric layers with no trans-
lational order. A multilayer system has the advantage of
being simple to fabricate using different procedures,22–24 thus
having potential applications in optoelectronics and optical
communication.25

In the absence of disorder, the transmission spectra of
periodic multilayered structures exhibit a characteristic range
of frequencies with no propagating modes. Materials with
such property are called photonic crystals,26 in analogy with
atomic crystals. The region of forbidden frequencies is called
photonic band gap and, as in the electronic case, arises as a
result of multiple interference of Bragg scatterings. However,
due to the vectorial character of the electromagnetic field, in
contrast to the scalar nature of the electronic wave function,
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photonic crystals exhibit new features related to polarization
and incidence angle dependent effects.27–31

The band gap in multilayered systems can be controlled
by changing the physical characteristics and the positional
distribution of the layers. Several interesting results have
been reported for structures following quasiperiodic �pseudo-
random� sequences such as the raising of non-Bragg gaps in
a Thue-Morse multilayer32 and the self-similarity of the en-
ergy spectrum of Fibonacci structures.33,34 Scale invariant
gaps have also been obtained with the utilization of metama-
terials in the multilayer composition.35,36 For truly random
sequences, the combined effect of Bragg reflection and light
localization has been explored to demonstrate a band-gap
extension effect with possible applications in the design of
broadband high reflectors composed of a periodic layer se-
quence with fluctuating optical lengths.37,38 Recently, the
transmission spectrum of binary multilayer structure with po-
sitional disorder, composed of dielectric slabs with the same
optical length, has been reported17,39,40 and shown to display
peaks associated with necklace states.16 Numerical results on
finite-size samples showed a transmission peak when the op-
tical length corresponds to a quarter wavelength as a signa-
ture of hidden partial order.40

In this paper, we will report the scaling behavior associ-
ated with several aspects of the transmission spectrum of a
binary multilayer structure with positional disorder. We will
particularly address the case on which the dielectric layers
have distinct refractive indices but their thicknesses are cho-
sen to give them the same optical length. By employing a
transfer matrix calculation in finite-size samples, we will
compute the transmission coefficient as a function of the
mode frequency. We will drive special attention to the spec-
tral ranges at the vicinity of the half- and quarter-wavelength
modes. The transmission peaks at these frequencies originate
from distinct mechanisms reflected on different scaling laws
for the size dependence of the average transmission and for
the localization length singularities. These scaling laws will
be shown to be analogous to the ones observed in the tight-
binding models for electronic states in random-dimer and
random-hopping chains.

II. TRANSFER MATRIX FORMALISM

The transfer matrix formalism is particularly suited to
compute the transmission spectrum of electromagnetic
waves in stratified dielectric media.41,42 Here, we will sketch
the main lines of the transfer matrix technique for the par-
ticular case of normal incidence. We will assume a plane
wave of frequency � propagating along the z axis direction,
which is normal to the interfaces of a dielectric slab of thick-
ness d and linearly polarized in such a way that the electric

field amplitude can be written as E� �z�=E�z�x̂. The extension
for the case of oblique incidence of transverse electric and
transverse magnetic waves is straightforward. The relation
between the electric and magnetic fields at the interface lo-
cated at z=z1 and the fields at the interface at z=z1+d can be
expressed in transfer matrix form as

�E1

B1
� = M�E2

B2
� = � cos �

i

p
sin �

ip sin � cos �
��E2

B2
� , �1�

where the phase change �=�nd /c, n is the refractive index
of the medium, and p=� �

� , where � and � are the dielectric
constant and magnetic permeability, respectively. The bound-
ary conditions across an interface requires the continuity of
the parallel components of the fields. As a consequence, for a
stratified medium consisting of a sequence of N dielectric
layers, the fields at the first and last interfaces can be related
through a product of individual transfer matrices as

�E0

B0
� = M1M2 ¯ MN�EN

BN
� = M�EN

BN
� , �2�

where Mi is the transfer matrix of the ith layer, E0 and B0 are
the electric and magnetic field amplitudes at the first inter-
face, and EN and BN the field amplitudes at the last interface.
The complex transmission coefficient of such stratified me-
dium can be obtained by assuming that the incident beam is
coming from the left and that one has just the outgoing trans-
mitted wave at the right of the multilayer structure. It can be
expressed as

t��� =
2pi

�m11 + m12po�pi + �m21 + m22po�
, �3�

where mij’s represent the elements of the total transfer matrix
M. pi and po are related to the input and output media. The
complex transmission coefficient brings information regard-
ing both the phase and amplitude of the transmitted wave.
From the phase, one can have access to the dispersion prop-
erties of the wave propagating through the multilayered
structure such as its group velocity. In what follows, we will
be particularly interested in analyzing the ratio between the
intensities of the outgoing and incoming waves, which is
given by the transmission T���=

po

pi
�t����2.

III. TRANSMISSION SPECTRUM OF BINARY RANDOM
SEQUENCES

We will consider a random stratified binary medium com-
posed of N nonabsorbing dispersionless dielectric layers. As
representative refraction indices, we will consider nA=1.45
and nB=2.5, although the qualitative aspects we are going to
explore remains the same for any pair �na ,nb�. The layers can
be considered as consisting of porous silicon, whose refrac-
tive index can be made to vary in a wide range by controlling
the porosity.43 The ith layer of the sequence has the same
probability of being type A or B. The resulting dielectric
structure is surrounded by vacuum, and the layer thicknesses
will be taken in such a way as to satisfy the Bragg condition,
i.e., both kinds of dielectric layers will have the same optical
length nAdA=nBdB=�0. In what follows, the characteristic
frequency �0=c /�0 corresponds to the mode whose wave-
length in vacuum equals the layer’s optical length.

In order to have an overall picture of the role played by
disorder, we compared the transmission spectrum of a peri-
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odic sequence of alternating A and B layers with that of a
random multilayer sequence, as shown in Fig. 1 for struc-
tures with N=102 layers. The periodic sequence constitutes
the so-called distributed Bragg reflector. The transmission
spectrum displays a sequence of transmitting and nontrans-
mitting bands. The transmitting bands are centered at fre-
quencies for which the optical length of each layer is an
integer multiple of the half wavelength in vacuum, i.e., the
phase change in each layer is �=m�, with m integer. The
multilayer structure is fully transparent to these modes. The
nontransmitting photonic band gaps are centered at frequen-
cies that match the optical length to be a quarter wavelength
displaced from the multiples of half wavelengths 	phase
change �= �m+1/2��
. The width of the photonic band gap
depends on the relation between the refraction indices na and
nb.

The transmission spectrum of random sequences, aver-
aged over 102 realizations of the disorder, is depicted in Fig.
1�b�. Disorder has quite distinct effects in the range of fre-
quencies corresponding to transmitting and nontransmitting
bands. Firstly, one notices that the high transmission at the
center of the transmitting bands is not affected by disorder,
as expected once the transfer matrix of each layer becomes
an identity matrix I for these modes �actually ±I�. However,
the width of the transmission band is much narrower. Within
the nontransmitting band, disorder induces the emergence of
a few modes. These are related to necklace states which re-
sult from hybridization of degenerate states localized in dis-

tinct regions of the structure.17,40 Although these modes be-
come rare as the number of layers increases, they dominate
the average transmission in this frequency range. Further, the
average transmission spectrum develops a narrow peak at the
center of the photonic band gap.

The insensitivity of the fully transmitting mode on the
spatial arrangement of the layers resembles the violation of
the Anderson localization in the random-dimer model.5,6 This
model also has a resonant mode for which the dimers be-
come transparent. A typical signature of this kind of reso-
nance is that the localization length � shall diverge as �E
−E0�−2. Consequently, the energy range of effectively ex-
tended states with �	N shall decrease as N−1/2. We test for
the above scalings on the vicinity of the half-wavelength
mode. As a measure of the localization length �, we consid-
ered the inverse of the Lyapunov exponent 	�=1/
=
−limN→��N / ln T�
. We also computed the spectral average of
the transmission for the frequency range corresponding to
the transmission band of the periodic sequence. Its size de-
pendence shall reflect the narrowing of the transmission
peak. In Fig. 2, we report our results for these quantities. As
anticipated above, the average transmission decays as N−1/2,
and the localization length diverges quadratically as one ap-
proaches this resonance mode.
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FIG. 1. Transmission spectra of �a� periodic and �b� random
stratified binary media with N=102 layers. For the random struc-
ture, we performed an average over 102 distinct realizations of dis-
order, which plays quite distinct roles in the range of frequencies
corresponding to transmitting and nontransmitting bands. The inset
shows in detail the disorder induced transmission peak at the center
of the stop band.
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FIG. 2. �a� Spectral average of the transmission versus the num-
ber of layers N. �b� Localization length in the vicinity of the half-
wavelength mode. The average transmission decays with 1/N1/2,
and the localization length diverges quadratically as one approaches
the resonance mode. The estimate of the localization length was
performed considering a finite structure with N=104 layers, and the
averages were taken over 103 distinct random sequences. The satu-
ration of the localization length very close to the resonance fre-
quency is a finite-size effect.
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At the center of the photonic band gap of the periodic
sequence, disorder promotes a narrow peak of the transmis-
sion. At this frequency, one can notice that the transfer ma-
trices of both kinds of layer become off diagonal, i.e., have
null diagonal elements. However, the off-diagonal elements
will be randomly distributed. This scenario resembles the
one achieved for one-dimensional electronic tight-binding
Hamiltonians with only random hoppings.14,15 The state at
the middle of the energy band of this model has an infinite
localization length. In spite of this, the disorder averaged
transmission approaches zero as the size of the system in-
creases. On the basis of the central limit theorem, it has been
argued that the logarithm of the transmission at this reso-
nance shall have a Gaussian distribution in the regime of
large N, whose mean square deviation grows as N1/2 as
shown in Ref. 14. Following this distribution, the geometric
	exp(�ln�T��)
 and harmonic ��1/T�−1� mean values of the
transmission shall behave as exp�−��L�, while the arithmetic
mean value ��T�� shall follow a power law N−1/2. As one
approaches the band center, the localization diverges
logarithmically,15 which implies that the energy range of ef-
fectively extended states shall be very narrow, scaling as a
stretched exponential.

We have verified the above scaling behavior at the
quarter-wavelength mode. In Fig. 3, we report the size de-
pendence of the geometric, harmonic, and arithmetic average
values of the transmittance. Both the geometric and har-
monic averages indeed display a stretched exponential scal-
ing, while the arithmetic average exhibits a slower power-
law decay. In Fig. 4, we display the probability distribution
function of the transmittance logarithm at the quarter-
wavelength condition as obtained from 104 distinct realiza-
tions of the disorder in structures with 104 layers. The nu-
merically obtained distribution is well fitted by a Gaussian,
thus corroborating the central limit theorem prediction. It is
worth mentioning that disorder configurations that lead to
high transmittance occur with larger probability than those
leading to low transmittance. This is a somewhat counterin-
tuitive aspect once disorder is expected to favor localization.

Actually, at this frequency, the system has a hidden partial
order. Pairs of neighboring layers of the same kind are trans-
parent. Therefore, the effective size of the system can be
renormalized by decimating such pairs until a level at which
the remaining layers form a periodic alternate sequence.40

The probability that such decimation proceeds up to a high
order is large, thus resulting in a maximum of the probability
distribution function for high transmissions.

The spectral average of the transmittance in a frequency
range around the quarter-wavelength mode is shown in Fig.
5�a�. In contrast with the power-law scaling obtained at the
vicinity of the half-wavelength mode, we now find that the
transmission spectral average exhibits a faster stretched ex-
ponential decay as the number of layers is increased. This
trend is consistent with the slow logarithmic divergence of
the localization length when approaching this resonant mode,
as shown in Fig. 5�b�. All the reported scaling behaviors at
the quarter-wavelength resonance are consistent with those
of the electronic tight-binding random-hopping model and
shall hold for general one-dimensional models with pure off-
diagonal disorder.

The above analysis showed that disorder plays opposite
trends in the transmission behavior near half- and quarter-
wavelength modes. Near the half-wavelength condition, i.e.,
at the transmission band of the periodic sequence, the main
effect of disorder is to promote the exponential localization
of the modes, except at the resonance. Therefore, the trans-
mission spectral average is reduced by disorder. On the other
hand, within the photonic band gap, disorder promotes the
emergence of states that support a small but finite transmis-
sion in finite systems.

In order to explicitly show these opposite trends, we com-
puted the spectral average of the transmission around the
half- and quarter-wavelength resonances as a function of the
disorder strength. We started with a periodic sequence of
alternate A and B layers. Then, each layer of this sequence is
replaced by a layer of the other species with probability q.
For q=0, one retains the fully periodic sequence, while the
q=1/2 limit recovers the uncorrelated fully disordered se-
quence. Our results are shown in Fig. 6 for N=102 layers,
averaged over 5103 disorder configurations and within
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FIG. 3. Size dependence of the geometric �exp�ln T��, harmonic
��1/T�−1�, and arithmetic ��T�� average values of the transmission at
the quarter-wavelength resonance frequency. Both the geometric
and harmonic averages display an stretched exponential scaling,
while the arithmetic average exhibits a slower power-law decay.
Here, we averaged over 104 distinct random sequences.
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FIG. 4. Probability distribution function of the transmission
logarithm at the quarter-wavelength resonance frequency. The nu-
merically obtained distribution is well fitted by a Gaussian �dashed
line�, thus corroborating the central limit theorem prediction. Data
were the same as those used in Fig. 3 for N=104 layers.
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spectral ranges corresponding to the transmission �a� and re-
flecting �b� bands. Notice that the average transmission
around the half-wavelength mode decays with increasing dis-
order strengths once Anderson localization is the predomi-
nant effect. The spectrally averaged transmission around the
quarter-wavelength resonance depicts the opposite trend,
growing as the disorder strength is increased due to the emer-
gence of states within the gap. The average transmission is
small due to the low probability of occurrence of extended
necklace states.

IV. SUMMARY AND CONCLUSIONS

In summary, we investigated the scaling behavior of the
transmission spectrum in stratified dielectric media com-
posed of binary random sequences of N layers satisfying the
Bragg reflection condition. We paid special attention to the
resonance states for which the optical length of the layers
corresponds to half and quarter of the mode wavelength.

The half-wavelength resonance is at the center of the
transmission band of the corresponding periodic sequence of
alternating layers. It is fully transparent irrespective to disor-
der. We numerically demonstrated that the transmission
bandwidth is a decreasing function of the total number of
layers and disorder strength, with the spectrally averaged
transmission scaling as N−1/2. Further, the localization length
diverges quadratically as one approaches the resonance fre-

quency. These scaling laws are the same ones appearing in
the random-dimer tight-binding Hamiltonian model for one-
electron states.

At the quarter-wavelength mode, the logarithm of the
transmission has a Gaussian distribution when considering
distinct disorder configurations whose width scales as N1/2 in
the limit of large N. This Gaussian distribution reflects a
hidden partial order which can be revealed by decimating the
pairs of neighboring similar layers. At this resonance, the
geometric and harmonic averages of the transmission scale
as stretched exponentials of the total number of layers, while
the arithmetic average displays a slower power-law decay
proportional to N−1/2. Further, the spectral average of the
transmission around the quarter-wavelength resonance also
decays with the total thickness as an stretched exponential,
which is consistent with a slow logarithmic divergence of the
localization length. However, the transmission within this
frequency range increases with the disorder strength. The
scaling laws at this resonance are similar to the ones present
in the Hamiltonian model for one-electron states in chains
with random hoppings and might hold for general 1D sys-
tems with pure off-diagonal disorder.

In summary, a random binary dielectric multilayer satis-
fying the Bragg reflection condition exhibits two of the
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FIG. 5. �a� Spectral average of the transmittance in a frequency
range around the quarter-wavelength mode as a function of the
number of layers. It exhibits an asymptotic stretched exponential
decay as the number of layers is increased. �b� The disorder aver-
aged localization length in the vicinity of the quarter-wavelength
resonance showing its slow logarithmic divergence. Here, we aver-
aged over 104 random sequences. The localization length in �b� was
estimated from structures having 5103 layers.

0 0.1 0.2 0.3 0.4 0.5
q

0

0.2

0.4

0.6

0.8

<
T

>
ω

(a)

0 0.1 0.2 0.3 0.4 0.5
q

0

0.01

0.02

0.03

0.04

<
T

>
ω

(b)

FIG. 6. Spectral average of the transmission around �a� the half-
and �b� the quarter-wavelength resonances as a function of the dis-
order strength. Disorder plays opposite trends in the transmission
behavior near each resonance. Around the half-wavelength reso-
nance, Anderson localization is predominant and the transmission
decreases with increasing disorder. On the other hand, near the
quarter-wavelength resonance, disorder induces the emergence of
states within the stop band and thus promotes a small transmittance
in this frequency range. Data were obtained from 5103 random
sequences with 102 layers each.
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known scenarios that lead to violations of the Anderson ex-
ponential localization due to disorder. Once the propagation
of electromagnetic waves in random media represents the
ideal setup for testing the predictions associated with the
Anderson theory of localization, it would be interesting to
have experimental observations of the herein reported scal-
ing laws. However, fluctuations in the layer thicknesses of
real systems shall be be finely controlled to allow the Bragg
condition to be closely satisfied. These fluctuations may sup-
press the resonance transmission peaks of thick multilayer

structures, especially the narrow peak corresponding to the
quarter-wavelength condition.
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