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Stationary and dynamical aspects of two-magnon states in disordered ferromagnetic chains
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We study the nature of collective two-spin excitations in disordered S=1/2 ferromagnetic chains. Using a
direct diagonalization scheme, we characterize the two-magnon eigenstates by computing their spacial extent,
two-point correlation and the average distance between the excited spins within the allowed energy band. We
found that, due to the effective excitation interaction imposed by the exclusion rule, the low-energy two-
magnon states display strong spin-spin correlations as compared to the more localized high-energy states. We
further solve the time-dependent Schroedinger equation to follow the time evolution of an initially localized
two-magnon state. We show that the effective one-magnon wave packet develops power-law tails with distinct
exponents for the left and right tails, with the distribution function of the spin-spin distance decaying as
P(d) o< 1/d. We show that the average distance between the two excited spins evolves in time diffusively, while

the wave-packet dispersion evolves superdiffusively.

DOLI: 10.1103/PhysRevB.72.224420

I. INTRODUCTION

The nature of collective single-spin excitations in random
ferromagnetic systems has a close relationship with the one-
electron eigenstates in tight-binding models of noninteract-
ing electrons in random media.'~ In a three-dimensional lat-
tice the presence of weak disorder promotes the localization
of the high-energy spin-waves. The low-energy states with
long wavelength remain extended, although acquiring a finite
coherence length. A mobility edge separates the high-energy
localized from the low-energy extended states. The position
of the mobility edge continuously decreases as the disorder,
strength is enhanced. In the regime of strong disorder, all
magnon states become exponentially localized.

At low dimensions, specially in one-dimensional disor-
dered ferromagnetic chains, the finite energy states are expo-
nentially localized for any degree of disorder, resembling the
prediction of the scaling theory for the Anderson localization
transition.> However, because the low-energy states have a
long wavelength, they exhibit a typical localization length
that diverges as one approaches to the bottom of the band.
This feature results in quite particular features related to the
transport of magnetic excitations in low-dimensional random
ferromagnets that are not shared by the electronic counter-
part. For example, an initially localized spin excitation may
exhibit a superdiffusive spread in the presence of disorder in
contrast to the random oscillations over a finite segment dis-
played by an electron wave packet.”?

The interplay between disorder and electron-electron in-
teraction has been the subject of great interest due to their
competitive role.'?° It has been shown that on-site
Hubbard-like interactions weakens the Anderson localization
induced by disorder. As a result, an enhanced propagation of
an interacting electron pair can be obtained over distances
larger than the single-particle localization length, as indeed
predicted in disordered mesoscopic rings threaded by mag-
netic flux.'> However, the interaction becomes effective only
for those localized states that are in positions close to each
other. Therefore, the Anderson localization weakening ob-
served in mesoscopic rings vanishes for an infinite chain,
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following the vanishing of the fraction of overlapping local-
ized electron states.?!

Because of the long localization length of the low-energy
magnon states, the spin-spin interaction effect in random §
=1/2 ferromagnetic chains is expected to influence the mag-
netic transport even in the infinite chain limit. Spin-wave
interactions have attracted a long-standing interest since the
pioneering work of Dyson,?? and the nature of multimagnon
excitations has been studied by different techniques.>*~?’ Re-
cently, it has been pointed out that understanding the inter-
play between interaction and disorder is a prerequisite for
building a quantum computer.?® Localized two-magnon
states were shown to form around defects in inhomogeneous
ferromagnetic systems.?%3

In order to further explore the above phenomenology, we
are going to employ a detailed analysis of the nature of the
two-magnon excitations in finite-disordered chains. As a S
=1/2 spin only allows for a single excitation (i.e., two spin
excitations can never occupy the same site), the effective
spin-spin interaction is closely related to an infinite strength
Hubbard repulsion. Some relevant properties of the station-
ary two-magnon states will be computed using a direct nu-
merical diagonalization algorithm on finite chains, together
with a finite-size scaling analysis. The localization length
will be characterized by the participation number and spacial
extent of the two-magnon states. The spin-spin correlation
will also be reported to reveal the distinct finite-size effects
over low and high energy states. Finally, we will solve the
time-dependent Schroedinger equation to follow the time
evolution of an initially localized two-magnon state. The dif-
fusive character of the average spin-spin distance and the
superdiffusive wave-packet spread will be reported and re-
lated to the asymptotic form the two-magnon wave packet.

II. MODEL AND FORMALISM

We will consider finite disordered chains of S=1/2 spins
coupled via a first-neighbors isotropic Heisenberg exchange
interaction, whose Hamiltonian can be written as
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H=_E"n,n+lsn'sn+l’ (1)

where the couplings J, ,,; are uncorrelated random ferro-
magnetic couplings, which can assume the values J; and J,
with equal probability. In what follows we will work in units
of Ji=1. The ground state for a ferromagnetic chain consists
of a perfectly ordered chain with all spins aligned on the
same direction. We will refer to the ground state as the
vacuum state |0) in what concerns to the presence of mag-
netic excitations. One-magnon states are the Hamiltonian
eigenstates on the subspace generated by all single-flip states
|¢,)=5.]0). In the presence of disorder, the one-magnon
states are spatially localized, with the characteristic localiza-
tion length diverging as one approaches the bottom of the
excitation energy band. Here we will explore the nature of
the Hamiltonian eigenstates on the subspace generated by all
two flip states. The bases for this subspace can be repre-
sented by

@, ) =5, 5,]0). @)
where |¢”1’”2> is the state with spin flips located at sites n,
and n,. In the absence of disorder, most of the two-magnon
eigenstates on a chain with N spins are unbounded and their
energy spectrum ranges from 0 <<E<4J. However, N out of
the N(N-1)/2 possible two-magnon states are bounded
states and distributed over an energy range 0 <E <<2J. In the
presence of disorder, there is no clear distinction between
bounded and unbounded states. In order to characterize the
nature of the two-magnon eigenstates, we shall solve the
time-independent Schroedinger equation to obtain the coef-
ficients d)n],nz in the expansion over the two-flip bases |®)
:E¢11],n2|¢n1,n2>' The coefficients obey the following recur-
sion relation:

26¢nl,n2 = (Jnl—l,nl + Jnl,n|+l + an—l,n2 + an,n2+l)(ll)n],n2
- Jnl,n1+1¢nl+1,n2 - an,n2+l¢n1,n2+1 - Jnl,nl—ld)nl—l,nz
_an—l,n2¢nl,n2—l’ (3)

for n; and n, not being neighboring sites. The eigenstate
coefficient for flips at neighboring sites follows a simpler
recursive relation in the form:

26¢n,n+1 = (Jn—l,n + Jn+l,n+2) ¢n,n+l - Jn+l,n+2¢n,n+2
- n—l,n¢n—l,n+1 . (4)

The above set of N(N—1)/2 equations provides the coeffi-
cients of all two-magnon eigenstates. As the numerical algo-
rithm requires the diagonalization of M X M matrices, with
M=N(N-1)/2, we are restricted to compute the two-
magnon states on relatively small chains. In order to infer
about the limit of infinite chains, we will employ a finite-size
scaling analysis. In Sec. III, we will show results derived
from the stationary states on chains with N=21, 41, and 81
spins. Distinct realizations of the distribution of exchange
couplings will be accounted to perform a configurational av-
erage over the disorder, namely, 8000 realizations for the
smallest chain size and 500 realizations for the largest one.

PHYSICAL REVIEW B 72, 224420 (2005)

15F b

DOS

0.5

0 ' L 2 T

0251

020 B

So.1s)
Q i
0.10 =

005 B

P
().()()0 3

tyal

FIG. 1. (a) One-magnon density of states obtained from the
negative eigenvalue theorem applied to N=10* chains with J,/J,
=2. The two-band structure resembles the DOS of an alternate bi-
nary ferromagnetic chain. (b) Two-magnon density of states from
exact diagonalization of chains with N=90 sites (thick line). It has
a single-band structure. The thin line is a convolution of the one-
magnon DOS, which represents the large chain limit of the two-
magnon DOS. The deeps are related to small gaps in the one-
magnon DOS.

At first, we report in Fig. 1 the density of one- and two-
magnon states. The one-magnon density of states (DOS), ob-
tained using the negative eigenvalue theorem applied to a
chain with 10* spins, has two main energy bands (which
resembles the DOS of an alternate binary ferromagnetic
chain). Disorder introduces stronger DOS fluctuations at the
high-energy band. On the other side, the two-magnon DOS
was computed from exact diagonalization of chains with 90
sites. It exhibits a single-band structure. Such density of
states contains finite size corrections. Its thermodynamic
form can be fairly well estimated [thin line in Fig. 1(b)]
through a convolution of the one-magnon DOS, once two-
magnon interaction may be disregarded in the limit of very
long chains. Note that the two-magnon DOS develops deeps
at energies around E=2 and E=3, which are related to a
vanishing one-magnon DOS around these energies.

III. THE NATURE OF TWO-MAGNON EIGENSTATES

To characterize the nature of the two-magnon stationary
states, we start by computing the average distance d of the
two flipped spins. For a given eigenstate, it is defined as

d: 2 (n2_n1)|¢nl,nz|2' (5)

ny<np

In this section, we will present results for the particular case
of J,/J,=2. All quantities for a given configuration of disor-
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FIG. 2. Average distance between the flipped spins vs energy for
finite chains with open and closed boundary conditions. The aver-
age distance is roughly constant with distinct corrections to scaling
at low and high energies. The crossing signals the edge of the remi-
niscent bound states band. The representative error bars shown ac-
count for fluctuations due to distinct disorder configurations. The
larger values at the upper-band edge reflects the vanishing of the
density of states.

der were computed as an average over the eigenstates with
energies in a small interval around E. We further performed
an average over disorder. The reported error bars account for
fluctuations due to random exchange configurations. For the
sake of clarity, we will include in the figures just the error
bars corresponding to a single representative case. In Fig. 2,
we plot the average distance d(E), which consists of the av-
erage distance between the flipped spins, taking into account
all eigenstates with energy in a small interval around E. For
a very large chain, one expects that the average distance
between the flipped spins can be estimated, assuming their
positions as random. This feature just reflects the fact that
localized one-magnon states with a particular energy can be
at arbitrary distances. In chains with open boundary condi-
tions, the average distance should then approach {(d),=N/3,
while for chains with periodic boundary conditions it shall
reduce to (d),=N/4. Figure 2 exhibits the above trends, but
finite-size corrections are in distinct directions for high- and
low-energy two-magnon states. The finite-size correction to-
ward larger distances observed for the high-energy states in
finite chains is mainly due to the fact that double occupancy
is not allowed. On the other hand, the correction to smaller
distances of the low-energy states has a contribution reminis-
cent from the low-energy two-magnon bound states. The
crossing around E=2 signals the edge of the bound states
band.

In order to study the spacial distribution of the two-
magnon states, we computed the participation number of
each eigenstate defined as

1
P=———. (6)
2 bl

ny<np

In Fig. 3, we plot the normalized average participation num-
ber P(E), taking into account all states within a small energy
window around E. For extended two-magnon states, it shall
scale as N? [actually the maximum participation number is
N(N-1)/2 for a uniform state]. The states with localization
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FIG. 3. Normalized average participation number (P/M) of
two-magnon states vs energy in open and closed disordered ferro-
magnetic chains [M=N(N-1)/2]. The collapse of data for the low-
lying states indicates that the asymptotic localization length in the
thermodynamic regime is much larger than the chain sizes consid-
ered. Error bars account for fluctuations over disorder
configurations.

length smaller than the chain size have size-independent par-
ticipation numbers. Our results show that the high-energy
states are well localized presenting a short localization
length. The localization length is larger for the low-energy
states. The collapse of data from distinct chain sizes for
small excitation energies indicates that the localization
length on an infinite chain is much larger than the chain sizes
considered. To further characterize the spatial extension of
the two-magnon states on disordered ferromagnetic chains,
we computed the eigenstates spatial extent defined as

E= 2 [ /N0 =)+ (= (n0))*,  (7)

ny<np

where
<ni>= E ni|¢nl,n22

ny<np

. i=12, (8)

which gives a measure of the wave-function spread on the
n; X n, plane. The averaged spatial extent &(E) of all two-
magnon states in a small window around E is reported in Fig.
4. These results show that the high-energy two-magnon
states have a relatively small spatial extent and that periodic
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FIG. 4. Average normalized spacial extent &(E) vs energy for
two-magnon states of finite disordered ferromagnetic chains. The
trends are similar to those exhibited by the participation number.
Periodic boundary conditions implies in less localized states. At the
bottom of the energy band &(E—0)=0.3. Error bars account for
fluctuations over disorder configurations.
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FIG. 5. Average relative correlation function of two-magnon
eigenstates vs energy for finite disordered ferromagnetic chains.
The correlation at low energies results from the strong effect caused
by the constraint n;<n, on states with long localization lengths.
Localized high-energy states are less correlated in open than in
closed chains. Error bars account for fluctuations over disorder
configurations.

boundaries implies in less localized states. This trend was
also evidenced in the participation number results. The col-
lapse of data at low energies reinforces the large spatial ex-
tent of the low-lying states with &E—0)/N=0.3.

The effective interaction between the flipped spins in the
two-magnon states can be numerically probed by computing
the two-point correlation function of each eigenstate, written
as

£=(nyny) — (ny)Xny), )

where (n,) and (n,) are the average positions of the flipped
spins given by (8) and

(mnyy= 20 ny-mld, |7 (10)

ni<np

The constraint of n,>n; promotes strong correlations be-
tween the flipped spins whenever the wave-function spatial
extent is large, i.e., in low-energy two-magnon states. As-
suming the two-magnon wave function to be uniformly dis-
tributed, although satisfying the above restriction, one can
directly demonstrate that (n,;)=N/3, {(n,)=2N/3, and {nn,)
=N?/4. This gives an estimate for the relative correlation
function at low energies as being {/(n;)(n,)=1/8. In Fig. 5
we report the relative correlation function as obtained from
finite chains, which corroborates the above estimate. The
correlation {(E) was computed as the average correlation of
all states with energy around E. As expected the high-energy
states are weakly correlated because of the exponential local-
ization of the two-magnon states, with the correlation depen-
dence on the eigenstate energy being slower in closed than in
open chains.

IV. TWO-MAGNON WAVE-PACKET DYNAMICS

The long localization length of the low-energy one-
magnon states causes a superdiffusive spread of an initially
localized wave packet.7 Therefore, a similar diffusivelike dy-
namics is expected to take place associated with two-magnon
excitations. In this section, we will investigate the time evo-
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Iution of a wave packet initially composed of two flipped
spins at a distance dy. We numerically solve the time-
dependent Schroedinger equation ifi(d/dt)|®(t))=H|D(1))
where H is the Hamiltonian (1) and |P(2))
=Enl<nz¢”1,nz(t)|¢nl,n2>- The time-dependent coefficients
& .n,(1) Obey a set of differential equations, derived from
(4), for spin deviations at neighboring sites and from (3) for
non-neighboring deviations, namely,

d¢i N l(t)
: ldl: - (Jn—l,n + J"+1’"+2) d)”’”*'l(t) - Jn+1,n+2 ¢n,n+2(t)
- n—l,n¢n—l,n+1(l) (11)
and
.d(ﬁnl,nz(t)
l—dt = (Jnl—l,nl + J"|’"I+1 + an—l,nz + J”Z,n2+l)¢n],n2

- Jnl,n1+l ¢n1+1,n2(t) - an,n2+1 ¢n1,n2+l

_Jnl—l,nld)n]—l,nz_an—l,nzd)n],nz—l’ (12)

n2>n1+1,

where we used units of Zi=1. The above set of equations
were numerically solved by using the fourth-order Runge-
Kutta method on open chains up to N=800 sites.

The destructive interference between the wave reflected at
the chain boundaries and the outgoing wave leads to a non-
uniform envelope of the asymptotic wave packet after a very
long time evolution. A power-law asymptotic shape is ex-
pected for the wave-packet spreading in quantum systems
with diffusivelike dynamics.3'3> Typical asymptotic shapes
of the wave packet of two magnons can be visualized in Fig.
6. The initial conditions were chosen to have d,=2 (Fig.
6(a)) and dy,=N/2 (Fig. 6(b)). A logarithmic color scale was
used to allow for a better analysis of the main trends. In Fig.
6(a) the spin deviations were initially close to the chain cen-
ter. It shows that the wave-function component with a single
deviation displacement over a distance d from the initial po-
sition is larger than the component with both spin deviations
displaced by a distance d/2. This feature is incompatible
with a wave packet decomposed as the product of exponen-
tially decaying functions and is more likely to result from a
product of power laws. In Fig. 6(b), the spin deviations were
far apart (half the chain size). The same above feature is
observed with the additional collision effect once two spin
deviations are not allowed on the same site.

To quantify the asymptotic form of the wave packet, we
measured the probability distribution function associated
with a single spin deviation defined as

| [P = 2 [0 | (13)

which gives the spatial distribution function of the left-most
spin deviation irrespective to the position of the second
flipped spin. In order to avoid strong crossovers, i.e., a long
short-time transient during which the wave packet does not
probe efficiently the underlying disorder, we considered a
case of stronger disorder J,/J;=5. In Fig. 7, we plot this
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FIG. 6. (Color online) Color representation of the average
asymptotic wave-packet probability distribution in logarithmic
scale. The initial conditions were chosen to be two spin deviations
at a distance (a) d=2 and (b) d=200 located symmetrically with
respect to the chain center. In (b) one notes the collision effect as a
result of the exclusion rule.

distribution as obtained after a very long propagation time of
a two-spin deviation state with dy=2. One notes that the
single-spin wave packet develops power-law tails with dis-
tinct characteristic exponents on each side. The larger decay
exponent on the right side is a consequence of the effective
repulsion between the spins, which make it difficult for the
single-spin wave packet to freely spread toward the region
predominantly occupied by the second spin excitation.

We further computed the distribution function of the dis-
tance between the spin deviations defined as

N-d

P(d)= 2 | by yeald)

ni=1

% (14)

where the probability amplitudes were taken from a time
much larger than the saturation time. The configurational av-
erage of the above distribution function is reported in Fig. 8

PHYSICAL REVIEW B 72, 224420 (2005)

F

0.1+

<
Q 5 I I

0.05

T
1

o200 00 60 800
g

FIG. 7. Asymptotic distribution of the single-spin wave packet
in a chain with N=800 spins, averaged over 33 realizations. The
initial state have spin deviations at sites 7;=399 and n,=401. Note
that that the wave packet exhibits asymmetric tails. The insets char-
acterize the power-law decay of each tail. The larger decay expo-
nent of the right side of the wave packet reflects the effective re-
pulsion between the spin deviations. Error bars account for
fluctuations over distinct disorder realizations.

for the particular case of dy=2. It displays two well-defined
regimes. For d<<N/2, it decays as a power law, with the
distribution exponent being given by P(d)x1/d. For d
>N/2, it exhibits a pronounced decay once double-spin de-
viation displacement are necessary to achieve such distances.

The emergence of distinct power-law exponents govern-
ing the single-spin wave packet leads to the possibility that
distinct length scales, one related to the distance between the
spin deviations and the other related to the lateral spread of
the wave packet, may be governed by distinct dynamical
exponents. In order to explore this point, we followed the
time evolution of the average distance between the flipped
spins defined as

)= 2 (ny=n)|d, (O (15)

ny<np
In Fig. 9, we show the time evolution of the average distance
starting with two spin deviations with dy=2. A configura-
10° T T
e P(d)~d”

10 10 10 10

FIG. 8. Asymptotic distribution of the distance between spin
deviations in a chain with N=800 spins. The regime for d <N/2
reflects the power-law decay of the wave-packet envelope. The fast
decay for d>N/2 is related to the small probability of joint spin-
deviation displacements. Error bars account for fluctuations over
distinct disorder realizations.
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FIG. 9. Time evolution of the average distance between the spin
deviations in chains ranging from N=200 up 800 spins. The inter-
mediate regime points toward a diffusive separation of the spins
with {d(r))o<¢"2. Error bars account for fluctuations over distinct
disorder realizations.

tional average over 33 histories was employed. Results are
for the time evolution in chains ranging from N=200 up to
800 sites. Note that, after an initial waiting time, the average
distance grows diffusively before saturating because of the
wave-packet reflection at the chain boundaries. The interme-
diate interval could be well fitted by a power law with
(d(t)yct"?. We further measured the distance dispersion

a(t)=\(d*(1))—(d(1))*, where
(@)= 2 (ny- n1)2|¢n1,n2(l)|2- (16)

ny<np

The distance dispersion can also be used as a characteristic
length scale of the wave-packet spread and starts from
o(0)=0. Therefore, it is less influenced by the initial tran-
sient. Figure 10 shows the dispersion for the same realiza-
tions used to compute the average distance. From this, we
estimate that the dynamic scaling for the superdiffusive
spread is given by o(f) = 1*/*. This exponent is consistent with
the superdiffusive spread of single flip excitations.

V. SUMMARY AND CONCLUSIONS

In summary, we investigated some stationary and dynami-
cal aspects of two-magnon excitations in disordered Heisen-
berg ferromagnetic chains of S=1/2 spins. Using a direct
numerical diagonalization algorithm, we computed the sta-
tionary two-magnon eigenstates on finite chains and charac-
terized their spatial distribution and spin-deviation correla-
tion function. Similarly to the Anderson localization of
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FIG. 10. Time evolution of the average dispersion of the dis-
tance between the spin deviations. The intermediate scaling regime
is well fitted by a superdiffusive law on the form oo 4. Thus, the
wave-packet spread evolves faster than the average spin-spin dis-
tance. Error bars account for fluctuations over distinct disorder
realizations.

single-spin collective excitations, the two-magnon states are
exponentially localized. The localization length of high-
energy states are rather small but diverges as one approaches
the ground-state energy. The long localization length of the
low-energy states give rises to strong spin-spin correlations
that are suppressed at high energies as the localization length
becomes smaller than the chain size. One also identified that
the distinct roles played by the exclusion rule and the emer-
gence of bound states results in opposite corrections to scal-
ing when referring to the average distance between the spin
deviations in finite chains. Furthermore, we followed the
time evolution of the distance between two initially localized
spin deviations. The asymptotic wave packet develops
power-law tails. We computed the asymptotic distribution
function of the spin-deviation distance which satisfied P(d)
«1/d. The single-spin wave packet develops asymmetric
tails because of the effective spin-spin repulsion, which give
rises to distinct scaling exponents governing the temporal
evolution of length scales related to the average spin-spin
distance and the wave-packet dispersion. The wave-packet
dispersion dynamics is superdiffusive, which is linked to the
long localization length of the low-energy states. On the
other side, the average distance grows diffusively, indicating
that the center of each magnon diffuses independently in the
scaling regime.
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