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We investigate the wave-packet dynamics of the power-law bond disordered one-dimensional Anderson
model with hopping amplitudes decreasing as Hnm� �n−m�−�. We consider the critical case ��=1�. Using an
exact diagonalization scheme on finite chains, we compute the participation moments of all stationary energy
eigenstates as well as the spreading of an initially localized wave packet. The eigenstates multifractality is
characterized by the set of fractal dimensions of the participation moments. The wave packet shows a diffu-
sivelike spread developing a power-law tail and achieves a stationary nonuniform profile after reflecting at the
chain boundaries. As a consequence, the time-dependent participation moments exhibit two distinct scaling
regimes. We formulate a finite-size scaling hypothesis for the participation moments relating their scaling
exponents to the ones governing the return probability and wave-function power-law decays.
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I. INTRODUCTION

Noninteracting electron systems with uniformly distrib-
uted disorder usually show an Anderson transition from lo-
calized to extended states. In general, such a transition oc-
curs only for spatial dimensions greater than d=2 in the case
of systems with short-range hopping, a result supported by a
single parameter scaling theory.1,2 On the other hand, when
long-range couplings are assumed, a transition from local-
ized to delocalized electronic states can be found even in
one-dimensional �1D� disordered systems.3,4 In this case, one
has an interplay between the hopping range and the degree of
disorder. The former favors propagation while the later in-
hibits it. It is worthwhile to mention that propagation of car-
riers was also obtained in low-dimensional models with
short-range hopping but presenting correlated disorder, such
as random dimer chains5–8 and in chains with scale-free
disorder,9–11 as well as in chains containing quasiperiodic
structures, as for example Fibonacci, Thue-Morse, and
Harper sequences.12–14

On the other hand, for an ordered 1D system with hop-
ping terms decaying with a power law with exponent �, it
was shown that for ��2 one recovers the result for the
tight-binding model.15 More interesting is the behavior cor-
responding to 0���1. For �=0 an initially localized wave
packet presents self-trapping, i.e., the particle performs os-
cillations in a definite region of the lattice, visiting periodi-
cally the starting position. By increasing � the localization is
lost. When the power exponent equals unity, and for suffi-
cient short times, the packet diffuses with a diffusion coeffi-
cient that increases with the number of sites. This effect is
absent in the model with only nearest-neighbor hopping.15

More recently, the dynamics of an electron in a one-
dimensional Anderson model with nonrandom hopping terms
falling off as some power � of the distance between sites was
investigated.16 It was found that the larger the hopping range,
the more extended the wave packet becomes as time evolves.
When the disorder is increased, the wave packet tends to

remain more localized. For a low degree of disorder, the
exponent �=1.5 indicates the onset for fast propagation.
Moreover, the inclusion of a dc electric field introduces the
effect of dynamical localization. The fast propagation found
for ��1.5 is in agreement with the reported delocalization
of states located close to one of the band edges.17–19

The power-law random band matrix �PRBM� model also
exhibits a delocalization transition.3,4 This model describes
one-dimensional electronic systems with random long-range
hopping amplitudes with standard deviation decaying as 1/r�

for sites at a distance r�b, where b is a typical bandwidth. It
was shown that at �=1 it presents an Anderson-like transi-
tion with all states being localized for ��1 and extended for
��1. At the critical point �=1, the inverse participation
ratio distribution, the wave functions multifractal spectra, the
level statistics, and the time evolution of the wave-packet
size have been investigated both analytically and
numerically.3,4,20–23 Within the same spirit of the PRBM, a
model for noninteracting electrons in a two-dimensional
�2D� lattice with random on-site potentials and random
power-law decaying transfer terms was numerically investi-
gated by exploring the finite-size scaling properties of the
fluctuations in the mean level spacing.24 It was found that the
one-electron eigenstates become extended for transfer terms
decaying slower than 1/r2. Finally, the Anderson transition
in a 1D chain with random power-law decaying hopping
terms and nonrandom on-site energies was numerically char-
acterized in Ref. 25.

The moments of the position and those of the related
probability density are known to exhibit different scaling
behaviors.26 This feature reflects the complexity of the scal-
ing laws governing the dynamics of quantum systems.27 In
this paper, we investigate the critical dynamics of the power-
law bond disordered Anderson model ��=1� by looking at
the moments of the wave-function probability distribution.
Using an exact diagonalization scheme on finite chains, we
compute the participation moments of all energy eigenstates
and follow the time evolution of an initially localized wave
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packet. After that, we perform an average of the participation
moments over different configurations and energies, which
allow us to compute the critical exponents Dq associated
with the multifractal character of the critical eigenfunctions.
Examining the time evolution of an initially localized wave
packet, we obtain the decay exponent of the autocorrelation
function �C�t�� t−D2� and the size dependence of the

asymptotic return probability �R�t��N−D2
�

�. The exponent
D2

� also governs the power-law decay of the wave packet.27

We will employ a finite-size scaling analysis of the time
dependent participation number moments, relating their scal-
ing exponents with the power-law exponents of the evolving
wave packet.

II. MODEL, FORMALISM, AND RESULTS

A. Model Hamiltonian

We consider a single electron in a 1D chain with open
boundaries, described by the Anderson Hamiltonian

H = �
n�m

N

Hnm�n��m� , �1�

where �n� represents the state with the electron localized at
site n. In the present random bond Anderson model, the on-
site potentials �i are site independent and in Eq. �1� were
taken to be �i=0 without any loss of generality. Long-range
disorder is introduced by assuming the hopping amplitudes
Hij to be randomly distributed and also displaying a power-
law decay. We will, hereafter, consider

Hnm = Wnm/�n − m��, �2�

where Wnm is a random variable with a uniform distribution
in the interval �−1, +1�. As a function of the exponent �
characterizing the decay of the hopping amplitudes, this
model displays a localization-delocalization transition at �
=1 �Ref. 25� in close connection with the PRBM.3,4 For off-
diagonal terms decaying slower than 1/ �n−m�, i.e., for �
�1, all states become delocalized. At �=1 the states are
critical and the level spacing statistics is between the Poison
and Wigner surmises. In the limit of �→	 one recovers the
1D Anderson model with just first-neighbors random hop-
ping amplitudes.

B. Eigenfunctions participation moments

We will be particularly interested in investigating the par-
ticipation moments and the time evolution of an initially lo-
calized wave packet at the critical point �=1. The participa-
tion moments for a particular disorder configuration and
eigenstate will be defined as the inverse of the moments of
the probability density

Pq
j =

1

�n=1

N
�fn

j �2q
, �3�

where fn
�j� is the amplitude at site n of the jth eigenstate

obtained from an exact diagonalization scheme on finite
chains with sizes ranging from N=400 up to N=3200 sites.

Here we used 32
103 states for each chain size in order to
average over distinct disorder configurations and energies

Pq =	� j=1

N
Pq

j

N

 , �4�

where �� stands for configuration average. Therefore, Pq
probes the average qth moment of the critical stationary
states. In Fig. 1 we show the finite-size scaling of different
moments ranging from q=2 up to q=6. As it has been shown
by Wegner,28 all moments show a power-law dependence on
the form �Pq�NDq�q−1��. Each moment has its characteristic
exponent Dq as indicated in Fig. 1, which reflects the multi-
fractality of the critical eigenstates. Our results indicate that
the fractal dimension Dq slowly decreases from D2=0.676
towards the asymptotic value D	=0.5.

C. Wave-packet dynamics

In order to obtain the time evolution of an initially local-
ized wave packet ����t=0���, we expand the wave function
in the Wannier representation

���t�� = �
n

fn�t��n� . �5�

We solve the time-dependent Schrödinger equation for the
wave-function components fn�t� ��=1�

i
dfn�t�

dt
= �

n�m

N
Wnm

�n − m��
fn�t� , �6�

using the numerical formalism proposed in Ref. 29

���t�� = U† exp�− iDt�U���t = 0�� , �7�

where D is the diagonal form of the Hamiltonian and U is a
unitary matrix. An advantage of the above method in com-
parison with those employing numerical solutions of the
time-dependent Schrodinger equation is the fact that it is free
of the propagation of errors. As the method is based on the
complete diagonalization of the Hamiltonian, the size of the

FIG. 1. The average participation moment �Pq� as a function of
the chain size �N� for several values of q ranging from 2 to 6. The
distinct fractal dimensions �Pq�NDq�q−1�� exhibited by the partici-
pation moments reflect the multifractality of the critical eigenstates.

LIMA et al. PHYSICAL REVIEW B 71, 235112 �2005�

235112-2



system is limited by the computational capability of dealing
with large matrices. However, the wave-packet dynamics in
the limit of infinite chains can be extrapolated using finite-
size scaling arguments. In what follows we consider the elec-
tron initially localized in a single site, i.e., ���t=0��= �n0�.
We start by discussing the behavior of the autocorrelation
function

C�t� =
1

t
�

0

t

R�t��dt�, �8�

where R�t�= �fn0
�t��2 denotes the return probability.30 The

time-dependent autocorrelation function provides informa-
tion about localization of the wave packet as well as of its
fractal character. In fact, after an initial waiting time, the
autocorrelation function shall behave as

C�t� � t−D2, �9�

for one-dimensional systems, which by definition is the same
power-law decay presented by the return probability. In Fig.
2�a� we plot the return probability for t→	 as a function of
the number of sites. After the initial decay due to the wave-
function spread, it saturates at a size-dependent plateau,

which decreases as 1/ND2
�

. In Fig. 2�b�, the autocorrelation
function versus time t is shown for different chain sizes. It
exhibits a power dependence for intermediate times whose
exponent is in good agreement with the previous estimate for
D2. Its saturation for t→	 has the same finite-size origin
presented by the return probability.

The asymptotic return probability decaying slower than
1/N indicates that the statistically stationary wave function
does not assume a uniform profile. In Fig. 3 we plot the
average stationary wave-function profile achieved long after
the wave-function reflection at the chain boundaries. It de-
velops a power-law decaying tail with �fn�t→	��2�1/ �n
−n0�1−D2

�
�see inset�, as expected according to the wave-

function normalization constraint. Before reaching the chain
boundaries, the average wave-function envelope can be well
described by

�f�n,t��2 = R�t��n − n0 + 1�−�1−D2
�� �10�

for n−n0�N*�t�, where N*�t� is a time-dependent cutoff af-
ter which the wave function decays exponentially and, there-
fore, can be considered as having a vanishing amplitude. The
return probability decays as R�t�� t−D2. It is straightforward
to show, using the normalization criterium, that the cutoff

shall scale as N*�t�� tD2/D2
�

. The above asymptotic power-law
shape of the wave function is in agreement with the previous
prediction for the wave-packet spreading in quantum systems
with fractal energy spectra and eigenfunctions.27 For dis-
tances larger than the cutoff N*�t�, numerical data as well as
analytical results based on the memory function formalism
have shown that the tail of a diffusing wave packet actually
assume a stretched exponential form whose characteristic ex-
ponent is related to the diffusion exponent D2 /D2

�.31 We fur-
ther calculated the time-dependent participation moments

FIG. 2. �a� The return probability function for t→	 as a func-
tion of the number of sites. The small power-law decay exponent

R�t→	��N−D2
�

, with D2
�=0.607�10�, is consistent with a wave

function with a slowly decaying envelope. �b� Autocorrelation func-
tion vs time t for chains with N=400 up to N=3200 sites. The
power-law decay for intermediate times with an exponent D2

=0.676 is in good agreement with the previous numerical estimate
for D2.

FIG. 3. Average wave-function profile after a very long evolu-
tion time �t→	�. In the inset, we note that the envelope displays a
power-law decay with an exponent 1−D2

�=0.393, is agreement
with the measure exponent of the asymptotic return probability.
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Pq�t� =	 1

�n

N
�fn�t��2q
 . �11�

The second moment �P2� has been commonly used as a mea-
surement of the number of sites that participate in the wave
function. For a wave packet fully localized at a single site,
P2=1, while for a uniform distribution of the wave function,
P2 reaches the maximum value N. In general, P2 is size
independent in the localized phase and scales linearly with
the system size for extended states.

In the present case, for which the wave function develops
the power-law form given by Eq. �10�, the participation mo-
ments present a nontrivial scaling. Two distinct behaviors
can be anticipated. For q�1/ �1−D2

��, the participation mo-
ment shall display a power-law growth �after a short waiting

time� on the form Pq�t�� t�q−1�D2/D2
�

, followed by a saturation
after reaching the chain boundaries. The saturation plateau is
predicted to scale as P�N , t→	��N�q−1�. Both time regimes
can be represented by a single finite-size scaling hypothesis
for the participation moment which can be written as

Pq�t,N� = N�q−1�g�t/ND2
�/D2� , �12�

with g�x→	� being a constant due to the wave-packet re-

flection at the chain boundaries and g�x→0��x�q−1�D2/D2
�

in
order to leave the participation moment size independent at
intermediate times prior to the reflection. In Fig. 4, we show
our numerical results for the scaled second moment �P2 /N�
vs scaled time �t /ND2

�/D2�, which falls in the above regime of
q�1/ �1−D2

��. These data were averaged over 100 time his-
tories considering distinct disorder configurations. The sec-
ond moment remains constant during a very short initial
waiting time before the spread effectively starts to take place.
After that, we found that the above scaling hypothesis repro-
duces very well the participation time evolution as data from

distinct chain sizes could be collapsed in the same curve. As
anticipated, the participation moment has a power-law
growth followed by a saturation. The slight deviation from
perfect collapse is due to corrections to scaling that are more
pronounced for the smaller system sizes. The maximum dis-
played by the participation number reflects the destructive
interference between the incident and reflected waves near
the chain boundaries.

FIG. 5. Scaled participation moments Pq�N , t� /NqD2
�

as a func-

tion of the scaled time �t /ND2
�/D2� for q=3,4 ,5. The data collapse

corroborates the scaling hypothesis in Eq. �15�. The maximum, also
appearing in Fig. 4, signals the destructive interference between the
incident and reflected waves near the chain boundaries.

FIG. 4. The normalized average participation number P2 /N as a

function of the scaled time �t /ND2
�/D2�. After a short transient time,

the data collapse indicates that the participation number grows as

tD2/D2
�

and saturates after the wave-function reflection at the chain
boundaries. The destructive interference that sets up during the re-
flection at the boundaries is signaled by a maximum in P2. The data
collapse corroborates the scaling hypothesis in Eq. �12�.
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For q�1/ �1−D2
��, the presence of a cutoff does not in-

fluence the initial spread of the participation moments.
Therefore, the initial growth is completely determined by the
return probability decay and results in Pq�t�� tqD2. On the
other hand, the scaling of the asymptotic plateau only de-
pends on the wave-function decay exponent, being given by

P�N , t→	��NqD2
�

. For this regime, the proper scaling form
of the participation moment reads

Pq�t,N� = NqD2
�

g��t/ND2
�/D2� , �13�

with g��	�=cte and g��x→0��xqD2. In Fig. 5 we show the
scaling analysis of participation moments for this regime
�q=3, 4, and 5�. The trends are mainly the same as that
presented by P2, namely data collapse with saturation for
long times and a power-law growth for intermediate times
preceded by a size-independent initial waiting time. How-
ever, the participation moment scaling exponent now de-
pends on the wave-function decay exponent as predicted by
Eq. �13�.

In both regimes, the characteristic time scale after that

finite-size effects starts to take place scales as t*�ND2
�/D2,

with D2
� /D2=0.90�2�. The fact that this scaling exponent is

smaller than unity �and therefore corresponds to a faster than
ballistic dynamics� is related to the nonlocal nature of the
long-range couplings. Finally, for exponentially localized
wave functions, �Pq�1/�q−1� is proportional to the localization
length for any q. Using N* as a measure of the characteristic
size of the present power-law decaying wave packet, this
feature is only true for q�1/ �1−D2

��. For higher moments it
displays a sublinear size dependence whose exponent con-
tinuously decreases towards D2

� as q→	.

III. CONCLUSIONS

We investigated the one-dimensional Anderson model
with off-diagonal disorder and matrix elements Hij decaying
as 1/ �i− j�� for �=1 �critical regime�. Using an exact diago-
nalization scheme on finite chains, we computed the partici-

pation moments of all energy eigenstates and reported the
critical exponents Dq associated with the multifractal charac-
ter of the stationary states. Examining the time evolution of
an initially localized wave packet, we observed that the wave
function develops a power-law tail in the form ���n−n0��2

� �n−n0�−�1−D2
�� with D2

�=0.607�10�. It achieves a stationary
nonuniform profile after reflecting at the chain boundaries.
As a consequence, the time-dependent participation moments
Pq�t� exhibit a nontrivial finite-size scaling. For q�1/ �1
−D2

��, the participation moments grow in time as Pq

� t�q−1�D2/D2
�

, where the exponent D2=0.676�2� governs the
decay of the return probability as well as the one of the
autocorrelation function. It saturates in a plateau proportional
to Nq−1. Therefore, the usual participation number P2 reaches
a value proportional to the chain size as occurs with a uni-
formly distributed state. Higher order participation moments
with q�1/ �1−D2

�� grow in time as tqD2 and saturate at a

plateau proportional to NqD2
�

. We used a finite-size scaling
hypothesis to put the participation moments in a universal

form as a function of the reduced variable t /ND2
�/D2. As such,

the characteristic size of the wave packet grows in time as

N*� tD2/D2
�

, which for the present model with long-range
couplings results in a faster than ballistic spread. The pro-
posed dynamic scaling relations are expected to remain valid
for general model systems of waves spreading in a power-
law fashion over a random medium.27 The special character
of the present model, with all energy eigenstates being mul-
tifractal, provides a clear picture of the complex dynamic
scaling, that takes place at the vicinity of the Anderson tran-
sition.
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