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We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with
stochastic uncorrelated on-site energies and nonfluctuating long-range hopping ikggrdlgm—n|~. It was
argued recentlfA. Rodriguezet al, J. Phys. A33, L161 (2000] that this model reveals a localization-
delocalization transition with respect to the disorder magnitude provideg &£ 3/2. The transition occurs at
one of the band edgdthe upper one fod>0 and the lower one faf<0). The states at the other band edge
are always localized, which hints at the existence of a single mobility edge. We analyze the mobility edge and
show that, although the number of delocalized states tends to infinity, they form a set of null measure in the
thermodynamic limit, i.e., the mobility edge tends to the band edge. The critical magnitude of disorder for the
band edge states is computed versus the interaction exppnégt making use of the conjecture on the
universality of the normalized participation number distribution at the transition.
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[. INTRODUCTION Contrary to short-range correlations in the disorder distri-

In 1958 Anderson formulated a simple tight-binding bution, ang-range correlatiqns_were demonstrated to cause
model with uncorrelated on-siteliagona) disorder and pre- the LDT in 1D syster’r;i,lwhlch is analogous to the standard
dicted a localization-delocalization transitiooDT) in three ~ Anderson LDT in 3D:21In this regard, a 1D system with
dimensions(3D): a phase of extended states appears at thB€arest-neighbor interactions and long-range correlated on-
band center in the thermodynamic limit if the disorder mag-Sit¢ disorder distribution with a powerlike spectrum
nitude is smaller than a critical value, while all states areS(k)~ k™ is critical with respect to the exponent More
localized at larger magnitudes of disorddthe phase of de- specifically, when the standard deviation of the energy dis-
localized states is separated from the two phases of localizeigibution equals the nearest-neighbor hopping and2 all
states by two mobility edgesThe concept of the mobility states are localized, while fox>2 a phase of extended
edge is of key importance for the low-temperature transporstates appears at the center of the band giving rise to two
properties of disordered materials. mobility edges. The phase occupies a finite fraction of the

Since the advent of the single-parameter scaling hypothdensity of states. A similar picture holds in 2BThe authors
esis, introduced by Abrahamet al.,® the occurrence of a of Ref. 18 proposed to use the long-range correlated disorder
localization-delocalization transition in disordered systemsand the appearance of a phase of extended states for design-
with time reversal symmetry was ruled out in one- and two-ing microwave filters based on a single-mode waveguide.
dimensional geometries at any disorder strertfythan over- ~ This type of disorder is also being studied in biophysics in
view see Refs. 497 The localized nature of the states in 1D connection with the large-distance charge transport in DNA
was pointed out even earlier by Mott and Twése. sequence$>?6

At the end of the 1980s and beginning of the 1990s it Another 1D model which exhibits the LDT and a phase of
was realized, however, that correlations in disorder mayextended states is an ensemble of power-law random banded
give rise to extended states in low dimensidré.Thus, matricesH; xGyli—k/~¢ where the matrxG;, runs over a
short-range correlated on-site disorder was found to causBaussian orthogonal ensent|é (for an overview see Ref.
the appearance of extended states at special resonar2®. This model is criticalwith respect to the interaction
energies in 1D. They form a set of null measure in theexponenta: for «>1 all states are localized, while all of
density of states in the thermodynamic lifritimplying the ~ them are delocalized at<1, suggesting thatr=1 is the
absence of mobility edges in those models. In spite of thigritical point in the model. Within the framework of this
fact, even an infinitesimal fraction of extended states maynodel, it was demonstrated rigorously thgt the distribu-
have a strong impact on the transport properties of disortion function of the inverse participation ratio is scale invari-
dered materials. In particular, short-range correlations irant at transition andi) the relative fluctuation of the inverse
disordered potentials were put forward to explain unusuaparticipation ratio(the ratio of the standard deviation to the
conducting properties of polymers, such as polyaniline ananean is of the order of unity at the critical poif:3* This
heavily doped polyacetylerté;'? as well as semiconductor finding confirmed the conjecturévhich was put forward
superlattices grown with random but correlated quantunearlief?33, that distributions of relevant physical magni-
well sequence® tudes are universal at criticalifigee also Refs. 34—R6The
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invariance can therefore be used to monitor the criticaferent sites and distributed uniformly around zero within the
point37-38 interval [-A/2,A/2], having therefore zero mearg,)=0,
Recently, several reports addressed the unusual localizand standard deviatiofs2)1/2=A/+12 (the angular brackets

tion propertigs of 1D.and 2D tight-binding models with un- (...) denote the average over disorder realizatiofike hop-
correlated diagonal disorder andnrandommong-range Cou-  ping integralsdy,, do not fluctuate and are set in the form
pling between sitesn and n, which falls according to a Jmn=J/|m=n|#, with 3>0 andJ,,=0.

power law’*2J/[m-n| (see also Refs. 43 44More spe- First, we address the disorder-free systex0), taking
cifically, the states at one of the band edgi® upper one  herigdic houndary conditions for the sake of simplicity. Then

for >0 and the lower one faJ<0) undergo the LDWith 5 eigenstates of the Hamiltoniéh) are plane waves with
respect to the disorder strengthif the interaction exponent quasimomentak =27k/N within the first Brillouin zone

w ranges within the interval 4 <3d/2, d being the ' 1_N/2 N/2). The corresponding eigenenergies are given
dimensionality! In what follows we set)>0, so that ex-

tended states can appear at the upper band edge. The statesyat
the other band edge are strongly localized, no matter how E(K)=2S cogKn) ?)
small the disorder magnitude is, thus suggesting the exis- uATN T = In*
tence of a single mobility edg@At = 3d/2 all states were
found to be localized. The character of the localization, howwhere the summation runs over dlisites of the lattice, and
ever, turned out to be governed by the interaction exponent is assumed to be larger than unity to get a bounded energy
w. At u=3d/2, the upper band-edge states are weakly localspectrum. A complete account for all terms in the si@nis
ized, similar to those at the center of the band in the standarinportant in the neighborhood of the upper band edge, where
2D Anderson model,while at u>3d/2 they are strongly the long-range hopping terms affect the dispersion vastly. At
localized. the upper band edg& — 0) the dispersion relatio(®) is as

In the present paper we deal with the analysis, both nufollows:*?
merical and analytical, of the localization properties of the to _ 1 2
latter class of 1D Hamiltonians. We calculate the phase dia- E#p(K) = Eopl) _‘JA“’F’(’“)'K'# ~ JBopwK”, - (3)
gram of the transition for the upper band-edge states, i.e., th@hen u # 3. Here, Erop(u) =232 n"#=2J{(n) is the upper
critical disorder magnitudé; versus the interaction expo- band-edge energy in the thermodynamic lindiy() and
nent u, and show thatA. vanishes ag3/2-u)?® when Bip(x) are dimensionless positive constants on the order of
w— 312, while it diverges agu—1)"" whenu— 1. Apply-  ynity (for brevity we do not provide explicit expressions for
ing finite size scaling analysis we study the problem of thethem), and{(w) is the Riemanr function. For smalK, the
mobility edge and show that the mobility edge approachegypquadratic term in the right-hand side of E2).dominates
the upper band edge in the thermodynamic limit. In othefgyer the quadratic one if.<3 and vice versa. The range
words, the fraction of the delocalized states forms a set of, < 3 will be of our primary interest. We will focus later on
null measure, although their number tends to |nf|n|ty on in'the size Sca“ng of the energy Spacing at the upper band edge
creasing the system siZd as N2/ (note that the at <3, which is
dependence is sublingaf his numerical finding is supported 10p - nj1
by a simple qualitative argument based on the comparison of OE," e NTH. (4)
size scaling of two magn!tude_s: the bare Ieyel spacing at th&; the lower band edgé|K| — =), the energy spectrum is
band edge and the effective disorder experienced by the quﬁérabolic:
siparticle.

The outline of the paper is as follows. In the next section, EZOt(K) = Epol( ) + IByod ) (7= K)?, (5)
we describe the model and briefly overview qualitative argu-

— ¢ _1\N\— H
ments which brought us to a conjecture on the existence o hgre Epolp) =202, (~1)"7* is the Io_vver t_)and energy,
which depends weakly op, andBy{w) is a dimensionless

the LDT within the model. In Sec. lll, we present the phase . X
diagram of the LDT for the upper band-edge states, which i£Onstant on the order of unity. Correspondingly, the energy

calculated on the basis of the statistics of the participatior?paCing at the bottom of the band scales as

number. The mobility edge and fraction of the delocalized SEPOtoc N2, (6)
states are addressed in Sec. IV. We conclude the paper in ) ) ) . )
Sec. V. On introducing the disorder, the eigenstates of the regular

system couple to each other, which can result in their local-
ization. The typical fluctuation of the coupling matrix,
namely, the first term on the right-hand side of Eb.in the

We consider a tight-binding Hamiltonian on a t&yular ~ K-space basis, 8

II. MODEL AND QUALITATIVE REASONING

lattice with N sites N
= TN (7)
H =2 en)n] + 2 I dmn. 1) V12N
n nm

Now, we compare the size dependenceoofo that of the
Here|n) is the ket vector of a state with on-site energy  eigenenergy spacing at the top of the bﬁﬁf" [defined by
These energies are taken as random and uncorrelated for difg. (4)]. As the system size increases, the typical value of the
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eigenstate coupling decreases faster than the energy spac- 000k ' ' ' ' ('a)_
ing 6Efp at ©<<3/2. Consider a system of sid¢and leto |
be of perturbativemagnitude(i.e., o< 5E); then the upper

band-edge states are only weakly perturbed by disorder and 800 7
remain extended over the whole system. Upon increasing the

system size, the inequality<< 5E gets even stronger, so that 600 _
the perturbation becomes weaker and therefore the upper ~ —ar=101(n-1)"
states will remain delocalized &— <. On the other hand, <

large disorder(say, larger than the bare bandwidtivould 400 T
certainly localize all the states. These arguments indicate that

there can exist extended states at the upper band edge at 200 _

finite disorder, provided that € u<3/2. This conjecture
was confirmed both theoretically, by means of the renormal-
ization group approach combined with a supersymmetric 95
method for disorder averagirtgand numerically’384°The
value u=3/2 represents the marginal case in which the up-
per band-edge states are localized wedkf:*1In what fol-

lows, we focus therefore on the interaction expongemang-

ing within the interval < u=<3/2.

At the bottom of the band|K|— ) the level spacing
diminishes ad\™?, that is, faster than the effective magnitude
of disordero. Thus, even ifo< 6E for some lattice size and
the states are extended over the whole system, the inequality
will be reversed for largeN, which will finally result in
strong coupling of the states and their eventual localization.
The same conclusion holds for the entire energy spectrum if
u>3/2.

The above picture implies the existence of a single mo-
bility edge separating the phases of localized and delocalized
states. We address this question in detail in Sec. IV. 0 I : I

| —— A T=326015-0)"7

Ill. PHASE DIAGRAM OF THE TRANSITION FIG. 1. Critical magnitude of disordeX. as a function of the

In this section we calculate the dependence of the criticalitéraction exponeng. Full circles represent the numerical data,
disorder magnitudeA, on the interaction exponeng ~ While solid lines are the best fitg.— (a) 1 and(b) 3/2.
€ (1,3/2]. To detect the transition we analyze the wave
function statistics. More specifically, we calculate size andcies of the ratio of SDPN to MPN for the uppermost state.
disorder dependencies of the relative fluctuation of the parOpen chains were used in all calculations. Following the

ticipation numberPN) defined as procedure developed in Ref. 38, we obtained the critical
N N magnitude of disorded at which the uppermost eigenstates
B 4 undergo the LDT fom € (1,3/2]. The results of the simula-
Pic= (gl |t ) ' ®) tions are shown in Fig. 1 by the full circles, while solid lines

represent best fits close to the limiting poipts 1 [Fig. 1(a)]

where i, denotes thath component of the normalizddh  and 3/2[Fig. 1(b)]. We found that
eigenstate of the Hamiltoniafl). Here, the state indek
ranges from 1 toN. By definition, we ascribe band-edge Ac=10.0(u-1)7Y w—1, (93
statesk=1 andk=N to the uppermost and lowermost eigen-
states, respectively. It was demonstrated rec&ntfythat 0.67
within the considered model, the ratio of the standard devia- Ac=32.6803/2-w)™, u—3/2. (9b)
tion of the PN(SDPN to the mean of the PNIMPN) is an ) ) ) -
invariant parameter at transition and therefore can be used fg'st of all, we notice that, according to E@a), the critical
detect the critical point. We note that wave function statisticghagnitude of disorder diverges aAc‘x(:“‘_l)_l when
turned out to be more efficient for this purpose than levelt— 1. The explanation of the divergence relies on the fact
statistics(the latter also represents a method to monitor théhat AcxE.P for Ac>138 and the upper band-edge energy
transitior?%), because wave function statistics appeared to b&,; diverges wherN— o as(x—1)*. Contrary to that, the
less affected by strong finite size effects within the modekritical magnitude of disorder vanishes Agox(3/2~-u)*%
(for details see the discussion in Refs. 37,38 when w—3/2, indicating that in the marginal case

As the LDT occurs at the top of the band within the con-(#=3/2) the uppermost state is localizéd.=0), in full
sidered model, we calculated the disorder and size dependeagreement with the results obtained by the renormalization

174203-3



de MOURAet al. PHYSICAL REVIEW B 71, 174203(2005

T T T T T T T T T T 4 ]04 T T
| U =5/4 i
038 A3y :_r,",'f 10—
, i : s
i \ e
0.6 i |
—N = 500 A!“""
Z [ N = 1000 A .‘g)ﬁ N : 7]
Y = 5000 ,.-";'r,;‘; | & 10 0050 — N = 500
< i - N =1000
----- N = 2000
---- N =4000
----- - N = 8000
S B S

() L L
090 02 04 06 08 10

CkIN
FIG. 2. The normalized mean participation numbigg)/N as a FIG. 3. The mean participation number as a function of the
function of energy for different system siz&scalculated for the  normalized state indek for different system sizell calculated for
interaction exponenk=5/4 and thedisorder strengtkh =5J. the interaction exponent=5/4 and thedisorder strength\=5J.

The inset shows an enlarged view close to the upper band edge.
group approach combined with a supersymmetric method for _ ) ) )
disorder averaging MPN increases linearly with the system size and the collapse

is absentsee the blowup in the inset of Fig).3rhis result
suggests that not only the uppermost eigenstate, but a num-

IV. MOBILITY EDGE AND FRACTION OF THE ber of them are delocalized, in agreement with the previous
DELOCALIZED STATES claim raised in Ref. 41.

Having discussed the dependence of the critical magni- Ve now apply a finite size analysis of our numerical re-
tude of disorderA, on the interaction exponent for the sults to further confirm the latter statement and to obtain the
uppermost state, we now focus on the mobility edge and th&1Z€ scaling of the number of extended eigenstates. Figure 4
fraction of extended states in the thermodynamic limit. ThisShows that the MPN for different sizes collapses onto a

question has not been addressed in previous statitex- single curve close to the top of the band after introducing the
cept for a comment on the existence of a single mobility'escaled index/N"" for 1=5/4. Thecollapse holds up to a
edgé®“! (see also the discussion in Seo. Il finite value of the rescaled index, which indicates that the

To work out this problem, we numerically diagonalized "Umber of extended states is proportionalN&® when 1
the Hamiltonian(1) and calculated the normalized MPN =5/4 ) .
(P)/N as a function of energy for different system si2¢s To provide support to these numerical results, we now
The results of these simulations are shown in Fig. 2 for Etjevelop a 5|mple(perturbat|vé_a_nalytlcal appr_oach that al-
particular set of interaction exponent and magnitude of dis:CWS US t0 understand the origin of the obtained results. To
order(u=5/4 andA=5J). First, one can see that the upperthIS end, we analyze_ the energy spacing close to the upper
band-edge energy increases wittas was mentioned in Sec. °and edge in the disorder-free systéh=0) more accu-
Il (see also Refs. 37,38Note also the noticeable size de- )
pendence of the normalized MPN of the uppermost state. 107
This behavior reflects the finite size effects already men-
tioned abovesee the preceding sectjomhe boundaries re-

n=>54
A=5J

. o . — N= 500
sult in a positive correction of the order dF# to the bulk Lo N = 1000
value of the uppermost wave functig~1/VN). Conse- 10°F T %fﬁggg 3
quently, the normalized MPN depends on the system size as . N - N=8000 1

(1-cN'™#), wherec is a constant. The second, and more
important, observation is that the normalized MPN increases
monotonically on approaching the upper band edge, for all 10°F
considered values af. F
In order to avoid the size dependence of the upper band
edge, we use hereafter the state in#tevather than the en-
ergyE, (k). In Fig. 3 we plotted the MPN as a function of the 10°E
normalized state index/N. The figure demonstrates that the o
MPN is independent of the system size in a wide range of the
normalized state index/N. The perfect collapse of the
curves within this range clearly indicates the localized nature FIG. 4. Normalized mean participation number as a function of
of these eigenstates. However, at the top of the band thie’N3 for different system sizes calculated fa=5/4 andA=5J.
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We have also tested E¢l2) against numerical simula-
tions performed for other values ofe (1,3/2 and always
found an excellent agreement of the numerical data with the
analytic formula(12). It follows from the formula that the
number of extended states increases sublinearly with the sys-
tem size, namely, ad®2#/2=») which means that the frac-
tion of these states vanishesdg/#~2% whenN— . From
this we conclude that the mobility edge approaches the upper
band edge in the thermodynamic limit.

V. SUMMARY AND CONCLUDING REMARKS

We studied both analytically and numerically the localiza-
tion properties of the 1D tight-binding model with diagonal
disorder andnonrandomlong-range intersite interactions

Jn=3J/|m—n|* whereJ>0. The model can be critical at the
FIG. 5. Normalized mean participation number as a function ofupper band edge providedlu<3/2.
kA% for different disorder magnitudes with=5/4 andN=2000. We calculated the phase diagram of the transitithe
dependence of the critical magnitude of disordgron the
interaction exponent) by studying the participation number
statistics. The critical magnitude of disorder was detected
using the size invariance of the ratio of the standard devia-
tion to the mean. We found that. diverges as(u—-1)"*
whenp— 1, which originates from the similar divergence of
The constaniC,, absorbs all unessential numerical factors.the upper band-edge energy,df—3/2, the critical disorder
Note the absence of the scaling of the spac#f”(k), i.e.,  magnitude vanishes a8/2—x)??, indicating that all states
the spacing depends &mot only onk/N. This is crucial for  are |ocalized ap.=3/2, nomatter how small the disorder is.
the peculiar features of the LDT within the model. |ndeed, Itis Shown, both ana|ytica||y and by means of a finite size
consider a chain of a particular site Assume that the dis- scaling analysis, that the number of extended states at the
order is perturbative for the uppermost stdle=1), i.e.,  ypper band edge increases sublinearly with the system size
o< 5Efp(1), so that states at the top are extended over th@, namely, as<N(®2 /2= therefore forming a set of null
whole sample. Let us now find thaobility edgefor this  measure in the density of states in the thermodynamic limit.
finite lattice, defining it by the equality This suggests that the mobility edge is a meaningful concept
op _ only for a finite size system; it approaches the upper band
B, (k) = 0. (11) edge in the thermodynamic limit. Although extended states
The numbek., which isN dependent, divides all eigenstates form an infinitf—:-simal fractic_)n of the whole density of states,
into two sets: those with< k., are delocalized in the above they can provide a strong impact on the transport properties,
sense, while eigenstates wkb k., are localized in the usual Similarly to \{\éf}gt happens in systems with correlated
sense. Thusk,, provides us with the number of extended randomness: 2

states for a particular system sike Determined by Eq(11) _ To cgnclude, we note th.at our.finding_s, apart from being
it reads interesting from the theoretical point of view, are relevant for

real physical systems. Thus, some organic materials with pla-
nar geometry, in which optically allowed excitations are di-
polar Frenkel exciton$-52represent an example; the value
of the interaction exponent for the dipole-dipole intersite in-
teraction isu=3, which resembles the weak localization re-
ing Eq. (12) to the particular case=5/4 we recover the gime in the 1D long-range model when=3/22 Dipole-
behavior that we have found numerically, namégysc N*/3, exchange spin waves in ferromagnetic films provide yet
The relationship(12) provides us also with the depen- another example where these results are reléant.
dence ofk,, on the disorder magnitud&, which can also be
compared to numerical calculations. We performed such
comparison for the interaction exponent5/4. Inthis par-
ticular case, the exponent (~w) in the A dependence of Work at Maceié was partially supported by the Brazilian
kn is equal to 4/3. Figure 5 shows the normalized mearmresearch agencies CNPq and CAPES as well as by the Ala-
participation number as a function &\*® calculated for goas state research agency FAPEAL. Work at Madrid was
different disorder strengttA and a given system size supported by MCyTGrant No. MAT2003-0153Band CAM
N=4000. The collapse of all curves onto a single one in thgProject No. GR/MAT/0039/2004 V.A.M. acknowledges
vicinity of the upper band edge supports the validity of support from ISTC(Grant No. 2679 and A.V.M. from IN-
Eq. (12. TAS (Grant No. YSF 03-55-1545

rately. The spacing can be obtained from E):

1k
5Et:p(k):JCME( > : (10

N

J\V@-w
kn= m(‘) Nz, (12)

A

where all unessential constants are absorbedDptApply-
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