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We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with
stochastic uncorrelated on-site energies and nonfluctuating long-range hopping integralsJmn=J/ um−num. It was
argued recentlyfA. Rodríguezet al., J. Phys. A 33, L161 s2000dg that this model reveals a localization-
delocalization transition with respect to the disorder magnitude provided 1,m,3/2. The transition occurs at
one of the band edgessthe upper one forJ.0 and the lower one forJ,0d. The states at the other band edge
are always localized, which hints at the existence of a single mobility edge. We analyze the mobility edge and
show that, although the number of delocalized states tends to infinity, they form a set of null measure in the
thermodynamic limit, i.e., the mobility edge tends to the band edge. The critical magnitude of disorder for the
band edge states is computed versus the interaction exponentm by making use of the conjecture on the
universality of the normalized participation number distribution at the transition.
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I. INTRODUCTION

In 1958 Anderson formulated a simple tight-binding
model with uncorrelated on-sitesdiagonald disorder and pre-
dicted a localization-delocalization transitionsLDTd in three
dimensionss3Dd: a phase of extended states appears at the
band center in the thermodynamic limit if the disorder mag-
nitude is smaller than a critical value, while all states are
localized at larger magnitudes of disorder.1 The phase of de-
localized states is separated from the two phases of localized
states by two mobility edges.2 The concept of the mobility
edge is of key importance for the low-temperature transport
properties of disordered materials.

Since the advent of the single-parameter scaling hypoth-
esis, introduced by Abrahamset al.,3 the occurrence of a
localization-delocalization transition in disordered systems
with time reversal symmetry was ruled out in one- and two-
dimensional geometries at any disorder strengthsfor an over-
view see Refs. 4–7d. The localized nature of the states in 1D
was pointed out even earlier by Mott and Twose.8

At the end of the 1980s and beginning of the 1990s it
was realized, however, that correlations in disorder may
give rise to extended states in low dimensions.9–24 Thus,
short-range correlated on-site disorder was found to cause
the appearance of extended states at special resonance
energies in 1D. They form a set of null measure in the
density of states in the thermodynamic limit,9–14 implying the
absence of mobility edges in those models. In spite of this
fact, even an infinitesimal fraction of extended states may
have a strong impact on the transport properties of disor-
dered materials. In particular, short-range correlations in
disordered potentials were put forward to explain unusual
conducting properties of polymers, such as polyaniline and
heavily doped polyacetylene,11,12 as well as semiconductor
superlattices grown with random but correlated quantum
well sequences.15

Contrary to short-range correlations in the disorder distri-
bution, long-range correlations were demonstrated to cause
the LDT in 1D systems, which is analogous to the standard
Anderson LDT in 3D.16–21 In this regard, a 1D system with
nearest-neighbor interactions and long-range correlated on-
site disorder distribution with a powerlike spectrum
Sskd,k−a is critical with respect to the exponenta. More
specifically, when the standard deviation of the energy dis-
tribution equals the nearest-neighbor hopping anda,2 all
states are localized, while fora.2 a phase of extended
states appears at the center of the band giving rise to two
mobility edges. The phase occupies a finite fraction of the
density of states. A similar picture holds in 2D.23 The authors
of Ref. 18 proposed to use the long-range correlated disorder
and the appearance of a phase of extended states for design-
ing microwave filters based on a single-mode waveguide.
This type of disorder is also being studied in biophysics in
connection with the large-distance charge transport in DNA
sequences.25,26

Another 1D model which exhibits the LDT and a phase of
extended states is an ensemble of power-law random banded
matricesHik~Gikui −ku−a, where the matrixGik runs over a
Gaussian orthogonal ensemble27,28 sfor an overview see Ref.
29d. This model is criticalwith respect to the interaction
exponenta: for a.1 all states are localized, while all of
them are delocalized ata,1, suggesting thata=1 is the
critical point in the model. Within the framework of this
model, it was demonstrated rigorously thatsid the distribu-
tion function of the inverse participation ratio is scale invari-
ant at transition andsii d the relative fluctuation of the inverse
participation ratiosthe ratio of the standard deviation to the
meand is of the order of unity at the critical point.30,31 This
finding confirmed the conjectureswhich was put forward
earlier32,33d, that distributions of relevant physical magni-
tudes are universal at criticalityssee also Refs. 34–36d. The
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invariance can therefore be used to monitor the critical
point.37,38

Recently, several reports addressed the unusual localiza-
tion properties of 1D and 2D tight-binding models with un-
correlated diagonal disorder andnonrandomlong-range cou-
pling between sitesm and n, which falls according to a
power law37–42 J/ um−num ssee also Refs. 43,44d. More spe-
cifically, the states at one of the band edgessthe upper one
for J.0 and the lower one forJ,0d undergo the LDTwith
respect to the disorder strengthD if the interaction exponent
m ranges within the interval 1,m,3d/2, d being the
dimensionality.41 In what follows we setJ.0, so that ex-
tended states can appear at the upper band edge. The states at
the other band edge are strongly localized, no matter how
small the disorder magnitude is, thus suggesting the exis-
tence of a single mobility edge.40 At mù3d/2 all states were
found to be localized. The character of the localization, how-
ever, turned out to be governed by the interaction exponent
m. At m=3d/2, the upper band-edge states are weakly local-
ized, similar to those at the center of the band in the standard
2D Anderson model,3 while at m.3d/2 they are strongly
localized.

In the present paper we deal with the analysis, both nu-
merical and analytical, of the localization properties of the
latter class of 1D Hamiltonians. We calculate the phase dia-
gram of the transition for the upper band-edge states, i.e., the
critical disorder magnitudeDc versus the interaction expo-
nent m, and show thatDc vanishes ass3/2−md2/3 when
m→3/2, while it diverges assm−1d−1 when m→1. Apply-
ing finite size scaling analysis we study the problem of the
mobility edge and show that the mobility edge approaches
the upper band edge in the thermodynamic limit. In other
words, the fraction of the delocalized states forms a set of
null measure, although their number tends to infinity on in-
creasing the system sizeN as Ns3/2−md/s2−md snote that the
dependence is sublineard. This numerical finding is supported
by a simple qualitative argument based on the comparison of
size scaling of two magnitudes: the bare level spacing at the
band edge and the effective disorder experienced by the qua-
siparticle.

The outline of the paper is as follows. In the next section,
we describe the model and briefly overview qualitative argu-
ments which brought us to a conjecture on the existence of
the LDT within the model. In Sec. III, we present the phase
diagram of the LDT for the upper band-edge states, which is
calculated on the basis of the statistics of the participation
number. The mobility edge and fraction of the delocalized
states are addressed in Sec. IV. We conclude the paper in
Sec. V.

II. MODEL AND QUALITATIVE REASONING

We consider a tight-binding Hamiltonian on a 1Dregular
lattice with N sites

H = o
n

«nunlknu + o
nm

Jmnumlknu. s1d

Here unl is the ket vector of a state with on-site energy«n.
These energies are taken as random and uncorrelated for dif-

ferent sites and distributed uniformly around zero within the
interval f−D /2 ,D /2g, having therefore zero mean,k«nl=0,
and standard deviationk«n

2l1/2=D /Î12 sthe angular brackets
k¯l denote the average over disorder realizationsd. The hop-
ping integralsJmn do not fluctuate and are set in the form
Jmn=J/ um−num, with J.0 andJnn=0.

First, we address the disorder-free systemsD=0d, taking
periodic boundary conditions for the sake of simplicity. Then
the eigenstates of the Hamiltonians1d are plane waves with
quasimomentaK=2pk/N within the first Brillouin zone
kP f−N/2 ,N/2d. The corresponding eigenenergies are given
by

EmsKd = 2Jo
n.0

cossKnd
unum

, s2d

where the summation runs over allN sites of the lattice, and
m is assumed to be larger than unity to get a bounded energy
spectrum. A complete account for all terms in the sums2d is
important in the neighborhood of the upper band edge, where
the long-range hopping terms affect the dispersion vastly. At
the upper band edgesK→0d the dispersion relations2d is as
follows:42

Em
topsKd = Etopsmd − JAtopsmduKum−1 − JBtopsmdK2, s3d

when mÞ3. Here,Etopsmd=2Jon
`n−m=2Jzsmd is the upper

band-edge energy in the thermodynamic limit,Atopsmd and
Btopsmd are dimensionless positive constants on the order of
unity sfor brevity we do not provide explicit expressions for
themd, andzsmd is the Riemannz function. For smallK, the
subquadratic term in the right-hand side of Eq.s3d dominates
over the quadratic one ifm,3 and vice versa. The range
m,3 will be of our primary interest. We will focus later on
the size scaling of the energy spacing at the upper band edge
at m,3, which is

dEm
top ~ N1−m. s4d

At the lower band edgesuKu→pd, the energy spectrum is
parabolic:

Em
botsKd = Ebotsmd + JBbotsmdsp − Kd2, s5d

where Ebotsmd=2Jon
`s−1dnn−m is the lower band energy,

which depends weakly onm, andBbotsmd is a dimensionless
constant on the order of unity. Correspondingly, the energy
spacing at the bottom of the band scales as

dEm
bot ~ N−2. s6d

On introducing the disorder, the eigenstates of the regular
system couple to each other, which can result in their local-
ization. The typical fluctuation of the coupling matrix,
namely, the first term on the right-hand side of Eq.s1d in the
K-space basis, is40

s =
D

Î12N
. s7d

Now, we compare the size dependence ofs to that of the
eigenenergy spacing at the top of the banddEm

top fdefined by
Eq. s4dg. As the system size increases, the typical value of the
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eigenstate couplings decreases faster than the energy spac-
ing dEm

top at m,3/2. Consider a system of sizeN and lets
be of perturbativemagnitudesi.e., s!dEd; then the upper
band-edge states are only weakly perturbed by disorder and
remain extended over the whole system. Upon increasing the
system size, the inequalitys!dE gets even stronger, so that
the perturbation becomes weaker and therefore the upper
states will remain delocalized atN→`. On the other hand,
large disorderssay, larger than the bare bandwidthd would
certainly localize all the states. These arguments indicate that
there can exist extended states at the upper band edge at
finite disorder, provided that 1,m,3/2. This conjecture
was confirmed both theoretically, by means of the renormal-
ization group approach combined with a supersymmetric
method for disorder averaging,41 and numerically.37,38,40The
valuem=3/2 represents the marginal case in which the up-
per band-edge states are localized weakly.37,38,41In what fol-
lows, we focus therefore on the interaction exponentm rang-
ing within the interval 1,mø3/2.

At the bottom of the bandsuKu→pd the level spacing
diminishes asN−2, that is, faster than the effective magnitude
of disorders. Thus, even ifs!dE for some lattice size and
the states are extended over the whole system, the inequality
will be reversed for largerN, which will finally result in
strong coupling of the states and their eventual localization.
The same conclusion holds for the entire energy spectrum if
m.3/2.

The above picture implies the existence of a single mo-
bility edge separating the phases of localized and delocalized
states. We address this question in detail in Sec. IV.

III. PHASE DIAGRAM OF THE TRANSITION

In this section we calculate the dependence of the critical
disorder magnitudeDc on the interaction exponentm
P s1,3/2g. To detect the transition we analyze the wave
function statistics. More specifically, we calculate size and
disorder dependencies of the relative fluctuation of the par-
ticipation numbersPNd defined as

Pk = So
n=1

N

ucknu4D−1

, s8d

whereckn denotes thenth component of the normalizedkth
eigenstate of the Hamiltonians1d. Here, the state indexk
ranges from 1 toN. By definition, we ascribe band-edge
statesk=1 andk=N to the uppermost and lowermost eigen-
states, respectively. It was demonstrated recently37,38 that
within the considered model, the ratio of the standard devia-
tion of the PNsSDPNd to the mean of the PNsMPNd is an
invariant parameter at transition and therefore can be used to
detect the critical point. We note that wave function statistics
turned out to be more efficient for this purpose than level
statisticssthe latter also represents a method to monitor the
transition34d, because wave function statistics appeared to be
less affected by strong finite size effects within the model
sfor details see the discussion in Refs. 37,38d.

As the LDT occurs at the top of the band within the con-
sidered model, we calculated the disorder and size dependen-

cies of the ratio of SDPN to MPN for the uppermost state.
Open chains were used in all calculations. Following the
procedure developed in Ref. 38, we obtained the critical
magnitude of disorderDc at which the uppermost eigenstates
undergo the LDT formP s1,3/2g. The results of the simula-
tions are shown in Fig. 1 by the full circles, while solid lines
represent best fits close to the limiting pointsm=1 fFig. 1sadg
and 3/2fFig. 1sbdg. We found that

Dc < 10.1Jsm − 1d−1, m → 1, s9ad

Dc < 32.6Js3/2 −md0.67, m → 3/2. s9bd

First of all, we notice that, according to Eq.s9ad, the critical
magnitude of disorder diverges asDc~ sm−1d−1 when
m→1. The explanation of the divergence relies on the fact
that Dc~Em

top for Dc@1,38 and the upper band-edge energy
Em=1

top diverges whenN→` assm−1d−1. Contrary to that, the
critical magnitude of disorder vanishes asDc~ s3/2−md0.67

when m→3/2, indicating that in the marginal case
sm=3/2d the uppermost state is localizedsDc=0d, in full
agreement with the results obtained by the renormalization

FIG. 1. Critical magnitude of disorderDc as a function of the
interaction exponentm. Full circles represent the numerical data,
while solid lines are the best fits:m→ sad 1 andsbd 3/2.
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group approach combined with a supersymmetric method for
disorder averaging.41

IV. MOBILITY EDGE AND FRACTION OF THE
DELOCALIZED STATES

Having discussed the dependence of the critical magni-
tude of disorderDc on the interaction exponentm for the
uppermost state, we now focus on the mobility edge and the
fraction of extended states in the thermodynamic limit. This
question has not been addressed in previous studies,37–42ex-
cept for a comment on the existence of a single mobility
edge40,41 ssee also the discussion in Sec. IId.

To work out this problem, we numerically diagonalized
the Hamiltonians1d and calculated the normalized MPN
kPl /N as a function of energy for different system sizesN.
The results of these simulations are shown in Fig. 2 for a
particular set of interaction exponent and magnitude of dis-
order sm=5/4 andD=5Jd. First, one can see that the upper
band-edge energy increases withN as was mentioned in Sec.
III ssee also Refs. 37,38d. Note also the noticeable size de-
pendence of the normalized MPN of the uppermost state.
This behavior reflects the finite size effects already men-
tioned abovessee the preceding sectiond. The boundaries re-
sult in a positive correction of the order ofN−m to the bulk
value of the uppermost wave functions,1/ÎNd. Conse-
quently, the normalized MPN depends on the system size as
s1−cN1−md, where c is a constant. The second, and more
important, observation is that the normalized MPN increases
monotonically on approaching the upper band edge, for all
considered values ofN.

In order to avoid the size dependence of the upper band
edge, we use hereafter the state indexk rather than the en-
ergyEmskd. In Fig. 3 we plotted the MPN as a function of the
normalized state indexk/N. The figure demonstrates that the
MPN is independent of the system size in a wide range of the
normalized state indexk/N. The perfect collapse of the
curves within this range clearly indicates the localized nature
of these eigenstates. However, at the top of the band the

MPN increases linearly with the system size and the collapse
is absentssee the blowup in the inset of Fig. 3d. This result
suggests that not only the uppermost eigenstate, but a num-
ber of them are delocalized, in agreement with the previous
claim raised in Ref. 41.

We now apply a finite size analysis of our numerical re-
sults to further confirm the latter statement and to obtain the
size scaling of the number of extended eigenstates. Figure 4
shows that the MPN for different sizes collapses onto a
single curve close to the top of the band after introducing the
rescaled indexk/N1/3 for m=5/4. Thecollapse holds up to a
finite value of the rescaled index, which indicates that the
number of extended states is proportional toN1/3 when m
=5/4.

To provide support to these numerical results, we now
develop a simplesperturbatived analytical approach that al-
lows us to understand the origin of the obtained results. To
this end, we analyze the energy spacing close to the upper
band edge in the disorder-free systemsD=0d more accu-

FIG. 2. The normalized mean participation numberkPkl /N as a
function of energy for different system sizesN calculated for the
interaction exponentm=5/4 and thedisorder strengthD=5J.

FIG. 3. The mean participation number as a function of the
normalized state indexk for different system sizesN calculated for
the interaction exponentm=5/4 and thedisorder strengthD=5J.
The inset shows an enlarged view close to the upper band edge.

FIG. 4. Normalized mean participation number as a function of
k/N1/3 for different system sizes calculated form=5/4 andD=5J.
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rately. The spacing can be obtained from Eq.s3d:

dEm
topskd = JCm

1

k
S k

N
Dm−1

. s10d

The constantCm absorbs all unessential numerical factors.
Note the absence of the scaling of the spacingdEm

topskd, i.e.,
the spacing depends onk not only onk/N. This is crucial for
the peculiar features of the LDT within the model. Indeed,
consider a chain of a particular sizeN. Assume that the dis-
order is perturbative for the uppermost statesk=1d, i.e.,
s!dEm

tops1d, so that states at the top are extended over the
whole sample. Let us now find themobility edgefor this
finite lattice, defining it by the equality

dEm
topskmd = s. s11d

The numberkm, which isN dependent, divides all eigenstates
into two sets: those withk,km are delocalized in the above
sense, while eigenstates withk.km are localized in the usual
sense. Thus,km provides us with the number of extended
states for a particular system sizeN. Determined by Eq.s11d
it reads

km = DmS J

D
D1/s2−md

Ns3/2−md/s2−md, s12d

where all unessential constants are absorbed intoDm. Apply-
ing Eq. s12d to the particular casem=5/4 we recover the
behavior that we have found numerically, namely,km~N1/3.

The relationships12d provides us also with the depen-
dence ofkm on the disorder magnitudeD, which can also be
compared to numerical calculations. We performed such
comparison for the interaction exponentm=5/4. In this par-
ticular case, the exponent 1/s2−md in the D dependence of
km is equal to 4/3. Figure 5 shows the normalized mean
participation number as a function ofkD4/3 calculated for
different disorder strengthD and a given system size
N=4000. The collapse of all curves onto a single one in the
vicinity of the upper band edge supports the validity of
Eq. s12d.

We have also tested Eq.s12d against numerical simula-
tions performed for other values ofmP s1,3/2d and always
found an excellent agreement of the numerical data with the
analytic formulas12d. It follows from the formula that the
number of extended states increases sublinearly with the sys-
tem size, namely, asNs3/2−md/s2−md, which means that the frac-
tion of these states vanishes asN−1/s4−2md whenN→`. From
this we conclude that the mobility edge approaches the upper
band edge in the thermodynamic limit.

V. SUMMARY AND CONCLUDING REMARKS

We studied both analytically and numerically the localiza-
tion properties of the 1D tight-binding model with diagonal
disorder andnonrandom long-range intersite interactions
Jmn=J/ um−num whereJ.0. The model can be critical at the
upper band edge provided 1,m,3/2.

We calculated the phase diagram of the transitionsthe
dependence of the critical magnitude of disorderDc on the
interaction exponentmd by studying the participation number
statistics. The critical magnitude of disorder was detected
using the size invariance of the ratio of the standard devia-
tion to the mean. We found thatDc diverges assm−1d−1

whenm→1, which originates from the similar divergence of
the upper band-edge energy. Ifm→3/2, the critical disorder
magnitude vanishes ass3/2−md2/3, indicating that all states
are localized atm=3/2, nomatter how small the disorder is.

It is shown, both analytically and by means of a finite size
scaling analysis, that the number of extended states at the
upper band edge increases sublinearly with the system size
N, namely, as~Ns3/2−md/s2−md, therefore forming a set of null
measure in the density of states in the thermodynamic limit.
This suggests that the mobility edge is a meaningful concept
only for a finite size system; it approaches the upper band
edge in the thermodynamic limit. Although extended states
form an infinitesimal fraction of the whole density of states,
they can provide a strong impact on the transport properties,
similarly to what happens in systems with correlated
randomness.11,12,15

To conclude, we note that our findings, apart from being
interesting from the theoretical point of view, are relevant for
real physical systems. Thus, some organic materials with pla-
nar geometry, in which optically allowed excitations are di-
polar Frenkel excitons,45–52 represent an example; the value
of the interaction exponent for the dipole-dipole intersite in-
teraction ism=3, which resembles the weak localization re-
gime in the 1D long-range model whenm=3/2.41 Dipole-
exchange spin waves in ferromagnetic films provide yet
another example where these results are relevant.53
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