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We study the one-dimensional quantum Heisenberg ferromagnet with exchange couplings exhibiting long-
range correlated disorder with power spectrum proportional k&, Iwherek is the wave vector of the
modulations on the random coupling landscape. By using the renormalization group, integration of the equa-
tions of motion, and exact diagonalization, we compute the spin-wave localization length and the mean-square
displacement of the wave packet. We find that, associated with the emergence of extended spin waves in the
low-energy region fora>1, the wave-packet mean-square displacement changes from a long-time super
diffusive behavior fora<1 to a long-time ballistic behavior for>1. At the vicinity of a=1, the mobility
edge separating the extended and localized phases is shown to scale with the degree of correfation as

x(a—1)"%
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[. INTRODUCTION Distinct regimes emerge when either of the above two mo-

ments diverges, thus generalizing other stulfiddoreover,

It is well established that one-electron eigenstates irin order to elucidate doubts raised in the literattirehe
chains with uncorrelated disorder are exponentiallyspin-wave dynamics of the one-dimensional Heisenberg fer-
localized! However, several theoretical investigations haveromagnet was investigatedfor the above power-law distri-
shown that a series of one-dimensional versions of théution of exchange couplings The mean-square displace-
Anderson model exhibit a breakdown of the Anderson’s lo-ment of the wave packet asymptotically displays super
calization induced by internal short-range correlations on theliffusion dynamics[ o(t)2e<t%?] for weak disorder(6<0),
disorder distribution, including hopping and on-site energydiffusive behavior[o(t)?=t'] for 6=0, and localization
correlation$ or just on-site energy correlatiot8.Recently, [o(t)2consi for strong disordet5>0). Therefore, the un-
it has been shown that the one-dimensional Anderson modebrrelated Heisenberg ferromagnet with random exchange
with long-range correlated disorder can display a phase ofouplings can display a superdiffusive dynamicglifd) is
extended electronic state§.These results have been con- finite. In all three cases, a ballistic reginfer(t)2ect?]
firmed by microwave transmission spectra of single-modeemerges for initial times. By using the transfer matrix tech-
waveguides with inserted correlated scattefeféie influ-  nique, the singularities of the density of states and localiza-
ence of long-range disorder on the electron motion in twaion length were verified. The superdiffusive behavior is
dimensions has been recently investightethd a two- closely related to the one found in the random-dimer version
dimensional layered Anderson model with long-range correof the Anderson modél.
lated disorder has been shown to exhibit a Kosterlitz- In this paper, we study the nature of the spin-wave modes
Thouless-type metal-insulator transition. of a quantum Heisenberg ferromagnetic chain with long-

It is also known that the magnon equation of motion forrange correlated random exchange coupliiggissumed to
ferromagnetic spin chains with uncorrelated random neareshave spectral power densife=1/k®. A previous study re-
neighbor exchange couplings can be exactly mapped onto giorted some finite-size scaling evidence of the emergence of
electronic chain with a particular form of off-diagonal disor- a phase of extended low-energy excitatiGhslere, we will
der where the random hopping integrals appear correlated inse a renormalization group technique to provide accurate
pairs’®1 By using a perturbation approach combined with aestimates for the mobility-edge energy as a function of the
scaling hypothesis it was demonstrdfethat the singulari- degree of correlation and to obtain the scaling behavior gov-
ties of the density of states and the localization length of a&rning the vanishing of the mobility edge in the vicinity of
random ferromagnetic Heisenberg chain depend on the disr=1. Further, we also study the quantum diffusion of the
tribution of exchange couplings. For uncorrelated randonwave packets in these chains using direct integration of the
exchange couplingd e[ 0,1] with a probability distribution motion equations and exact diagonalization to investigate the
function P(J)=(1—8)J ¢, it was predicted that fof<—1,  possible emergence of a new dynamical regime associated
which implies(1/J) and(1/J?) finite, the density of states with the occurrence of extended low-energy spin waves for
p(E) diverges as H*? and the localization length asBl/  a>1.
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Il. MODEL AND RENORMALIZATION-GROUP method is based on the particular form assumed by the equa-
CALCULATION tion of motion satisfied by the Green’s operator matrix ele-

We consider a Hamiltonian model describing a spin—llzmentS[G(E)]i*j:<||1/(E_H)|J> (Refs. 5 and 1B

gg;ntgxrgf‘fz:lr;em?gl;ﬁtifg;?Isenberg chairNddites with ran- (E- 62+M)[G(E)]n+l—"vn: 5M,0+‘]g+uvn+ﬂ—1[G(E)]“+“’1“
" +J2+M’n+ﬂ+1[G(E)]n+M+l,nv

H= 23S Shia, @ (®)

_ _ where en=(J,_1+J,)/2 and 39 .1 =35, 1,=J./2. After
whereS, represents the quantum spin operator atsig®d  eliminating the matrix elements associated with a given site,
open boundary conditions are used. We take the exchangge remaining set of equations of motion can be expressed in

couplingsJ,, connecting sites andn+1 to be correlated in - the same form as the original one, but with renormalized
such a sequency to describe the trace of a fractional Browrparameters

ian motion°~17
N/2 _ (N-1) _
2 (1-a)]1/2 27Tnk €N (E)_EN+JN—1,N_ — \]N—j_’N; (6)
J=2 |k — co +é, (2 E—e(7(E)
k=1 N N
wherek is the wave vector of the modulations on the random
IE) =32, In-1N 7

coupling landscape andl, areN/2 random phases uniformly
distributed in the intervdl0,27]. The exponent is directly
related to the Hurst exponeht (a=2H+1) of the rescaled Where, afteN—1 decimationsgey ' denotes the renormal-
range analysis, which describes the self-similar character dted diagonal element at sith and J§{” indicates the
the series and the persistent character of its increments: feffective renormalized exchange coupling connecting the
a>2 (H>1/2) the increments are persistent, while éor2  sites 0 and\.
(H<1/2) they are antipersistent. In the casewf2 (H To investigate the localized-delocalized nature of the spin-
=1/2) the sequence of exchange couplings resembles thgave modes, we compute the inverse of the excitation width
trace of the usual Brownian motion, while far=0 (H or the Lyapunov coefficienty(E) (inverse localization
=—1/2) one recovers the uncorrelated random exchangength. The Lyapunov coefficient is asymptotically related
Heisenberg model. The coupling distribution is Gaussian foto the effective exchange coupling by
a=0 but assumes a non-Gaussian form for firitence the
presence of long-range correlations is implied in the lack of Y(E)=— lim
self-averaging and the breakdown of the central limit theo- N oo
rem. In order to avoid a vanishing exchange coupling we ) _ eff)
shift all couplings generated by E€?) such to have average After a linear regression of ot (E)| versusN we have a
value(J,)=—4.5 and variancéAJ,)=1. Note that, in such direct extrapolation of the Lyapunov coefficient in the ther-
a case, all moments of the resulting distribution are finite. Inmodynamical limit. We computegl(E) for distinct values of
order to keep the variance size independent, the normalizdbe exponentr andN= 10" sites. In addition, the density of
tion factor scales with the chain size. A detailed finite-sizestates(DOS) was calculated by using the numerical Dean’s
scaling analysis has shown how such a normalization procenethod?’ In Fig. 1 we show the normalized DOS for chains
dure is reflected in the main character of the one-magnomith N=210" sites. Notice that it becomes less roughaais
excitationst* Indeed, without such a rescaling of the poten-increased and its singularity at the bottom of the band is not
tial the disorder width diverges for any+0 and all states affected by the imposed long-range correlation in the cou-
are expected to remain localiz&. pling constantgsee insefs For a=1.5 it consists of a non-
The ground state of the system contains all spins pointingluctuating part near the bottom of the band with the same
in the same direction. If a spin deviation occurs at a sjte form as that of the pure chaird{=const). Previous studies

E— el 2(E)

1
N MR B, ®

this excited state is described by have pointed out that the smoothing of the DOS is usually
connected with the emergence of delocalized stdtes.
én=5.10), (3) In Fig. 2 we show the plot of versuskE for =0 (uncor-

related random exchange#n this case, the Lyapunov coef-

+ . . . .
where the operatd®, creates a spin deviation at siteand ficient is finite for all energies, except f&=0 as usual.

|0y denotes the ground state. The eigenstates of the Hamipis pehavior remains qualitatively unaltered for@<1,
tonian are therefore a linear combination ¢f,, .|.e_.,13(I> therefore implying the absence of extended spin waves in
=ZCncby, the coefficients, satisfying the equatidf this regime. Fora=0, we have also observed that, near the
_ _ _ bottom of the band, the Lyapunov coefficient vanishey as
(In-17In)Cn=Jn-1Cn-17 InCns1=2ECr, @ e with v=1.0, in agree?/nepnt with Ref. 10 for probability
whereE is the excitation energy. distribution functions with finitg1/J) and(1/J?) (see inset
In order to study the properties of one-magnon states, wef Fig. 2). The picture is qualitatively different fax>1. In
apply a decimation renomalization-group technique. TheFig. 3(a) we plot y versusE for «=1.5. The Lyapunov co-
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FIG. 1. The spin-wave density of stat80OS) for chains with A

N= 10" sites using Dean’s method. The DOS becomes less rough as E | f' f (1)
¢ Ec /

«a is increased and its singularity at the bottom of the band is not
affected by the imposed long-range correlation in the coupling con-
stants(insets. For a=1.5 it consists of a nonfluctuating part near

the bottom of the band with the same form as that of the pure chain

(J,=const). 5
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efficient vanishes within a finite range of energy values, thus
confirming the presence of low-energy extended spin waves. FIG. 3. (&) Lyapunov coefficienty vs energyE for «=1.5 and

In all chains studied with sizes ranging from®10p to 16 N=10C sites from the renormalization procedure. The Lyapunov
sites, they(E) curves appear to be the same, indicating thag€oefficient vanishes within a finite range of energy values revealing

the extended phase of magnons is stable in the thermodyl€ Presence of extended low-energy spin wallBs(E. ,a) phase
diagram, whereE is the mobility edge(in units of AJ) for N

namical limit. The phase diagram in th&y, «) plane is ™ ® s \
shown in Fig. 8b), with E. (given in units ofAJ) denoting _EEjltEes' The phase of extended spin waves emerges’idr
the mobility edge and statistical errors are smaller than th&" ¢

symbol sizes. The data analyssee insetsuggests that, at
the vicinity of =1, the mobility edge depends on the cor- localized at siteng, represented at=0 by its eigenfunction

relation exponent aE o (a—1), with y=1/3. $n(t=0)=0y . Its time evolution is described by the
Schralinger equatior(a=1)

I1l. SPIN-WAVE DYNAMICS

In order to investigate the spin-wave dynamics, we com- doy(t)
pute the time dependence of the mean-square displacement : dt =Hon(1), ©)
of the wave packet. Let us consider an excitation initially
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FIG. 2. Lyapunov coefficieny vs energyE for =0 (uncorre- FIG. 4. Mean squared displacemertt vs timet for «=0 from
lated random-exchange moglandN = 10° sites from the renormal-  the integration of the equations of motion. The self-expanded chain
ization procedure. The Lyapunov coefficient is finite for nonzerowas used to minimize end effects. The spread of the wave packet
energies(localized statesand vanishes ag«E”, E—0, with depicts a crossover from a initial ballistiof=t?) to a superdiffu-
»=1.0 (inse). sive (0%=t%?) behavior.
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FIG. 5. Mean-squared displacemertt vs timet for =0.5 and 1 0 1 2
N =20 000 sites from the integration of the equations of motion. A 10 10 t 10 10
longer-living ballistic motion ¢-2=<t?) is found but still followed by
a crossover to the superdiffusive regime?¢:t>?). FIG. 6. Mean-squared displacemertt vs timet for «=1.5 for

) ) _ _ N=20000 sites from the integration of the equations of motion.
whose time-dependent wave function can be written in termgset: results using exact diagonalization kb 2000 (dotted ling,

of the computed eigenvectoi§!) and eigenvalue®; of H 4000 (dashed ling and 8000(dot-dashed linsites. Ballstic be-
as havior (o?«t?) is found for all times.

N sets up whenevefl/J) is finite, we find a crossover with
RGEDY vgj)vgigexp(—iEjt), (100  increasinga from superdiffusive to ballistic asymptotic re-
I gimes induced by long-range correlations in the exchange
The same time-dependent wave function can be obtained puplings. The ballistic regime fox>1 can be understood
integrating the equations of motion. The second moment ofollowing arguments similar to those used in Refs. 3 and 11.
the corresponding spatial probability distribution is thenExploring the exact mapping of the magnon problem onto a
given by paired electronic one, the diffusion coefficiddtcan be es-
timated by integrating (k)X (k) over the extended states that
effectively participate in the transport, wharék) andx (k)
oz(t)=2 (N—1g)2n(t) B (1). (11) a_re,_respectively, the velocity and mean free pa_th of the ex-
n citation mode with wave numbde In a finite chain all ex-
) ~ tended modes have(k)=N and travel with finite velocity
From the mean-square displacemerf(t) we can esti- since in the electronic problem the DOS is nonsingular near
mate the wave packet spread in space at a tinior any  the pand center. Once there is a finite fraction of states that
=0, we find ballistic behaviof o-(t)?=t?] for initial times,  are delocalized, the integration runs over a finite wave num-
indicating that disorder has not yet been realized by the spiger and, interchanginty andt, the diffusion coefficient re-

1 . . .
waves:" In the case of uncorrelated random exchafige0)  suits inDt. Consequently, the mean-square displacement is
the self-expanded chain was used to minimize end effect3.z2(t))=Dtot2, confirming the ballistic nature of the wave

When the probability of finding the particle at the ends of thepacket spread found in our numerical analysis.
chain exceeded 13° we added new sites thus expanding
the chain. In Fig. 4 we show the mean-squared displacement
versus time forr=0 as obtained by integrating the equations
of motion. In this case, for longer times the wave packet
presents a super diffusive sprefag(t)?«=t%?] in agreement
with previous studi€'$ for an uncorrelated random exchange  In summary, we have studied the one-dimensional quan-
distribution with(1/3) finite. In Fig. 5 we plot the data ob- tum Heisenberg ferromagnet with exchange couplings ex-
tained by integrating the equations of motion tor0.5 and  hibiting long-range correlated disorder with spectral power
20000 sites. As indicated, the initial ballistic motion extendsdensity proportional to k. By using a decimation
over longer times, although a super diffusive motion stillrenormalization-group technique we have found further evi-
takes place after this initial transient. Finally, Fig. 6 showsdence suggesting that this magnetic system displays a phase
that for «=1.5 the wave packet displays only a ballistic of extended spin waves in the low-energy region ter
spread. In this case our calculation was performed by using-1(H>0). The mobility edge separating low-energy ex-
both numerical integration of the equations of motion for  tended and high-energy localized states was shown to depend
=20 000 sites and exact diagonalization fb+=2000, 4000, on the degree of correlation in a very special manner. Finally,
and 8000 sites, in which case the end effect is preee  through integration of the equations of motion and exact di-
insey. agonalization, we have also computed the mean-square dis-
In contrast with the case of uncorrelated random exchangplacement of the spin-wave packet. Fer&<1, we have-
couplingst! in which an asymptotic superdiffusive behavior found long-time super diffusion, in agreement with previous

IV. CONCLUSIONS
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works for uncorrelated random exchange distribution withwave dynamics on correlated ferromagnetic chains and non-

(14) finite. However, for strong correlatior(&>1) a long-

periodic ferromagnetic superlattices.

time ballistic regime was numerically observed which is as-

sociated with the emergence of extended excitations. We be-
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