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Delocalization and spin-wave dynamics in ferromagnetic chains with long-range
correlated random exchange
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We study the one-dimensional quantum Heisenberg ferromagnet with exchange couplings exhibiting long-
range correlated disorder with power spectrum proportional to 1/ka, where k is the wave vector of the
modulations on the random coupling landscape. By using the renormalization group, integration of the equa-
tions of motion, and exact diagonalization, we compute the spin-wave localization length and the mean-square
displacement of the wave packet. We find that, associated with the emergence of extended spin waves in the
low-energy region fora.1, the wave-packet mean-square displacement changes from a long-time super
diffusive behavior fora,1 to a long-time ballistic behavior fora.1. At the vicinity of a51, the mobility
edge separating the extended and localized phases is shown to scale with the degree of correlation asEc

}(a21)1/3.
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I. INTRODUCTION

It is well established that one-electron eigenstates
chains with uncorrelated disorder are exponentia
localized.1 However, several theoretical investigations ha
shown that a series of one-dimensional versions of
Anderson model exhibit a breakdown of the Anderson’s
calization induced by internal short-range correlations on
disorder distribution, including hopping and on-site ene
correlations2 or just on-site energy correlations.3,4 Recently,
it has been shown that the one-dimensional Anderson m
with long-range correlated disorder can display a phase
extended electronic states.5,6 These results have been co
firmed by microwave transmission spectra of single-mo
waveguides with inserted correlated scatterers.7 The influ-
ence of long-range disorder on the electron motion in t
dimensions has been recently investigated8 and a two-
dimensional layered Anderson model with long-range co
lated disorder has been shown to exhibit a Kosterl
Thouless-type metal-insulator transition.9

It is also known that the magnon equation of motion
ferromagnetic spin chains with uncorrelated random near
neighbor exchange couplings can be exactly mapped ont
electronic chain with a particular form of off-diagonal diso
der where the random hopping integrals appear correlate
pairs.10,11 By using a perturbation approach combined with
scaling hypothesis it was demonstrated10 that the singulari-
ties of the density of states and the localization length o
random ferromagnetic Heisenberg chain depend on the
tribution of exchange couplings. For uncorrelated rand
exchange couplingsJP@0,1# with a probability distribution
function P(J)5(12d)J2d, it was predicted that ford,21,
which implies ^1/J& and ^1/J2& finite, the density of states
r(E) diverges as 1/E1/2 and the localization length as 1/E.
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Distinct regimes emerge when either of the above two m
ments diverges, thus generalizing other studies.12 Moreover,
in order to elucidate doubts raised in the literature,13 the
spin-wave dynamics of the one-dimensional Heisenberg
romagnet was investigated11 for the above power-law distri-
bution of exchange couplingsJ. The mean-square displace
ment of the wave packet asymptotically displays su
diffusion dynamics@s(t)2}t3/2# for weak disorder~d,0!,
diffusive behavior @s(t)2}t1# for d50, and localization
@s(t)2}const# for strong disorder~d.0!. Therefore, the un-
correlated Heisenberg ferromagnet with random excha
couplings can display a superdiffusive dynamics if^1/J& is
finite. In all three cases, a ballistic regime@s(t)2}t2#
emerges for initial times. By using the transfer matrix tec
nique, the singularities of the density of states and locali
tion length were verified. The superdiffusive behavior
closely related to the one found in the random-dimer vers
of the Anderson model.3

In this paper, we study the nature of the spin-wave mo
of a quantum Heisenberg ferromagnetic chain with lon
range correlated random exchange couplingsJn assumed to
have spectral power densityS}1/ka. A previous study re-
ported some finite-size scaling evidence of the emergenc
a phase of extended low-energy excitations.14 Here, we will
use a renormalization group technique to provide accu
estimates for the mobility-edge energy as a function of
degree of correlation and to obtain the scaling behavior g
erning the vanishing of the mobility edge in the vicinity o
a51. Further, we also study the quantum diffusion of t
wave packets in these chains using direct integration of
motion equations and exact diagonalization to investigate
possible emergence of a new dynamical regime associ
with the occurrence of extended low-energy spin waves
a.1.
©2002 The American Physical Society18-1
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II. MODEL AND RENORMALIZATION-GROUP
CALCULATION

We consider a Hamiltonian model describing a spin-
quantum ferromagnetic Heisenberg chain ofN sites with ran-
dom exchange couplingsJn :

H5 (
n52N/2

N/2

JnSn•Sn11 , ~1!

whereSn represents the quantum spin operator at siten and
open boundary conditions are used. We take the excha
couplingsJn connecting sitesn andn11 to be correlated in
such a sequency to describe the trace of a fractional Bro
ian motion:15–17

Jn5 (
k51

N/2 Fk2aS 2p

N D (12a)G1/2

cosS 2pnk

N
1fkD , ~2!

wherek is the wave vector of the modulations on the rand
coupling landscape andfk areN/2 random phases uniforml
distributed in the interval@0,2p#. The exponenta is directly
related to the Hurst exponentH (a52H11) of the rescaled
range analysis, which describes the self-similar characte
the series and the persistent character of its increments
a.2 (H.1/2) the increments are persistent, while fora,2
(H,1/2) they are antipersistent. In the case ofa52 (H
51/2) the sequence of exchange couplings resembles
trace of the usual Brownian motion, while fora50 (H
521/2) one recovers the uncorrelated random excha
Heisenberg model. The coupling distribution is Gaussian
a50 but assumes a non-Gaussian form for finitea once the
presence of long-range correlations is implied in the lack
self-averaging and the breakdown of the central limit th
rem. In order to avoid a vanishing exchange coupling
shift all couplings generated by Eq.~2! such to have averag
value^Jn&524.5 and variancêDJn&51. Note that, in such
a case, all moments of the resulting distribution are finite
order to keep the variance size independent, the norma
tion factor scales with the chain size. A detailed finite-s
scaling analysis has shown how such a normalization pro
dure is reflected in the main character of the one-mag
excitations.14 Indeed, without such a rescaling of the pote
tial the disorder width diverges for anyaÞ0 and all states
are expected to remain localized.18

The ground state of the system contains all spins poin
in the same direction. If a spin deviation occurs at a siten,
this excited state is described by

fn5Sn
1u0&, ~3!

where the operatorSn
1 creates a spin deviation at siten and

u0& denotes the ground state. The eigenstates of the Ha
tonian are therefore a linear combination offn , i.e., F
5(ncnfn , the coefficientscn satisfying the equation11–13

~Jn211Jn!cn2Jn21cn212Jncn1152Ecn , ~4!

whereE is the excitation energy.
In order to study the properties of one-magnon states,

apply a decimation renomalization-group technique. T
01441
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method is based on the particular form assumed by the e
tion of motion satisfied by the Green’s operator matrix e
ments@G(E)# i , j5^ i u1/(E2H)u j & ~Refs. 5 and 19!:

~E2en1m
0 !@G~E!#n1m,n5dm,01Jn1m,n1m21

0 @G~E!#n1m21,n

1Jn1m,n1m11
0 @G~E!#n1m11,n ,

~5!

where en
05(Jn211Jn)/2 and Jn,n11

0 5Jn11,n
0 5Jn/2. After

eliminating the matrix elements associated with a given s
the remaining set of equations of motion can be expresse
the same form as the original one, but with renormaliz
parameters

eN
(N21)~E!5eN1JN21,N

1

E2eN21
(N22)~E!

JN21,N , ~6!

J0,N
(e f f)~E!5J0,N21

(e f f) 1

E2eN21
(N22)~E!

JN21,N , ~7!

where, afterN21 decimations,eN
N21 denotes the renormal

ized diagonal element at siteN and J0, N
(e f f) indicates the

effective renormalized exchange coupling connecting
sites 0 andN.

To investigate the localized-delocalized nature of the sp
wave modes, we compute the inverse of the excitation wi
or the Lyapunov coefficientg(E) ~inverse localization
length!. The Lyapunov coefficient is asymptotically relate
to the effective exchange coupling by5,19

g~E!52 lim
N→`

F 1

N
lnuJ0,N

(e f f)~E!uG . ~8!

After a linear regression of lnuJ0,N
(e f f)(E)u versusN we have a

direct extrapolation of the Lyapunov coefficient in the the
modynamical limit. We computedg(E) for distinct values of
the exponenta andN5105 sites. In addition, the density o
states~DOS! was calculated by using the numerical Dean
method.20 In Fig. 1 we show the normalized DOS for chain
with N5105 sites. Notice that it becomes less rough asa is
increased and its singularity at the bottom of the band is
affected by the imposed long-range correlation in the c
pling constants~see insets!. For a51.5 it consists of a non-
fluctuating part near the bottom of the band with the sa
form as that of the pure chain (Jn5const). Previous studie
have pointed out that the smoothing of the DOS is usua
connected with the emergence of delocalized states.21

In Fig. 2 we show the plot ofg versusE for a50 ~uncor-
related random exchanges!. In this case, the Lyapunov coe
ficient is finite for all energies, except forE50 as usual.
This behavior remains qualitatively unaltered for 0,a<1,
therefore implying the absence of extended spin waves
this regime. Fora50, we have also observed that, near t
bottom of the band, the Lyapunov coefficient vanishes ag
}En with n51.0, in agreement with Ref. 10 for probabilit
distribution functions with finitê 1/J& and ^1/J2& ~see inset
of Fig. 2!. The picture is qualitatively different fora.1. In
Fig. 3~a! we plot g versusE for a51.5. The Lyapunov co-
8-2
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efficient vanishes within a finite range of energy values, th
confirming the presence of low-energy extended spin wa
In all chains studied with sizes ranging from 105 up to 106

sites, theg(E) curves appear to be the same, indicating t
the extended phase of magnons is stable in the therm
namical limit. The phase diagram in the (Ec , a! plane is
shown in Fig. 3~b!, with Ec ~given in units ofDJ) denoting
the mobility edge and statistical errors are smaller than
symbol sizes. The data analysis~see inset! suggests that, a
the vicinity of a51, the mobility edge depends on the co
relation exponent asEc}(a21)g, with g51/3.

III. SPIN-WAVE DYNAMICS

In order to investigate the spin-wave dynamics, we co
pute the time dependence of the mean-square displace
of the wave packet. Let us consider an excitation initia

FIG. 1. The spin-wave density of states~DOS! for chains with
N5105 sites using Dean’s method. The DOS becomes less roug
a is increased and its singularity at the bottom of the band is
affected by the imposed long-range correlation in the coupling c
stants~insets!. For a51.5 it consists of a nonfluctuating part ne
the bottom of the band with the same form as that of the pure c
(Jn5const).

FIG. 2. Lyapunov coefficientg vs energyE for a50 ~uncorre-
lated random-exchange model! andN5105 sites from the renormal-
ization procedure. The Lyapunov coefficient is finite for nonze
energies~localized states! and vanishes asg}En, E→0, with
n51.0 ~inset!.
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localized at siten0, represented att50 by its eigenfunction
fn(t50)5dn,n0

. Its time evolution is described by th
Schrödinger equation~\51!

i
dfn~ t !

dt
5Hfn~ t !, ~9!

as
t
-

in

FIG. 3. ~a! Lyapunov coefficientg vs energyE for a51.5 and
N5105 sites from the renormalization procedure. The Lyapun
coefficient vanishes within a finite range of energy values revea
the presence of extended low-energy spin waves.~b! (Ec ,a) phase
diagram, whereEc is the mobility edge~in units of DJ) for N
5105 sites. The phase of extended spin waves emerges fora.1
andE,Ec .

FIG. 4. Mean squared displacements2 vs time t for a50 from
the integration of the equations of motion. The self-expanded ch
was used to minimize end effects. The spread of the wave pa
depicts a crossover from a initial ballistic (s2}t2) to a superdiffu-
sive (s2}t3/2) behavior.
8-3
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whose time-dependent wave function can be written in te
of the computed eigenvectorsV( j ) and eigenvaluesEj of H
as11

fn~ t !5(
j

N

Vn
( j )Vn0

( j )exp~2 iE j t !. ~10!

The same time-dependent wave function can be obtaine
integrating the equations of motion. The second momen
the corresponding spatial probability distribution is th
given by

s2~ t !5(
n

~n2n0!2fn~ t !fn* ~ t !. ~11!

From the mean-square displacements2(t) we can esti-
mate the wave packet spread in space at a timet. For any
a>0, we find ballistic behavior@s(t)2}t2# for initial times,
indicating that disorder has not yet been realized by the s
waves.11 In the case of uncorrelated random exchange~a50!
the self-expanded chain was used to minimize end effe
When the probability of finding the particle at the ends of t
chain exceeded 102100 we added new sites thus expandi
the chain. In Fig. 4 we show the mean-squared displacem
versus time fora50 as obtained by integrating the equatio
of motion. In this case, for longer times the wave pac
presents a super diffusive spread@s(t)2}t3/2# in agreement
with previous studies11 for an uncorrelated random exchan
distribution with ^1/J& finite. In Fig. 5 we plot the data ob
tained by integrating the equations of motion fora50.5 and
20 000 sites. As indicated, the initial ballistic motion exten
over longer times, although a super diffusive motion s
takes place after this initial transient. Finally, Fig. 6 sho
that for a51.5 the wave packet displays only a ballist
spread. In this case our calculation was performed by us
both numerical integration of the equations of motion forN
520 000 sites and exact diagonalization forN52000, 4000,
and 8000 sites, in which case the end effect is present~see
inset!.

In contrast with the case of uncorrelated random excha
couplings,11 in which an asymptotic superdiffusive behavi

FIG. 5. Mean-squared displacements2 vs timet for a50.5 and
N520 000 sites from the integration of the equations of motion
longer-living ballistic motion (s2}t2) is found but still followed by
a crossover to the superdiffusive regime (s2}t3/2).
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sets up whenever̂1/J& is finite, we find a crossover with
increasinga from superdiffusive to ballistic asymptotic re
gimes induced by long-range correlations in the excha
couplings. The ballistic regime fora.1 can be understood
following arguments similar to those used in Refs. 3 and
Exploring the exact mapping of the magnon problem ont
paired electronic one, the diffusion coefficientD can be es-
timated by integratingv(k)l(k) over the extended states th
effectively participate in the transport, wherev(k) andl(k)
are, respectively, the velocity and mean free path of the
citation mode with wave numberk. In a finite chain all ex-
tended modes havel(k).N and travel with finite velocity
since in the electronic problem the DOS is nonsingular n
the band center. Once there is a finite fraction of states
are delocalized, the integration runs over a finite wave nu
ber and, interchangingN and t, the diffusion coefficient re-
sults inD}t. Consequently, the mean-square displacemen
^s2(t)&5Dt}t2, confirming the ballistic nature of the wav
packet spread found in our numerical analysis.

IV. CONCLUSIONS

In summary, we have studied the one-dimensional qu
tum Heisenberg ferromagnet with exchange couplings
hibiting long-range correlated disorder with spectral pow
density proportional to 1/ka. By using a decimation
renormalization-group technique we have found further e
dence suggesting that this magnetic system displays a p
of extended spin waves in the low-energy region fora
.1(H.0). The mobility edge separating low-energy e
tended and high-energy localized states was shown to de
on the degree of correlation in a very special manner. Fina
through integration of the equations of motion and exact
agonalization, we have also computed the mean-square
placement of the spin-wave packet. For 0,a<1, we have-
found long-time super diffusion, in agreement with previo

FIG. 6. Mean-squared displacements2 vs time t for a51.5 for
N520 000 sites from the integration of the equations of motio
Inset: results using exact diagonalization forN52000~dotted line!,
4000 ~dashed line!, and 8000~dot-dashed line! sites. Ballistic be-
havior (s2}t2) is found for all times.
8-4
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works for uncorrelated random exchange distribution w
^1/J& finite. However, for strong correlations~a.1! a long-
time ballistic regime was numerically observed which is
sociated with the emergence of extended excitations. We
lieve that the reported results might be useful to stimul
further theoretical and experimental investigations of sp
a
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wave dynamics on correlated ferromagnetic chains and n
periodic ferromagnetic superlattices.
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