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a b s t r a c t

The purpose of this review is to present a comprehensive and up-to-date account of
the main physical properties of DNA-based nanobiostructured devices, stressing the role
played by their quasi-periodicity arrangement and correlation effects. Although the DNA-
like molecule is usually described as a short-ranged correlated random ladder, artificial
segments can be grown following quasiperiodic sequences as, for instance, the Fibonacci
and Rudin–Shapiro ones. They have interesting properties like a complex fractal spectra of
energy, which can be considered as their indelible mark, and collective properties that are
not shared by their constituents. These collective properties are due to the presence of long-
range correlations, which are expected to be reflected somehow in their various spectra
(electronic transmission, density of states, etc.) defining another description of disorder.
Although long-range correlations are responsible for the effective electronic transport at
specific resonant energies of finite DNA segments, much of the anomalous spread of an
initially localized electron wave-packet can be accounted by short-range pair correlations,
suggesting that an approach based on the inclusion of further short-range correlations on
the nucleotide distribution leads to an adequate description of the electronic properties
of DNA segments. The introduction of defects may generate states within the gap, and
substantially improves the conductance, specially of finite branches. They usually become
exponentially localized for any amount of disorder, and have the property to tailor
the electronic transport properties of DNA-based nanoelectronic devices. In particular,
symmetric and antisymmetric correlations have quite distinct influence on the nature of
the electronic states, and a diluted distribution of defects lead to an anomalous diffusion
of the electronic wave-packet. Nonlinear contributions, arising from the coupling between
electrons and the molecular vibrations, promote an electronic self-trapping, thus opening
up the possibility of controlling the spreading of the electronic density by an external
field. The main features of DNA-based nanobiostructured devices presented in this review
will include their electronic density of states, energy profiles, thermodynamic properties,
localization, correlation effects, scale laws, fractal andmultifractal analysis, and anhydrous
crystals of their bases, among others. New features, like other nanobiostructured devices,
as well as the future directions in this field are also presented and discussed.
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1. Introduction

The field of nanotechnology has emerged as one of the most important areas of research in the near future. While
scientists have been hardly aspiring to controllably and specificallymanipulate structures at themicrometer and nanometer
scale, nature has been performing these tasks and assembling structures with great accuracy and high efficiency using
specific biological molecules, such as the deoxyribonucleic-acid (DNA) molecule, and proteins [1,2]. As a consequence,
there has been a tremendous interest in recent years to develop concepts and approaches for self-assembled systems,
searching for their electronic and optical applications [3]. Biology can provide models and mechanisms for advancing
this approach, but there is no straightforward way to apply them to electronics since biological molecules are essentially
electrically insulating [4]. However, exquisite molecular recognition of various natural biological materials can be used
to form a complex network of potentially useful systems for a variety of optical, electronic, and sensing applications [5].
For instance, investigations of electrical junctions, in which single molecules or small molecular assemblies operate as
conductors connecting traditional electrical components, such as metal or semiconductor contacts, constitute a major part
of what is nowadays known as molecular electronics [6–10]. Their diversity, versatility, and amenability to control and
manipulation, make them potentially important components in nanoelectronic devices [11–14].

For physicists, this continuing progress and the consequent need for further size miniaturization, makes the DNA
molecule, the basic building block of living species and carrier responsible of the genetic code [15–17], the best candidate
to fulfill this place. Arguably, one of the main challenging research subject of nowadays science, the human DNA is around
6mm long, has about 2×108 nucleotides and is tightly packed in a volume equal to 500µm3 [18]. If a set of three nucleotides
can be assumed to be analogous to a byte, then these numbers represent either 1 Kb µm−1 (linear density) or 1.2 Mb µm−3

(volume density), an appreciation of how densely information can be stored in DNA.



Author's personal copy

E.L. Albuquerque et al. / Physics Reports 535 (2014) 139–209 141

Fig. 1.1. Schematic illustration of the chemical composition of the DNAmolecule, showing its four bases guanine (G), adenine (A), cytosine (C) and thymine
(T ) and the sugar–phosphate backbone.

A complete DNA molecule is a chromosome, with protein components present as structural support. The DNA of each
gene carries a chemical message which signals to the cell how to assemble the amino acids in the correct sequence to
produce the protein for which that gene is responsible. The information is contained in the sequence of themonomers called
nucleotides, which make up the DNA molecule, whose structure consists of a base together with a backbone of alternating
sugar molecules and phosphate ions. There are four different nucleotides in DNA, differing by their chemical components,
linked together forming a backbone of alternating sugar–phosphate residues with the bases that carries the information of
the gene. For practical reason these nucleotides can be considered as a symbolic sequence of a four letter alphabet, namely
guanine (G), adenine (A), cytosine (C) and thymine (T ), whose repeated stacks are formed by either AT (TA) or GC (CG) pairs
coupled by hydrogen bonds, the so-called Chargaff rules [19,20], and held in a double-helix structure by a sugar–phosphate
backbone (see the schematic drawing depicted in Fig. 1.1). The specificity of this base pairing and the ability to ensure
that it occurs in this fashion (and not some other) is a key factor to use DNA in materials applications. The double helical
arrangement of the twomolecules leads to a linear helix axis, linear not in the geometrical sense of being a straight line, but in
the topological sense of being unbranched. This robust, althoughmalleable, one-dimensional structure of DNA is unique, and
may be used to design functional nanostructures, and its charge transport capability in the appropriate energy regime can be
quite good. Besides, DNA molecules encode all the information needed to build every cell, tissue and membrane of a living
organism and, consequently, occupy an outstanding position in life sciences for its crucial role as carrier of the genetic code.

Numerous algorithms have been introduced to characterize and graphically represent the genetic information stored in
the DNA nucleotide sequence. The goal of these methods is to generate a representative pattern for certain sequences, or
groups of sequences. Notwithstanding, the design of DNA-based devices for molecular nanoelectronics is not yet an easy
task since they are crucially dependent upon elucidation of the mechanism and dynamics of electrons and hole transport
in them. Besides, unlike proteins, DNA is not primarily an electron/hole-transfer system, and its suitability as a potential
building block for molecular devices may not depend only on long-distance transfer of electrons and holes through the
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molecule. However, the discovery that DNA, like proteins, can conduct an electrical current, has made it an interesting
candidate for nanoelectronic devices, which could help to overcome the limitations that classical silicon-based electronics
is facing presently. Indeed, individual DNA molecules are very suitable for producing a new range of devices that are much
smaller, faster and more energy efficient than the present semiconductor-based ones [21].

In fact, DNA offers a solution tomany of the hurdles that need to be overcome, since it has the capacity of self-assemblage
and self-replication, turning possible to produce nanostructureswith a precision that is not achievablewith classical silicon-
based technologies [22–24]. On the other hand, their conductivity properties are still under intense debate. Controversial
reports consider that DNA may be a good linear conductor, while others have found that it is somewhat more effective
than proteins, even when they have perfectly ordered base pairs [25]. Recent measurements of electrical transport through
individual short DNA molecules indicated that it has a wide-band-gap semiconductor behavior [26,27]. Besides, strongly
deformed DNA molecules deposited on a substrate and connected to metallic electrodes can behave as an insulator or a
conductor depending, among other things, on the ratio between the thickness of the substrate and molecule [28]. On the
other hand, it was recently shown,within the density functional theory (DFT) framework, that anhydrous crystals of theDNA
bases are wide band gap semiconductors. Guanine and cytosine (adenine and thymine) anhydrous crystals were predicted
to be direct (indirect) band gap semiconductors, with energy gap values equal to 2.68 eV and 3.30 eV (2.83 eV and 3.22
eV), respectively, while the experimentally estimated band gaps measured were 3.83 eV and 3.84 eV (3.89 eV and 4.07
eV), in the same order [29]. The obtained electronic effective masses at band extremes showed that, at low temperatures,
anhydrous crystals of DNA bases behave like wide band gap semiconductors for electrons moving along the nucleobases
stacking direction, while the hole transport is somewhat limited.

These seemingly contradictory theoretical and experimental results are caused mainly by three factors:

(a) native DNA consists of a double helix with an aperiodic sequence, sugar–phosphate side chains, and water as well as
ions surrounding it;

(b) the topology of the double-helix, which is not a rigid object, with the different constituents of DNA moving relative to
each other;

(c) the works so far have been performed by using quite different theoretical methods and experimental techniques.

On the other hand, advances on novel DNA constructions, with the creation of three-dimensional DNA topological
structures, are opening up a new world for charge transport in DNA junctions and lattices, a scientific advance bridging the
molecularworld to theworldwherewe live [30,31]. As amatter of fact, the DNA base pairs recognition system can be used to
direct the assembly of highly structured materials into a series of 3D triangle-like motifs, with specific nanoscale features,
as well as in DNA computation to process complex information, as explicitly stated by Seeman [32]. The combination of
synthetic stable branchedDNA and sticky-ended cohesion (small cohesive sequences on each end of themotif), that attach to
othermolecules and place them in a set order and orientation, has led to the development of structural DNA nanotechnology
over the last 30 years [32].

The early topological constructs built from DNA led also to the development of specific single-stranded DNA topologies
[33,34]. The action of staple strands was later explored to fold DNA strands into a variety of shapes, a technique named
DNA origami, which uses a few hundred short DNA strands to direct a very long DNA strand to form structures to any
desired shape, serving as their assembly line’s framework [35,36]. Nowadays, these several nanometric structures, with
great potential biotechnological applications, have evolved to the ability to produce two and three-dimensional DNA crystals
with a linear dimension of the order of 1 mm [37]. To explore the complex charge transport in these 3D connected DNA,
wire fragments will give rise to novel DNA-based circuits and/or devices, opening up a powerful new direction in the field
of integrated nanoelectronic biological structures [38].

Within the above context, the purpose of this review article is to present a comprehensive and up-to-date account of
the main electronics/thermodynamics properties of the DNAmolecule, mainly within the context of quasiperiodicity of the
bases arrangement, and the role played by short- and long-range correlation effects, looking for nano-size devices [39,40].
The DNA is usually described as a short-ranged correlated random ladder, but nothing prevents that the DNA chain can be
artificially grown following quasiperiodic sequences as, for instance, the Fibonacci (FB) and Rudin–Shapiro (RS) ones. These
structures exhibit interesting properties, namely:

(a) they have a complex fractal spectra of energy, which can be considered as their indelible mark;
(b) they also exhibit collective properties that are not shared by their constituents.

These collective properties are due to the presence of long-range correlations, which are expected to be reflected
somehow in their various spectra (as in light propagation, electronic transmission, density of states, etc.) defining another
description of disorder (for up to date reviews, see Refs. [41–43]). Besides, the introduction of long range correlations in
aperiodic or genomic DNA sequences markedly change their physics and can play a crucial role in their charge transfer
efficiency, making a strong impact on their engineering biological processes like gene regulation and cell division [44,45].
Moreover, the nature of this long range correlation has been the subject of intense investigation, whose possible applications
on electronic delocalization in the one-dimensional Anderson model have been recently discussed [46].

It is well known that the DNA electronic band structure is composed of two main bands of allowed states separated by
an energy gap, similar to those of a solid-state semiconductors. At half filling the presence of the energy gap gives to these
molecules an intrinsic insulator character. The introduction of defects may generate states within the gap and substantially
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improve the conductance, specially of finitemolecules. In single-strandDNAmolecules, defectsmay be originatedwithin the
ownnucleotide sequence or by laterally attachingnewstructures at random [47]. However, disordermodifies profoundly the
nature of the electronic states in 1D systems. All states usually become exponentially localized for any amount of disorder.
Such exponential localization competes with the above improvement on the conductance associated with the presence of
states within the gap. Therefore, schemes for introducing defects that minimize the tendency of exponential localization of
the electronic states are essential to tailor the electronic transport properties of DNA-based nanoelectronic devices.

Wewill not consider the possible influence of the environment, like solvent interactions, although its effects may act as a
source of disorder [48–50], being important, by instance, in the study of DNA denaturation process [51,52]. However we do
consider the influence of the sugar–phosphate backbone, since it promotes the emergence of a band gap of the order of the
hopping integral. Recent results showed that the hybridization of the overlapping p-orbital in the base-pair stack coupled
to the backbone is sufficient to predict the existence of a gap in the nonequilibrium current–voltage characteristics, with a
minimal number of parameters [53].

This review article is organized so that we start with the basic properties of the quasiperiodic structures, giving exam-
ples of some of them that either can be or already have been grown by experimentalists like the Cantor, Fibonacci, and
Rudin–Shapiro sequences (Section 2). Then, in Section 3, we discuss the important issue of charge transport in the DNA
molecule, based on an effective tight-binding model describing an electron moving in a chain with a single orbital per site
and nearest-neighbor interactions, togetherwith a transfer-matrix approach to simplify the algebra, which can be otherwise
quite heavy. Several different DNA’s topologies are taken into account. Section 4 deals with the electrical conductivity look-
ing for their electronic transmission spectra, as well as discussing their wave-function spread profile. The basic properties of
their I–V characteristics curves, following a Landauer–Büttiker formulation, are also presented and discussed considering a
framework in which the DNAmolecule is sandwiched between two electrodes (donor—DN and acceptor—AC, respectively).
The effect of diluted disorder is also discussed. The role played by the correlations effects are then introduced, with emphasis
in their symmetric and antisymmetric characteristics (Section 5), followed by a discussion of the importance of the inclu-
sion of nonlinearity and field effects into the wave-packet dynamics, which are stressed in Section 6. Mimicking the DNA
molecule as a quasiperiodic arrangement of Fibonacci or Rudin–Shapiro sequences, and taking into account that usually col-
lective modes propagating in quasiperiodic systems lead, among other things, to self-similar fractal energy spectra forming
a Cantor set, we present in Section 7 their thermodynamic properties using simulation methods employed in the physics of
fractals. In general, the properties of the specific heat derived from the natural continuous fractal spectrum obtained from
quasiperiodic structures show that at the low temperature limit both systems exhibit an interesting oscillatory behavior
in their spectra. This occurs because such systems possess long-range correlations in its own constitution, leading to the
transference of these characteristics to their energy spectra in the form of a fractal distribution of bands. As a consequence
of this type of distribution, the specific heat oscillates log-periodically when the system temperature goes to zero, depict-
ing a Schottky anomaly. In the sequence it is highlighted that, although the crystal structures of anhydrous thymine and
cytosine were determined several years ago, the crystal structures of anhydrous guanine and adenine were not obtained
until recently, due to the lack of good quality crystals. Taking advantage of this state of the art, Section 8 deals with the
subject of DNA bases crystals, in which published crystallographic data for anhydrous DNA nucleobase crystals (ACrs) gua-
nine, adenine, cytosine and thymine were used, together with the Density Functional Theory (DFT) computations, to set up
a comparative study of their structural, electronic, and optical properties. Finally, in Section 9, the prospecting future trends
and concluding remarks of this work are presented.

2. Quasiperiodic structures

The subject of quasicrystals first achieved prominence in 1984, following the report by Schechtman et al. [54] of metallic
Al–Mn alloys, showing amassing and interesting electron diffraction data. They mixed Al and Mn in a roughly six-to-one
proportion and heated the mixture until it melted. The mixture was then rapidly cooled back to the solid state by dropping
the liquid into a cold spinning wheel, a process known as melt spinning. When the solidified alloy was examined with an
electronmicroscope, a novel structurewas revealed. It exhibited five-fold symmetry,which is forbidden in ideal crystals, and
a long-range order, which is lacking in amorphous solids. Its order, therefore, was neither truly amorphous nor crystalline.
Subsequent measurements, using X-ray scattering at much higher resolution, led to electron diffraction patterns showing
not only five-fold but also icosahedral symmetries, forbidden by the rules of crystallography (for reviews see Refs. [55–59]).
Theoretical studies developedby Levine and Steinhardt [60] explained these types of symmetry through the aperiodic 2Dand
3D Penrose tilings [61] in their diffraction patterns. Tiling is the geometrical operation that results in filling a space with an
arrangement of regular polyhedra. Their predictions were, indeed, qualitatively similar to the observations by Schechtman
et al. [54]. In addition to further experimental studies, the subsequent challenge has been the development of theoretical
models to characterize these artificial structures.

Although the term quasicrystal is more appropriate when applied to natural compounds or artificial alloys, in 1D there
is no difference between it and the quasiperiodic structures formed by the incommensurate arrangement of periodic unit
cells. The particular mathematical sequences (Cantor, Fibonacci and Rudin–Shapiro, among others) that define the type of
quasiperiodic structurewill be discussed in the following sub-sections. An appealingmotivation for studying such structures
is that they exhibit a highly fragmented energy spectrum displaying a self-similar pattern [62–64]. Indeed, from a strictly
mathematical perspective, it has been proven that their spectra are Cantor sets in the thermodynamic limit [65].
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A fascinating feature of these quasiperiodic structures is that they exhibit distinct physical properties, not foundneither in
periodic arrangements, nor in their constituent parts, giving rise to a novel description of disorder. Indeed, theoretical trans-
fer matrix treatments can be used to show that these spectra are fractals, defining intermediate systems between periodic
crystals and random amorphous solids [66–69]. This is one of the features that makes them of particular interest to study.

The presence and nature of long-range correlations in such systems preclude using canonical approaches like perturba-
tion theory,where one first separates a small localized piece of the system, treating the rest as a perturbation a posteriori. This
approach typically does not work for the cases under consideration here, because the behavior of the overall macroscopic
system is quite distinct from the behavior of its separate small pieces, due to the long-range correlations. Fortunately, the
presence of long-range correlations itself gives the key to circumvent this difficulty, namely that these systems are normally
robust to wide modifications on a microscopic scale. An important consequence of this robustness, where many systems
which are distinct within a microscopic scale may exhibit the same critical behavior, is that one can classify the various sys-
tems in a few universality classes (for details see Ref. [70]). For an analogy, we may consider the topic of continuous phase
transitions: the critical behavior is known to depend only upon global properties, namely the geometric dimension of the
system and the symmetries of its order parameter, being insensitive to the details of the microscopic interactions between
the atoms or molecules [71].

The spectra ofmany types of elementary excitations in quasiperiodic structures have been extensively studied by numer-
ous groups. In all cases, the spectra were found to be Cantor-like with critical eigenfunctions [72]. For electronic systems,
exact eigenfunctions were found only at the special null energy value. However, there are infinitely many eigenvalues in
the energy spectrum, although they are rare for the electron chaotic orbits [73,74]. An important issue is to understand the
wave functions corresponding to these chaotic orbits. We note that it does not necessarily follow that the wave functions
themselves are chaotic, because the orbits represent only selected points on the lattice [75]. In addition, there may be a dis-
crete set of extended states, and a quite complex fractal energy spectrum, which can be considered as their basic signature,
a common feature of these systems. Several different mathematical techniques, including renormalization group theory
[76], the transfer matrix method [77], and chaotic Hamiltonian systems [78], to mention just a few, have been successfully
applied to describe quasiperiodic structures, leading to remarkable results.

Another important motivation for studying quasiperiodic structures comes from recognizing that the localization of
electronic states, one of the most active fields in condensed matter physics, could occur not only in disordered systems
but also in the deterministic quasiperiodic systems [79,80]. Localization of electronic states in quasi-periodic structures
were studied using a tight-binding Schrödinger equation by several groups [81–83].

The quasiperiodic structures considered here are of the type generally known as substitutional sequences. The sequences
generated by substitutions have been studied in several areas of mathematics [84–86], computer science [87,88], and
cryptography [89]. The sequences are characterized by the nature of their Fourier spectrum, which can be dense pure points
(as for the Fibonacci sequence) or singular continuous (as for the Rudin–Shapiro sequence) [90].

We start with some general mathematical considerations and terminology. First we give the definition of a substitutional
sequence of the type used here. Consider a finite set ξ (here ξ = {A, B}, for example,withA and B being twodifferent building
blocks) called an alphabet, and denote by ξ ∗ the set of all words of finite length (such as AABAB) that can be written in this
alphabet. Now let us define ζ as a map from ξ to ξ ∗ by specifying that ζ acts on a word by substituting each letter (e.g. A)
of this word by its corresponding image, denoted by ζ (A). A sequence is then called a substitutional sequence if it is a fixed
point of ζ , i.e. if it remains invariant when each letter in the sequence is replaced by its image under ζ .

These substitutional sequences are described in terms of a series of generations that obey particular inflation rules. Let
a1, a2, . . . , ag be g basic units, and define this pattern as stage n of the sequence. Then the next stage n + 1 of the sequence
is obtained inductively from stage n by the inflation rule a⃗ → M̄a⃗, where a⃗ represents the column vector (a1, a2, . . . , ag)t ,
with t denoting the transpose. Also M̄ = (mij) is a g × g matrix with non-negative integer matrix elements. The matrix M̄
and its successive applications fully determine the sequence. At each stage, ai is replaced by mi1a1, followed by mi2a2, . . . ,
etc., for i = 1, 2, . . . , g . For example, for the case of the Fibonacci lattice to be discussed shortly, we have g = 2 and it turns
out that we operate with the 2 × 2 substitution matrix M̄

M̄ =


1 1
1 0


, (1)

on the vector (a1, a2)t at each stage. This gives, in terms of the building blocks A and B, the substitution rules A → AB,
B → Awhichwill then generate thewhole sequence, providedwe start with AB as the first compoundword of the sequence.
Similar procedures can be identified to generate other quasiperiodic sequences. In the following, we proceed to give explicit
definitions of the main substitutional sequences to be used here.

2.1. Cantor

Probably the most well-known and simple deterministic fractal geometry is the triadic Cantor sequence [91]. This set is
obtained through the repetition of a simple rule: divide any given segment into three equal parts, then eliminate the central
one (wemay call this the inbound Cantor sequence), and continue this process. For example, if we start algebraicallywith the
closed set S0 = [0, 3] of all numbers from0 to 3 and remove its openmiddle third, we are left with the pair of closed intervals
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Fig. 2.1. Schematic illustration of the Cantor quasiperiodic structure.

[0, 1] and [2, 3] representing S1. The open middle thirds in each of these intervals would be removed again to produce four
smaller intervals representing S2, and so on. After many stages, we would have a large number of small intervals, separated
by gaps of various sizes.

For applications of the building blocks to multilayered structures, it is more appropriate to consider instead the so-called
outbound Cantor sequence. This has its Ncth stage defined in terms of the previous stage by the rule SNc = SNc−1BNc SNc−1,
with initial conditions taken as S0 = A and S1 = AB1A. In this case BNc for the Ncth sequence stage differs from the basic
B1 (≡B) for the first stage only by its thickness dBNc = 3Nc−1dB1 . We can also construct the same sequence rather more
straightforwardly by the substitutional transformations A → ABA, B → BBB.

The resulting Cantor generations are therefore

S0 = A; S1 = ABA; S2 = ABABBBABA; etc. (2)

which are represented clearly by the diagrammatic expansion scheme shown in Fig. 2.1.
The fractal properties of the quasiperiodic structures will turn out to be of relevance later for a description of the

excitation spectrum. Roughly speaking, fractals can be thought of as complex geometric shapes with fine structure at
arbitrary small scales. It is obvious how this fine structure comes about in the above example of the Cantor sequence
because of the repeated division into smaller intervals. Some general accounts of fractals and their properties are to be
found in several books, e.g. Refs. [91–93]. The concept of fractal dimension is often useful in respect to the self-similarity
property, i.e. again roughly, if we magnify a tiny part of the fractal we will see features reminiscent of the whole. If, from a
d-dimensional object (a ‘‘box’’) of size l, some N conformal copies of reduced size lr (with 0 < r < 1) are produced and the
process is repeated a large number of times, then the fractal dimension D0 can be defined by the relation N = exp(−rD0),
or equivalently

D0 = ln(N)/ ln(1/r). (3)

For the present example of the Cantor sequence, we have N = 2 and r = 1/3, so it has a fractal dimension equal to a
noninteger, namely ln 2/ ln 3 ≃ 0.63. This is less than its geometric dimension d = 1.

2.2. Fibonacci

The Fibonacci sequence (FB) is the oldest example of an aperiodic chain of numbers. It was developed by Leonardo de
Pisa (whose nickname was Fibonacci) in 1202 as a result of his investigation on the growth of a population of rabbits. The
successive Fibonacci numbers are generated by adding together the two previous numbers in the sequence, after specifying
suitable initial conditions.

For our purposes, a Fibonacci structure can be realized experimentally by juxtaposing the two basic building blocks A
and B in such a way that the NFBth stage of the process SNFB is given by the recursive rule SNFB = SNFB−1SNFB−2, for NFB ≥ 2,
starting with S0 = B and S1 = A. It has the property of being invariant under the transformations A → AB and B → A.

The Fibonacci generations are (see Fig. 2.2(a)):

S0 = B; S1 = A; S2 = AB; S3 = ABA; S4 = ABAAB; etc. (4)
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a b

Fig. 2.2. Schematic illustration of the two quasiperiodic structures considered in this work: (a) Fibonacci; (b) Rudin–Shapiro.

In this case, the number of building blocks increases in accordance with the Fibonacci number FNF defined by the rule
FNFB = FNFB−1 + FNFB−2 (with F0 = F1 = 1). Also the ratio between the number of the building blocks A and the number
of the building blocks B in the sequence tends to the golden mean number τFB = (1 +

√
5)/2 ≃ 1.62 for large generation

number NFB. This particular irrational number is related to five-fold symmetries (e.g. it is twice the ratio of the distance
between the center-vertex and the center mid-edge in a pentagon). It is interesting to note that all the Fibonacci numbers
can be generated from the golden mean number through the relation FNFB = [(τFB)

NFB − (−τFB)
−NFB ]/

√
5. This means that

a sequence of rational numbers (namely the integer-valued Fibonacci numbers) can be obtained from powers of irrational
numbers.

There are variations of the above sequence leading to generalized Fibonacci structures (GFB) that involve different
relationships between the number of the building blocks A and the number of the building blocks B (thus generalizing
also the golden mean number). In these cases, the Nth stage of the structure SNGFB is taken to be generated by the sequence
given recursively as

SNGFB+1 = SpNGFB
SqNGFB−1 (5)

with, as before, S0 = B and S1 = A. Here the indexes p and q are arbitrary positive integer numbers and NGFB ≥ 1. The above
notation means that SpNGFB

represents p adjacent repetitions of the stack SNGFB . This type of inheritance is normal in iterative
processes and frequently produces self-similar structures that are the basis of fractal configurations. When p = q = 1 (the
simplest possible case) we have just thewell-known Fibonacci sequence discussed previously. Equivalently, the generalized
Fibonacci sequences can also be generated by the substitutional relation

B → A, A → ApBq, (6)

whereAp (or Bq) represents a string of p A-blocks (or q B-blocks). The total number of blocks in SNGFB is equal to the generalized
Fibonacci number denoted by FNGFB , given now by the recurrence relation

FNGFB = pFNGFB−1 + qFNGFB−2, (7)

with initial values F0 = F1 = 1. The characteristic value τ(p, q), defined as being the ratio of FNGFB to FNGFB−1 in the limit of
NGFB → ∞, must satisfy the quadratic equation

τ(p, q)2 − pτ(p, q)− q = 0. (8)

Solving for the positive root gives explicitly

τ(p, q) = lim
NGFB→∞

FNGFB/FNGFB−1 =
p +


p2 + 4q
2

. (9)

This expression generalizes the previous golden-mean result and introduces other types of means, depending on the
values of p and q. For instance, for p = q = 1 we have τ(1, 1) ≡ τFB ≃ 1.62, the well-known golden mean. Similarly,
τ(2, 1) ≃ 2.41 is the silver mean, τ(3, 1) ≃ 3.30 is the bronze mean, and τ(1, 3) ≃ 2.30 is the nickel mean.
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It is worth briefly mentioning here a mathematical aspect that has interesting implications for the physical properties of
a quasiperiodic system.Wemay note that the expression for τ(p, q) in Eq. (9) is formally equivalent to a result arising when
determining the eigenvalues of the substitution matrix M̄ introduced earlier in this section. This was exemplified by Grimm
and Baake [94] in treating a quantum spin chain with quasiperiodic pair interactions. Essentially they were able to classify
the different substitutional sequences based on the irrationality of τ−(p, q), which denotes the negative root of Eq. (9). They
found that if |τ−(p, q)| < 1, it is a so-called Pisot–Vijayaraghavan (PV) irrational number, and the fluctuations of the physical
properties associated with the sequence are relatively well behaved and stable. On the other hand, if |τ−(p, q)| > 1, the
fluctuations of the physical properties are almost chaotic. For the examples of generalized Fibonacci casesmentioned above,
only the nickel-mean sequence is not a PV type and, therefore, we expect a more chaotic behavior of its physical properties
(as found in the specific heat calculations discussed in [95]).

2.3. Rudin–Shapiro

To set up a quasiperiodic chain of Rudin–Shapiro (RS) type, we consider the juxtaposing of four basic building blocks A, B,
C , and D, in such a way that they have the property of being invariant under the transformations A → AB, B → AC , C → DB,
andD → DC . The RS sequence belongs to the family of the so-called substitutional sequences,which are characterized by the
nature of their Fourier spectrum. It exhibits an absolutely continuous Fourier measure, a property which it shares with the
random sequences. The total number of building blocks in the unit cell increases with 2NRS+1, NRS being the Rudin–Shapiro
generation number. The generations of this quasiperiodic structure are:

S0 = [AB]; S1 = [ABAC]; S2 = [ABACABDB]; S3 = [ABACABDBABACDCAC]; etc. (10)

as depicted in Fig. 2.2(b).

3. Charge transport in DNA

Charge transport in DNA molecules attracts considerable interest among the physics, chemistry, and biology communi-
ties, not only because of its relevance, as the carrier of genetic code of all living organisms, but also as a promising candidate
for molecular electronics. In fact, the use of molecules as an electronic component is a powerful new direction in the science
and technology of nanometer-scale systems due to their scientific and engineering applications [96,97]. Besides, chargemo-
bility in DNA has its own importance based on its biological context, as well as on its technological applications, (e.g. the
use of DNA in electrochemical sensors and in future nanotechnologies [99,98]). In fact, the electronic conduction in DNA
molecules is a research frontier in molecular electronics because of their potential use in nanoelectronic devices, both as a
template for assembling nanocircuits, and as an element of such circuits [100,101]. Processes that possibly use charge trans-
fer include, among others, the function of DNA damage response enzymes, transcription factor and polymerase co-factors,
all of them playing important roles in the cell [102]. Indeed, it was proved that damaged regions have significantly different
behavior than healthy regions in DNA after the passage of an electric current [103].

Although the use of DNA molecules in nanoelectronic circuits is very promising due to their self-assembly and molecu-
lar recognition abilities, their conductivity properties are not yet properly recognized. Different conclusions are obtained
by several experiments. On the theoretical side, both ab initio calculations [104–106] and model-based Hamiltonians
[107–110] are extensively adopted to interpret the diversity of the experimental results and to ascertain the underlying
charge transport mechanisms. The former can provide a detailed description, but is currently limited to relatively short
molecules. The latter is much less detailed although allowing addressing systems of more realistic length. However, the
model-based approach can play an additionally important complementary role, because it grasps usually the underlying
physics.

Earlier models of the electronic transport in DNA molecules assumed that the transmission channels are along their
longitudinal axis. A π-stacked array of the DNA nucleobases, namely guanine (G), adenine (A), cytosine (C) and thymine (T ),
provides theway to promote long range chargemigration, which in turn gives important clues tomechanisms and biological
functions of charge transport [111–114].

The increasing diversification of applications requiringmaterialswith specific electronic properties at nanoscale size, and
the consequent need for further miniaturization makes the DNAmolecule an excellent candidate for molecular electronics.
This immediately leads to the question of what are the possible mechanisms governing charge migration through DNA, and
what are the parameter ranges (length, temperature, geometrical arrangements etc.) which it may support electric current.

3.1. The tight-binding models

In condensed matter physics, the tight-binding model (or TB model) is an approach to calculate the electronic band
structure using an approximate set of wave functions based upon their superposition for isolated atoms located at each
atomic site [115,116]. The method is closely related to the LCAO (Linear Combination of Atomic Orbitals) method used in
quantum chemistry [117,118]. Tight-binding models are applied to a wide variety of systems, including organic materials
such as the DNA molecule, to set up their electronic density of states. Though the tight-binding model is a one-electron
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Fig. 3.1. (Color online) Schematic illustration of the DNA molecule sandwiched between two electrodes. (a) pictorial view; (b) the single-strand case.

model, it also provides a basis for more advanced calculations (like that of surface states), and applications to various kinds
of many-body problem and quasiparticle calculations. Generally it gives good qualitative results in many cases, and their
parameters can be calculated by quantum models such as in the DFT case (Density Functional Theory) [119–121].

The name tight-binding comes from because usually it describes the properties of tightly bound electrons in solids. The
electrons in this model should be tightly bound to the atom to which they belong, and they should have limited interaction
with states and potentials on surrounding atoms of the solid. As a result, the wave function of the electron will be rather
similar to the atomic orbital of the free atom it belongs to. The energy of the electronwill also be rather close to the ionization
energy of the electron in the free atom or ion because the interaction with potentials and states on neighboring atoms is
limited.

Many interesting theoretical results concerning the electronic properties of one dimensional chains have been obtained
by using the Schrödinger equation in the tight-binding approximation. A considerable amount of work has been devoted
to the study of this equation, for both random and quasiperiodic sequences of the on-site potential ϵn and/or the hopping
potential tnm between the quantum states |n⟩ and ⟨m|. The main achievements are:

(a) if the Hamiltonian parameters are independent random variables, the system exhibits Anderson localization, i.e., the
eigenstates are exponentially localized, and the energy spectrum itself is a regular object, with at most a finite number
of bands [122]. In the case of a binary potential distribution, the spectrum has one or two bands;

(b) if the hopping potentials tnm are a binary sequence arranged in a pure Fibonacci or generalized Fibonacci way, the energy
spectrum is a Cantor set of zero (Lebesgue) measure, i.e., there is an infinite number of gaps, and the total bandwidth
vanishes. Specifically for the pure Fibonacci case, the eigenstates are neither extended nor localized, but exhibit an
intermediate behavior. For the generalized Fibonacci case, the eigenstates are extended [123,124]. In higher-dimensional
cases, the energy spectra can be band-like with finite measure, fractal-like with zero band-width, or a mixture of partly
band-like and partly fractal-like character [125].

3.2. The single-strand DNA structure model

Consider now a model in which a finite DNA molecule is sandwiched between two electrodes, as depicted in Fig. 3.1(a).
For a single-strand DNA chain (Fig. 3.1(b)), the tight-binding Hamiltonian is written in terms of a localized basis as
[126,127]:

H =


n

ϵn|n⟩⟨n| +


n,m

tnm|n⟩⟨m|, (11)

where ϵn represents the energy (in units of h̄) of the site n, and tnm is the hopping potential. The sum overm is limited to the
nearest neighbors.

The Dyson equation is [128,129]

G(ϵ) = ϵ−1
[I + HG(ϵ)], (12)

where I is the identity matrix and H is the Hamiltonian given by Eq. (11).
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Startingwith the guanine (G) nucleotide as seed, let us consider that theDNA can bemodeled by a Fibonacci quasiperiodic
sequence, in such a way that it can be built through the inflation rules G → GC and C → G. For the first generation of the
FB sequence, with only a guanine linked to the electrodes, its Green function can be found by applying the tight-binding
Hamiltonian (11) to the Dyson Eq. (12) to get [130]:

G−1
nn (ϵ) = ϵ − ϵG + 2γ (1), (13)

where

γ (1) = −
t2GS

ϵ − ϵS + tSST (ϵ)
. (14)

Here tGS (tSS) is the hopping termbetween the guanineG and the substrate S (within the substrate S). Also, T (ϵ) is the transfer
function given by:

T (ϵ) = −(2tSS)−1


(ϵ − ϵS)±


(ϵ − ϵS)2 − 4t2SS


. (15)

Repeating the procedure for any Fibonacci generation, we get:

G−1
nn (ϵ) = ϵ − ϵG + γ (1)+ κ(N), (16)

where

κ(N) = −
t2n,n±1

ϵ − ϵn + κ(N − 1)
, (17)

with κ(1) = γ (1), provided we replaced the hopping term tGS by tCS (the hopping term between the cytosine C and the
substrate S). Also, N is the number of nucleotides in the strand. The symmetry tn,n±1 = tn±1,n holds.

Let us now contrast this results (Fibonacci sequence) with a Rudin–Shapiro (RS) sequence modeling the single-strand
DNA molecule. Starting also from a G (guanine) nucleotide as seed, the quasiperiodic RS sequence is then built through
the inflation rules G → GC , C → GA, A → TC , and T → TA. The RS sequence starts to deviate from the FB sequence in
the third generation, when the sequence has 4 nucleotides GCGA connected to the electrodes. Using a procedure similar to
the quasiperiodic Fibonacci case, we can get for any RS generation number the same expression as for the Fibonacci case
provided, in Eq. (16), we replace κ(N) by γ (N) given by:

γ (N) = −
t2n,n±1

ϵ − ϵn + γ (N − 1)
. (18)

Differently from the FB sequence, observe that for the Rudin–Shapiro sequence tn,n±1 represents four distinct values of
hopping potentials, namely: tCT , tGC , tGA, and tTA, where we have assumed that tn,n±1 = tn±1,n in both cases.

The electronic density of state (DOS), i.e., the number of electronic states per interval of energy at each energy level that
are available to be occupied by the electrons, is given by:

ρ(ϵ) = −(1/π)Im [Tr⟨n|G(ϵ)|n⟩] (19)

where Immeans the imaginary part of the argument shownbetweenbrackets. The energies ϵn are chosen from the ionization
potential of the respective nucleotides. In the following, we will use as representative values ϵG = 7.75 eV (guanine),
ϵA = 8.24 eV (adenine), ϵC = 8.87 eV (cytosine), and ϵT = 9.14 eV (thymine) [131,132]. All the hopping terms tnm among
the bases were taken equal to 1 eV, considering that theoretical calculations using ab initio methods yield for this potential
values in the range 0.4–1 eV [131,132]. The potential at the interface DNA–electrode (here considered as a platinummetal)
is considered to be the difference between the Fermi’s level of the platinum and the HOMO’s (Highest Occupied Molecular
Orbital) isolate guanine (cytosine) state, giving us tGS = 2.39 (tCS = 2.52) eV. We are aware that the HOMO state of the
guanine (cytosine) may significantly change in the presence of the electrode, yielding a different potential at the interface
DNA–electrode. Although we do not expect any relevant change in the DOS main features, the actual electron’s localization
length may be influenced, specially at the band edges. The hopping term inside the electrode (tSS) is 12 eV [133]. Further,
the on-site energy for the electrode (platinum) is ϵS = 5.36 eV, which is related with the work function of this metal [134].

Fig. 3.2 depicts the density of states for a DNA quasiperiodic chain corresponding to the 11th (blue line), 13th (red line),
and 15th (black line) FB sequence generation number, respectively. Here NFB means the sequence generation number, while
nFB corresponds to the number of nucleotides in a given sequence generation. From there we can infer the following main
properties:

(a) the parity of the FB generation is not important for the DOS spectrum;
(b) although the DOS for each generation as a whole does not show any symmetry, there are two very well defined and

symmetrical regions, lying in the energy’s intervals (in units of eV) 5.75 < ϵ < 9.30 (we call it region I), and 9.30 < ϵ
< 10.30 (region II);
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Fig. 3.2. Density of state spectra for the Fibonacci (FB) Poly(GC) DNA single-strand model corresponding to the 11th (blue line), the 13th (red line), and
the 15th (black line) FB sequences generation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

(c) region II, which appears as a sort of anomaly in the DOS spectrum, is due to the presence of the cytosine nucleotide in
the quasiperiodic chain. We can also notice that this region represents a kind of the profile of the region I inverted and
in a smaller scale.

(d) each region defines a clearly auto-similar spectrum for different generations. The auto-similarity holds also for thewhole
spectrum (regions I+ II);

(e) the central peak for region I is next to the guanine’s ionization energy ϵG = 7.75 eV, while the central valley in region II
corresponds to ϵG + 2tnm = 9.75 eV;

(f) the ratio among the distances of consecutive generations tends to the gold mean, τFB = (1 +
√
5)/2, a number intrinsi-

cally linked to the Fibonacci sequence.

The density of states for a DNA quasiperiodic chain following a Rudin–Shapiro quasiperiodic sequence are shown in
Fig. 3.3, corresponding to its 7th (black line), 9th (red line), and 11th (blue line) sequence generation number. Although some
similaritieswith the Fibonacci case persist (for instance, the asymmetry of the spectra and the fact that again the parity of the
quasiperiodic generation is not important), they are completely different, indicating how important is themodel considered
to simulate the DNA structure. As their main features, their central peaks, which are sequence independent, lie around 6.8
eV (which is about ϵC − tnm), with the band-width approximately given by ϵG ± 4tnm.

3.3. The double-strand DNA structure model

Consider now the so-called double-strand model to describe an infinite DNA molecule, as depicted in Fig. 3.4. The tight-
binding Hamiltonian describing one electron moving in this ladder geometry composed by two interconnected chains of
sites, side by side, with a single orbital per site and nearest-neighbor interactions can be given by (h̄ = 1):

t(ψα
n+1 + ψα

n−1)+ wψβ
n = (E − ϵαn )ψ

α
n ,

t(ψβ

n+1 + ψ
β

n−1)+ wψα
n = (E − ϵβn )ψ

β
n .

(20)

Here ϵαn is the single energy at the orbital ψα
n (the upper index refers to the chain, while the lower index refers to the site

position in each chain — see Fig. 3.4). Also, t andw are the intra-chain and the inter-chain first-neighbor electronic overlaps
(hopping amplitude), respectively.

Within this framework, the (discrete) Schrödinger equation can be written as
ψα

n+1

ψ
β

n+1
ψα

n

ψβ
n

 = M(n)


ψα

n

ψβ
n

ψα
n−1

ψ
β

n−1

 (21)



Author's personal copy

E.L. Albuquerque et al. / Physics Reports 535 (2014) 139–209 151

Fig. 3.3. Density of state spectra for the Rudin–Shapiro (RS) DNA single-strand model corresponding to the 7th (black line), the 9th (red line), and the
11th (blue line) RS sequence generation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3.4. (Color online) Schematic representation of an infinite double-strand DNA molecule, showing the intra-chain (t) and the inter-chain (w) first-
neighbor hopping terms. The unit cell L is also depicted.

where M(n) is the transfer matrix

M(n) =

(E − ϵαn )/t −w/t −1 0
−w/t (E − ϵβn )/t 0 −1

1 0 0 0
0 1 0 0

 . (22)

After successive applications of the transfer matrixM(n), we have
ψα

n+1

ψ
β

n+1
ψα

n

ψβ
n

 = M(n)M(n − 1) · · ·M(2)M(1)


ψα

1

ψ
β

1
ψα

0

ψ
β

0

 . (23)

In this way, we have the wave function at an arbitrary site. Calculating this product of transfer matrices is completely
equivalent to solve the Schrödinger equation for the system.

Defining the ket formed by the orbitals of the Nth unitary cell, i.e.:

|ψ (N)
⟩ =


ψα

N+1

ψ
β

N+1
ψα

N

ψ
β

N

 , (24)

and taking into account that in our model, each generated sequence is an unitary cell whose repetition builds up the entire
infinite DNA molecule, Bloch’s ansatz for each chain yields:

|ψ (N+1)
⟩ = Tn|ψ (N)

⟩ = exp(iQiL)|ψ (N)
⟩, (25)
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where Tn = M(n)M(n − 1) · · ·M(2)M(1), Qi is the Bloch’s wavevector and L the periodic distance. Therefore,

[Tn − exp(iQiL)I]|ψ (N)
⟩ = 0, (26)

where I is the identity matrix. Since Tn is an unimodular matrix (det Tn = 1), its eigenvalue should satisfy λ1λ2λ3λ4 = 1,
i.e., λ2 = λ−1

1 and λ4 = λ−1
3 , implying the existence of only two independent eigenvalues. Therefore, Bloch’s wavevector

should satisfy

exp(iQrL) = λr , r = 1, 2. (27)

The secular equation is then:

λ4 + Ξλ3 + Γ λ2 + Ξλ+ 1 = 0, (28)

whereΞ = −Tr[Tn] (Tr meaning the trace of the matrix Tn), and

Γ = (T11 + T22)(T33 + T44)− T34T43 − T12T21 − T13T31 − T14T41 − T23T32 − T24T42 + T11T22 + T33T44. (29)

Here, Tij are the elements of the transfer matrix Tn. Rearranging Eq. (28), we have:

γ 2
+ Ξγ + Γ − 2 = 0. (30)

Here, γi = (λi +λ
−1
i ), are the roots of the second-order degree equation, each one corresponding to one of the independent

eigenvalues of the transfer matrix Tn. Its explicit form is:

γ1,2 =
−Ξ ±


Ξ 2 − 4(Γ − 2)

2
. (31)

For the DNA ordering of the first sequenced human chromosome 22 (Ch22), entitled NT011520, the numbers of letters
of this sequence is about 3.4 × 106 nucleotides (for a statistical study of this sequence see Ref. [135]). This sequence was
retrieved from the internet page of the National Center of Biotechnology Information. The energies ϵn are chosen from the
ionization potential of the respective bases, as given in Section 3.1. The hopping term t among the bases were also taken
equal to 1 eV, while the hopping potentialw due to the hydrogen bonds linking the two strands is considered to be 0.1 eV.

With the intention of comparing the quasiperiodic sequences FB and RS with the genomic one, we assume also that the
energies ϵn take the values ϵG, ϵA, ϵC , and ϵT , as in the DNA genomic sequence, with the same numerical values.

Fig. 3.5 shows the electron energy spectra, as measured by their equivalent bandwidth∆ (the sum of all allowed energy
regions in the band structures), for the Fibonacci (Fig. 3.5(a)) and the Rudin–Shapiro (Fig. 3.5(b)) quasiperiodic sequences, as
well as for the genomic DNA Ch22 (Fig. 3.5(c)), respectively, up to the number of nucleotides n equal to 93 in each unit cell
N . This is nothing but the Lebesgue measure of the energy spectrum. From there, one can infer the forbidden and allowed
energies as a function of the number of nucleotides n. Notice that, as expected, as n increases the allowed band regions get
narrower and narrower, as an indication of more localized modes.

3.4. The extended double-strand DNA structure model

Consider now the so-called extended double-strand DNA model [136,137], as depicted in Fig. 3.6. It seems to be more
appropriate to describe the DNAmolecule than the simple double-strandDNAmodel discussed in the previous section, since
the diagonal interstrand transfer matrix elements additionally presented are more relevant than the vertical intrastrand
coupling [138–140]. Its tight-binding model Hamiltonian is given by [141]:

H =

2N
j=1

ϵj|j⟩⟨j| +

2(N−1)
j=1

tj,j+2 [|j⟩⟨j + 2| + |j + 2⟩⟨j|] +

N
j=1

t2j−1,2j [|2j − 1⟩⟨2j| + |2j⟩⟨2j − 1|]

+

N−1
j=1


t2j−1,2j+2 (|2j − 1⟩⟨2j + 2| + |2j + 2⟩⟨2j − 1|)+ t2j,2j+1 (|2j⟩⟨2j + 1| + |2j + 1⟩⟨2j|)


, (32)

where N is the number of DNA’s base pairs, and ϵj is the ionization on-site energy representing the guanine (j = G), adenine
(j = A), cytosine (j = C), and thymine (j = T ) bases, respectively. Also, tnm is the nonrandom hopping amplitudes. The long-
range on-site energies used here are evaluated by using the density-functional theory (DFT), which depend on the flanking
nucleobases [138]. It means that we average the 16 values for the on-site energy given in Ref. [138] for each nucleobases,
as it was done in Ref. [137], in which the extended ladder model of DNA was proposed and studied. This yield ϵG = 8.178,
ϵA = 8.631, ϵC = 9.722, and ϵT = 9.464 (all units in eV), slightly different from those used in the previous sections. The
hopping parameters are listed in Table 1, where a single-strand sequence notation was used (the other strand is determined
considering the DNA unique base pairing). Because of the directionality of DNA strands, t5′−XY−3′ ≠ t3′−XY−5′ = t5′−YX−3′ for
X ≠ Y . Furthermore, due to symmetry, t5′−XY−5′ = t5′−YY−5′ , and t3′−XY−3′ = t3′−XY−3′ for all X, Y .
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Fig. 3.5. Energy spectra for (a) Fibonacci DNA chain; (b) Rudin–Shapiro DNA chain; (c) human chromosome 22 (Ch22) DNA chain.

Fig. 3.6. (Color online) Schematic representation of an extended double-strand DNA molecule. Here the letters X, Y , X ′ and Y ′ represent the base pairs:
guanine, adenine, cytosine, and thymine.

To evaluate the electronic density of states (DOS) it is necessary to rewrite the Hamiltonian (32) in matrix form as:

H =



ϵ1 t1,2 t1,3 t1,4
t1,2 ϵ2 t2,3 t2,4 0
t1,3 t2,3 ϵ3 t3,4 t3,5 t3,6

t1,4 t2,4 t3,4 ϵ4 t4,5 t4,6
. . .

t3,5 t4,5 ϵ5 t5,6
. . .

t3,6 t4,6 t5,6 ϵ6
. . . tN−3,N−1 tN−3,N

. . .
. . .

. . .
. . . tN−2,N−1 tN−2,N

0 tN−3,N−1 tN−2,N−1 ϵN−1 tN−1,N
tN−3,N tN−2,N tN−1,N ϵN


. (33)
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Table 1
Hopping parameters for the extended double-strand DNA structure (all
energies are expressed in eV) [137,138].

X Y
G A C T

(a) t5′−XY−3′ = t3′−YX−5′

G 0.053 −0.077 −0.114 0.141
A −0.010 −0.004 0.042 −0.063
C 0.009 −0.002 0.022 −0.055
T 0.018 −0.031 −0.028 0.180

(b) t5′−XY−5′

G 0.012 −0.013 0.002 −0.009
A −0.013 0.031 −0.001 0.007
C 0.002 −0.001 0.001 0.0003
T −0.009 0.007 0.0003 0.001

(c) t3′−XY−3′

G −0.032 −0.011 0.022 −0.014
A −0.011 0.049 0.017 −0.007
C 0.022 0.017 0.010 −0.004
T −0.014 −0.007 −0.004 0.006

Based on Dean’s negative eigenvalue theorem [142], the Schrödinger equation can be solved and the eigenvalue can be
obtained exactly. The corresponding DOS is written as

ρ(E) = lim
N→∞

1
N


k

δ(E − Ek). (34)

Fig. 3.7 shows the DOS for several intra-strand (inter-strands) nucleobases couplings, taking into account the three
different sequences: (a) Fibonacci, (b) Rudin–Shapiro and (c) human chromosome 22 (Ch 22).

Rather than traces of bands, the DOS profile for each structure is fragmented, showing a number of discrete strongly
localized bunches of states that are believed to reflect their 1D band structure. Observe that the number of van Hove
singularities is bigger for the RS and Ch22 structures than for the simplest Fibonacci one. Indeed, by inspecting Fig. 3.7, one
can observe that for the Fibonacci case, there are twowell defined regions around ϵG and ϵC , respectively. On the other hand,
the Rudin–Shapiro and Ch22 structures have four regions centered roughly at the ionization energies of their nucleotides
ϵG, ϵA, ϵC , and ϵT , respectively.

3.5. The sugar–phosphate backbone structure model

Nowwe consider the charge transport in a poly(dG)–poly(dC) DNA finite segment, taking into account its double-strand
geometry, including the sugar–phosphate backbone. Our theoretical model is again based on a tight-binding Hamiltonian,
within a Dyson’s framework, together with a transfer matrix employed to simplify the algebra. The electronic density of
states are calculated considering that the DNA molecule is sandwiched between two electrodes. Besides, it is arranged in
a poly(dG)–poly(dC) geometry, following a Fibonacci (FB) quasiperiodic structures. The spectra are then compared with
those found from a genomic DNA sequence, considering again a finite segment of the first sequenced human chromosome
22 (Ch 22).

Our model for the double-strand poly(dG)–poly(dC) DNA, including the contribution of the sugar–phosphate (SP)
backbone, is depicted in Fig. 3.8. The tight-binding Hamiltonian is written in terms of a localized basis as [143]

H =


n


ϵnSP |n, 1⟩⟨n, 1| + ϵnα|n, 2⟩⟨n, 2| + ϵnβ |n, 3⟩⟨n, 3| + ϵnSP |n, 4⟩⟨n, 4|


+


n


w12(α → SP)[|n, 1⟩⟨n, 2| + |n, 2⟩⟨n, 1|]


+


n


w23(α → β)[|n, 2⟩⟨n, 3| + |n, 3⟩⟨n, 2|]


+


n


w34(β → SP)[|n, 3⟩⟨n, 4| + |n, 4⟩⟨n, 3|] + tSS(|n, S⟩⟨n, S|)


+


n


t11(SP → S)(|n, 1⟩⟨n − 1, 1|)+ t44(SP → SP)(|n, 4⟩⟨n ± 1, 4|)


, (35)
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Fig. 3.7. The electronic density of states (DOS) in arbitrary units plotted against the energy E (in eV) for: (a) Fibonacci sequence; (b) Rudin–Shapiro
sequence; (c) DNA human chromosome 22 (Ch22).

Fig. 3.8. (Color online) Schematic representation of a double-strand DNA molecule, including the sugar–phosphate contribution.

where ϵnSP represents the single energy, in units of h̄, at site n of the sugar–phosphate orbital, and with ϵnα (α = C or G)
being the ionization energy of the respective base α. Alsow12(α → SP),w23(α → β) andw34(β → SP) are the inter-chain
first-neighbor electronic overlaps (hopping amplitude), with α, β = C , or G, while tSS is the hopping term in the electrodes.
Besides, t11(SP → S) = tS and t44(SP → SP) = tSP are the intra-chain hopping amplitudes. Here, the letter S means the
electrode (considered, as before, a platinum metal), while SP means the sugar–phosphate backbone.

To model a DNA segment, we consider a quasiperiodic chain of Fibonacci type, starting with a G (guanine) base as seed.
It can now be built in a similar way, as described in Section 3.1, through the inflation rules G → GC and C → G for the first
strand. For the second strand, we have complementary bases, in such a way that we always have a GC or a CG base pair.

For the first generation of the FB sequence, in which only a guanine base is linked to the electrodes, the Dyson equation
leads to:

G(ϵ)−1
= KG + 2Γ (1), (36)
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where

Γ (1) = −LSPS[KS + LST ]
−1LSPS . (37)

Here T is a transfer matrix linking the Green functions of two next-neighbors sites. Also, LS = −tSS I , I being a 4× 4 identity
matrix, and KG, KS , LSPS are matrices given by

KG =

 ϵ − ϵSP −w12(G → SP) 0 0
−w12(G → SP) ϵ − ϵG −w23(G → C) 0

0 −w23(G → C) ϵ − ϵC −w34(C → SP)
0 0 −w34(C → SP) ϵ − ϵSP

 , (38)

KS =

ϵ − ϵS −tSS 0 −tSS
−tSS ϵ − ϵS −tSS 0
0 −tSS ϵ − ϵS −tSS

−tSS 0 −tSS ϵ − ϵS

 , (39)

LSPS =

−tS 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −tS

 . (40)

Repeating the procedure for any Fibonacci generation, we get:

G(ϵ)−1
= KG + Γ (1)+Λ(nFB), (41)

where nFB is the number of nucleotides in the strand. Here

Λ(nFB) = −LSPSP [Ki +Λ(nFB − 1)]−1LSPSP , (42)

whose initial condition is:

Λ(1) = −LSPS[KS + LST ]
−1LSPS . (43)

We will now turn our discussion to the determination of the electronic density of state (DOS), as given in Eq. (20). The
energies ϵα,β are again chosen from the ionization potential of the respective bases, i.e., ϵG = 7.77 eV (guanine), and
ϵC = 8.87 eV (cytosine). Also, we use the energy of the sugar–phosphate backbone as ϵSP = 12.27 eV, while the hopping
term between the base pair is w23(G → C) = 0.90 eV [144]. The hopping potentials between the base (G or C) and the
sugar–phosphate (SP) backbone is w12(G → SP) = w34(C → SP) = 1.5 eV [133]. Finally, the hopping potential between
the sugar–phosphate backbone, is tSP = 0.02 eV [133].

The electronic density of states (DOS) spectrum, considering the DNA molecule modeled by the quasiperiodic Fibonacci
sequence, is shown in Fig. 3.9 as a function of the energy (in eV), for a Fibonacci’s generation numbers NFB = 12 and
nFB = 610. Here NFB means the sequence generation number, while nFB corresponds to the number of nucleotides in a given
sequence generation. For comparison, we are showing segments of natural DNA, as part of the human chromosome Ch22
(dashed lines), whose spectra depict a strike agreement with those modeled by the Fibonacci sequence. Although the DOS
for each generation as awhole does not show any symmetry, it presents for the spectrumdepicted here (Fibonacci and Ch22)
two symmetrical regions, located around the frequencies 7.03 eV (peak I), and 15.35 eV (peak III), respectively, besides an
asymmetrical one around9.03 eV (peak II). Although the peak I does not have a direct correlationwith the ionization energies
of the bases (guanine and cytosine), its frequency value is near the hopping term in the interface DNA–electrode, suggesting
an important influence for the choice of the electrodes on the DOS properties of the DNA. The peak II has a strong correlation
with the ionization energy of cytosine, which is around 9 eV. This result is interesting because shows that while the amount
of cytosine in the FB generations as well as in the first sequenced human chromosome Ch22, is less than the guanine one,
its bigger ionization energy makes a difference regarding the electronic DOS of the whole system. The third peak (peak III),
occurs to an amount approximately equal to twice the ionization energy of guanine. We can also observe an anomaly in the
spectrum around 10.6 eV, which is twice the value of the ionization energy of the electrode ϵS . Moreover, the DOS in each
level of energy increases with the Fibonacci generation for the intervals (in units of eV) 5.36 < ϵ < 15.98, approximately.
Note that this interval is comprised between the ionization energy of the electrode ϵS and twice the ionization energy of the
guanine ϵG. However, around 12.5 eV, we observed that the DOS is almost null for both FB and Ch22 case. This result may be
related to the hopping term of the electrode and/or to the ionization energy of the sugar–phosphate, which are both around
12 eV.

3.6. Renormalization approach

So far we have assumed the electronic transport in DNA molecules throughout a transmission channel along their
longitudinal axis through a π-stacked array of DNA nucleobases, formed by the four nucleotides A, T ,G, and C . Further
improvements in this model includes the backbone structure of the DNA molecule explicitly, which reduces the DNA base
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Fig. 3.9. Electronic density of state (DOS) spectra, as a function of the energy (in eV), for the 14th generation number Fibonacci poly(dG)–poly(dC) DNA
double-strand model, corresponding to the number of nucleotides nFB = 610 (full line). For comparison we are showing also the DOS of a segment of
natural DNA, as part of the human chromosome Ch22 (dashed lines).

a

b

Fig. 3.10. (Color online) Sketch illustration of the renormalization processmapping the DBL-DNA chainmodel into a linear diatomic lattice. Three different
hopping integrals are considered: the intrastrand term (t), the interstrand term (w), and the coupling between the sugar–phosphate backbone and the base
pairs (v), respectively. (a) starting effective tight-binding model for the Fibonacci and Rudin–Shapiro sequence for a DBL-DNA model; (b) renormalized
model of the DBL-DNA molecule after the first decimation step.

pair architecture into a single site per pair, the so-called fish bone model [145]. Later, Klotsa et al. [146] generalized the
fishbone DNA model considering each base as a distinct site, weakly coupled by hydrogen bonds. As a consequence, two
central branches are thus obtained, whose interconnected sites represent the DNA base pairs; they are coupled to upper
and lower disconnected backbone sites, giving rise to the so-called dangling backbone ladder (DBL)-DNA model.

Taking into account these latest developments, in this subsection we use a model Hamiltonian within a one-step
renormalization approach to describe the charge transport properties of a DBL-DNAmolecule (see Fig. 3.10). Our description
of the DNA molecule considers the contributions of the nucleobase system as well as the sugar–phosphate backbone
molecules. We consider a DBL-DNA model following a Fibonacci (FB) and a Rudin–Shapiro (RS) quasiperiodic basis
arrangement, as well as the DNA sequence of the first sequenced human chromosome 22 (Ch22) for the sake of comparison.
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Fig. 3.11. The electronic density of states (DOS) in arbitrary units plotted against the energy E (in eV) for the DBL-DNA model considering the Fibonacci
quasiperiodic sequences with the number of nucleotides nFB = 34 (full line-black). In the inset we show also the electronic density of states for the
Rudin–Shapiro quasiperiodic sequences, with nRS = 32 (full line-red), and a segment of natural DNA, as part of the human chromosome Ch22, whose
number of nucleotides nCh22 = 32 (dotted line-blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

The resulting variations of the charge transport efficiency are analyzed, in these sequences, by numerically computing the
main features of their electron transmittance coefficients.

The tight-binding Hamiltonian for a DBL-DNA molecule describes one electron moving in a geometry composed by two
interconnected chains of sites sandwiched by two metallic electrodes (donor—DN, acceptor—AC), with a single orbital per
site and nearest-neighbor interactions, yielding

Htotal = HDNA + Helectrode + Hcoupling . (44)

In order to get a simple mathematical description of the DBL-DNA molecule, keeping most of its relevant physical informa-
tion, we use now a one-step renormalization process to map the DBL-DNA chain into a linear diatomic lattice (see Fig. 3.10).
Thismodel allowus to incorporate the sugar–phosphate backbone contribution into an energy-dependent on-site ionization
potential in the main DNA’s base pairs, whose renormalized site energies are given by [146,147]:

εnα,β = ϵnα,β + tα,SP(α → SP)2/(E − ϵnSP). (45)

Here, ϵnα,β (α, β = C,G, A or T ) is the ionization energy (in units of h̄) of the respective base α, β; tα,SP (α → SP) are the
hopping potentials between the base α (G, C, A or T ) and the sugar–phosphate (SP) backbone; finally, ϵnSP represents the
single energy at site n of the sugar–phosphate orbital, taking into account the nature of the neighborhood base, as well as
the presence of water molecules and/or counterions attached to the backbone.

Considering the renormalization procedure, the first term of the Hamiltonian (44) can be given by [148]

HDNA =


n

[ϵnα|n, 1⟩⟨n, 1| + ϵnβ |n, 2⟩⟨n, 2|] +


n

w(α → β)[|n, 1⟩⟨n, 2| + |n, 2⟩⟨n, 1|]

+


n

t(α → α)[|n, 1⟩⟨n ± 1, 1|] +


n

t(β → β)[|n, 2⟩⟨n ± 1, 2|]. (46)

The second term, related to the two semi-infinite metallic electrodes, reads:

Helectrode =

0
n=−∞

2
m=1

[ϵnS |n,m⟩⟨n,m| + t0|n,m⟩⟨n ± 1,m|]

+

∞
n=N+1

2
m=1

[ϵnS |n,m⟩⟨n,m| + t0|n,m⟩⟨n ± 1,m|]. (47)

Our DNA molecule is coupled to the electrodes by the tunneling Hamiltonian

Hcoupling =

2
m=1

tc[|0,m⟩⟨1,m| + |n,m⟩⟨n + 1,m|], (48)

where tc =
√
tt0 represents the hopping amplitude between the AC (DC) electrode and the beginner (end) of the DNA

base-pair structure [145].



Author's personal copy

E.L. Albuquerque et al. / Physics Reports 535 (2014) 139–209 159

The electronic density of states (DOS in arbitrary units) spectra are depicted in Fig. 3.11 as a function of the energy in
units of eV. We have considered the four nucleotides arranged in a quasiperiodic fashion following a Fibonacci sequence
(full line in black with nFB = 34 nucleotides). In the inset, we consider the Rudin–Shapiro one (full line in red with
nRS = 32 nucleotides), as well as the spectrum for the human chromosome Ch22 (dotted line in blue, with nCh22 = 32
nucleotides). It is relevant to stress that the presence of long-range correlations in the disorder distribution is a possible
mechanism to induce delocalization in low dimensional systems [149]. However, the actual correlations in our model
(hoppingmechanism) are not strong enough to produce this correlation-induced transition, and the stationary states remain
all localized. Nevertheless, the presence of long-range correlations enhances the localization length and, therefore, the DOS
spectra, as shown in Fig. 3.11, survive in larger segments as compared with a non-correlated random sequence. Observe
also that the DOS for long-range correlated Rudin–Shapiro sequences, depicts a trend similar to the one produced by the
genomic Ch22 sequence.

4. Electrical conductivity

Electron transmission conductivity through molecules (such as DNA) and molecular interfaces has been a subject
of intensive research nowadays, which is due to the scientific/technological interest in electron-transfer phenomena
underlying the operation of the scanning-tunnelingmicroscope on onehand, and in the transmission properties ofmolecular
bridges between conducting leads on the other [150]. In view of that, the traditional molecular assumption of electron
transfer, in which their rates depend on the donor and acceptor electrodes properties, on the solvent, and on the electronic
coupling between the states involved, gives rise to a novel approach of the molecule as a current-carrying conductor whose
observables, such as electron-transfer rates and yields, are being replaced by their conductivities, or more generally by their
current–voltage (I × V ) profiles. Such investigations of electrical junctions, in which single molecules or small molecular
assemblies operate as conductors, constitute a major part of the new field now called molecular electronics.

Electron conductivity properties though DNA are still controversial, mainly due to the tremendous difficulties in setting
up the proper experimental environment and the DNA molecule itself. Despite the lack of a consistent picture, many
theoretical explanations for the charge transport phenomena have been suggested so far on the basis of the standard solid-
state-physics approach such as polarons, solitons, hole hopping model on guanine sites [151], but the situation has been
still far from unifying the theoretical scheme. For instance, recently the electric conductance of DNAmolecules was studied
using a tight-binding small polaronmodel and the length dependence of the electric current was derived [152], whosemain
conjecture was that the drift of polarons states may lead to a rapid motion of charges introduced on DNA [153].

From the experimental side, one of the main problem is how to attach proper electrodes to the single DNA molecule,
in order to avoid that any recorded conductivity comes from the molecule itself, and not from some residual conductivity
in the surrounding medium. Therefore, it is mandatory to provide reliable electrical contacts to the DNA molecule which
neither do not allow any electron transfer reactions through the ionic medium surrounding the molecule, nor getting noise
from other means.

4.1. Electronic transmission spectra

Consider the DNA model described in Section 3.6, further assumed connected to two semi-infinite electrodes, whose
energies ϵm are adjusted to simulate a resonance with the guanine highest occupied molecular orbital (G-HOMO) energy
level, i.e., ϵm = ϵG. For this system, the transmission coefficient TN(E), that gives the transmission rate through the chain
and is related with the Landauer resistance, is defined by [154]:

TN(E) = [|T1|2 + |T2|2]/2, (49)

where T1 (T2), is given by

T1(T2) = N1(N2)/D. (50)

Here,

N1 = (r33r11r22 − r33r12r21 + r34r11r22 − r34r12r22 − r31r22r13 + r31r12r23
− r31r22r14 + r31r12r24 + r32r21r13 − r32r11r23 + r32r21r14 − r32r11r24), (51)

N2 = (r43r11r22 − r43r12r21 + r44r11r22 − r44r12r21 − r41r22r13 + r41r12r23
− r41r22r14 + r41r12r24 + r42r21r13 − r42r11r23 + r42r21r14 − r42r11r24), (52)

D = (r11r22)− (r12r21). (53)

In the above equations, rij are the components of the 4×4 matrix R, defined as R = Θ−1S−1PS, with:

Θ =


e−ikNa 0 0 0

0 e−ikNa 0 0
0 0 eikNa 0
0 0 0 eikNa

 , (54)
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S =

e−ika 0 eika 0
0 e−ika 0 eika

1 0 1 0
0 1 0 1

 , (55)

where k is given by

k = cos−1
[(E − ϵS)/2t0]. (56)

Also, P = MR(
1

n=N Mn)ML, where theM ’s matrices are given by

Mn =

(E − εnα)/t −w/t −1 0
−w/t (E − εnβ)/t 0 −1

1 0 0 0
0 1 0 0

 , (57)

Ml =

(E − ϵS)/tc 0 −t0/tc 0
0 (E − ϵS)/tc 0 −t0/tc
1 0 0 0
0 1 0 0

 , (58)

MR =

(E − ϵS)/t0 0 −tc/to 0
0 (E − ϵS)/t0 0 −tc/t0
1 0 0 0
0 1 0 0

 . (59)

The transmission coefficients TN(E), as given by Eq. (49), are depicted in Fig. 4.1 as a function of the energy (in units of eV).
We have considered the four nucleotides arranged in a quasiperiodic fashion, either following a Fibonacci sequence (with
nFB = 34 nucleotides) or a Rudin–Shapiro one (with nRS = 32 nucleotides), respectively, both showing a long-range pair-
correlation. For comparison, we also show the spectrum for the human chromosome Ch22 (with nCh22 = 32 nucleotides).
The transmission bands in the spectrum are fragmented, which is related to the localized nature of the electrons eigenstates
in disordered chains, and reflects the number of passbands in each structure. It is relevant to stress that the presence of
long-range correlations in the disorder distribution is a possible mechanism to induce delocalization in low dimensional
systems [149]. However, the actual correlations in our model (hopping mechanism) are not strong enough to produce
this correlation-induced transition, and the stationary states remain all localized. Nevertheless, the presence of long-range
correlations enhances the localization length and, therefore, the transmission resonances, as shown in Fig. 4.1, survive in
larger segments as compared with a non-correlated random sequence. Observe also that the transmission coefficient for
long-range correlated Rudin–Shapiro sequences depicts a trend similar to the one produced by the genomic Ch22 sequence.

4.2. Current–voltage characteristic curves

The transmission coefficient is a useful quantity to describe the transport efficiency in quantum systems. Nonetheless,
Tn(E), as discussed in Section 4.1, is usually difficult to bedirectlymeasured experimentally [155,156]. Access to transmission
properties can be performed by measuring their I–V characteristics. With the tight-binding Hamiltonian given before, one
can evaluate the I–V characteristics by applying the Landauer–Büttiker [157,158] formulation [154]:

I(V ) = (2e/h)


+∞

−∞

TN(E)[fDN(E)− fAC (E)]dE, (60)

where the Fermi–Dirac distribution is

fDN(AC) = [exp[(E − µDN(AC))/kBT ] + 1]−1. (61)

Also,µDN(AC) is the electrochemical potential of the two leads (donor—DNand acceptor—AC) fixed by the applied bias voltage
V as

|µDN − µAC | = eV. (62)

The current onset is crucially dependent on the electrochemical potentials of the electrodes, that can be altered by the
coupling tomolecules [159]. For simplicity, before bias voltage is applied, the electrochemical potential of the whole system
is taken to be zero. It is important to emphasize that the transmittance Tn(E) should be calculated in the forward and
backward applied electric field direction.

For a double-strand DNA sequences, as described in Section 3.2, the current–voltage characteristics are plotted in Fig. 4.2
for Fibonacci (Fig. 4.2(a)), Rudin–Shapiro (Fig. 4.2(b)), the random case (Fig. 4.2(c)) and the human chromosome Ch22
(Fig. 4.2(d)), respectively [160]. We are assuming a linear voltage drop across the DNA molecules by means of the usual
expression, numerically computed near zero temperature, as given by Eq. (62). To reproduce the potential mismatch at zero
bias, the energy difference between the guanine HOMO energy level and the metallic Fermi level of the electrode is set to
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Fig. 4.1. Transmission coefficient TN (E) as a function of the energy E (in units of eV) for the DBL-DNAmodel considering the Fibonacci and Rudin–Shapiro
quasiperiodic sequences, whose number of nucleotides nFB = 34 (full line-black) and nRS = 32 (dashed line-red), respectively. For comparison, we are
showing a segment of natural DNA, as part of the human chromosomeCh22,whose number of nucleotides nCh22 = 32 (dotted line-blue). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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c d

Fig. 4.2. Current–voltage (I × V ) characteristics of a double-strand DNA finite segment considering different numbers of nucleotides for (a) Fibonacci
sequence; (b) Rudin–Shapiro sequence; (c) the random case; (d) the human chromosome Ch22, respectively.

1.2 eV [161]. As the voltage drop is switched on, the transmission coefficient TN(E) becomes voltage-dependent, resulting in
transmission band shifts (shown in Fig. 4.2 for all cases studied here), which in turn lead to a voltage threshold modulation.

To extract the main features of the tunneling currents in DNA chains, let us compare the behavior of the genomic Ch22
(Fig. 4.2(d)) with those characterizing the quasiperiodic and random structures (Fig. 4.2(a), (b) and (c)) under the resonance
condition given by the hopping term choice tnm = 1 eV. In this case, if the potential barrier between the metallic contacts
and the DNA is set to zero, a staircase in the plot I–V is found [162].



Author's personal copy

162 E.L. Albuquerque et al. / Physics Reports 535 (2014) 139–209

As soon as a potential barrier between the DNA and the metals is introduced (1.2 eV), the I–V characteristic curves show
the profiles depicted in Fig. 4.2. The current threshold at a given voltage scale is not sensitive in respect to the different
structures considered here,mainly due to the electronic correlations presented by the structures. However, such correlations
shall depend strongly on the intra-chain coupling, and further studies considering more realistic model parameters would
be needed in order to infer about the actual relevance of this threshold enhancement in DNAmolecules. Observe the striking
agreement between the I–V characteristic curves for the random and the genomic Ch22 case. Such agreement can be
accounted by the short-range pair correlations shared by them, suggesting that the inclusion of just first-neighbors intra-
strand pair correlations on the nucleotide distributionmayprovide an adequate description of theDNAelectronic properties.

On the other hand, the current–voltage characteristics of the DBL-DNA model (see Section 3.6) are plotted in Fig. 4.3
for the Fibonacci (black full line), Rudin–Shapiro (red dashed line), and the human chromosome Ch22 (blue dotted line)
simulations, respectively. In this case, there is a characteristic Ohmic region for −5.0 ≤ Vbias ≤ +5.0 eV, and nonlinear
regions indicating transitions toward current saturation for Vbias < −5.0 eV and Vbias > +5.0 eV. The inset in Fig. 4.3 shows
the transconductance dI/dV ×V of the devices, which are highly nonlinear. All of them have semiconductors characteristics,
as in the double-strand case depicted in Fig. 4.2.

4.3. Diluted base-pairing

A very instructive model that unveils the special role played by correlations in the electronic properties of DNA-based
structures incorporates diluted base-pairing. In this model, we consider poly(CG) and poly(CT) segments at which guanine
bases (G) are attached laterally at a fraction of the cytosine (C) bases.Within a tight-binding description, the density of states
and eigenfunctions of the one-electron states can bemapped onto that of the Anderson chain with diluted disorder. As such,
the influence of the effective disorder on the nature of the one-electron states, as well as on the wave-packet dynamics,
can be explored. In particular, base pairing dilution indeed leads to a complete exponential localization of all one-electron
states in segments formed with complementary units [as in poly(CG)]. On the other hand, a resonant state is not affected by
disorder and remains extended in chains with non-complementary units [as in poly(CT)]. In the presence of such resonant
state, the wave-packet develops a diffusive dynamics.

The theoretical framework makes use of an effective tight-binding Hamiltonian describing one electron moving in a ge-
ometry composed of a periodic chain of alternate bases (CG or CT sequences) [163]. The model assumes that G bases are
laterally attached to C sites at random with probability p (see Fig. 4.4), taking into account just a single orbital per site
and nearest-neighbor transfer integrals t (along the main chain) and w (among paired bases). The corresponding time-
independent Schrödinger equation for a poly(CG) sequence is given by:

EψG
j = t(ψC

j−1 + ψC
j+1)+ ϵGψ

G
j for odd j, (63)

EψC
j = t(ψG

j−1 + ψG
j+1)+ wβjψ

G
j + ϵCψ

C
j , for even j. (64)

For a poly(CT), G is replaced by T . Here ϵα (α = G, T or C) represents the on-site potential at the bases G, T or C , and ψα
j is

the wave-function coefficient in the single orbital basis, defined by

|Ψ ⟩ =


(j,α)

ψα
j |j, α⟩, (65)

where (j, α) runs over all base units. Also, βj = 1 with probability p and βj = 0 with probability 1 − p, where p is the
concentration of G sites attached to the single strandedmain periodic chain. At the sites where βj = 1, there is an additional
equation:

EψG
j = wψC

j + ϵGψ
G
j , (66)

for even j.
A clear picture of the nature of the electronic states on the above model is achieved after performing a decimation

procedure of the attached base units. The above tight-binding model for a DNA-based molecule is mapped onto an effective
one-dimensional diluted Anderson model [164–167]. Such model contains a diagonal disorder diluted by an underlying
periodicity. The resulting sequence is composed of two inter-penetrating sub-lattices, one composed of random potentials
(Anderson chain), while the other has non-random segments.

The degrees of freedom associated with the lateral DNA bases appearing in the above equations are removed by substi-
tuting

ψG
j = [w/(E − ϵG)]ψ

C
j , for even j, (67)

into the equation for the coefficients ψC
j , yielding:

EψC
j = ϵ∗

Cψ
C
j + t(ψG

j−1 + ψG
n+1), (68)

where

ϵ∗

C = ϵC + [w2/(E − ϵG)] (69)
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Fig. 4.3. Current–voltage (I × V ) characteristics of a DBL-DNA sequences for (a) Fibonacci sequence (full line-black); (b) Rudin–Shapiro sequence (dashed
line-red); (c) the human chromosome Ch22 (dotted line-blue), respectively. The inset shows the differential conductance dI/dV versus the voltage V of
the devices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.4. Schematic representation of the single-strand DNA molecule showing the main periodic chains of alternate bases (CG and CT sequences) with
diluted base pairing. Guanine (G) bases are laterally attached at random to a fraction p of the cytosine (C) sites.

is the renormalized potential at the cytosine sites at which the G bases are laterally attached. For those cytosine bases with
no lateral attachment, the potential remains the bare one.

After eliminating the coefficients associatedwith the lateralGbases, the remaining set of equations expresses an alternate
sequence of CG (or CT ) nucleotides. The C sites have two possible values for the on-site potential, namely ϵ∗

C with probability
p or ϵC with probability 1− p, respectively. The remaining bases of the periodic sequence have all the same potential: ϵG for
poly(CG) or ϵT for poly(CT).

The random character of the diluted base-pairing is reflected in a random sequence for the effective on-site energies
of the cytosine sites. This kind of sequence is similar to the structure so-called diluted Anderson model. It consists of
two inter-penetrating sequences: a periodic sequence containing the guanine or thymine sites, for poly(CG) or poly(CT)
respectively, and a random sequence containing bare and renormalized cytosine sites. Due to the periodicity of the non-
random sub-lattice, a special resonance energy E0 appears with vanishing wave-function amplitudes on the random sub-
lattice. Therefore, this mode is mainly insensitive to the presence of disorder, and may lead to a possible mechanism to
induce conductance in such DNA-based molecules. For the poly(CT) molecule, the resonance energy is E0 = ϵT . At this
energy, the renormalized cytosine potential remains finite, leading to a divergence of the localization length of the one-
electron eigenmodes, as the resonance energy is approach. On the other hand, the resonance energy for poly(CG) molecules
is E0 = ϵG, in which the renormalized cytosine potential diverges. This case corresponds to an effectively infinite disorder
which counteracts the delocalization effect. As a consequence, diluted base-pairing induces a stronger localization of the
one-electron eigenfunctions in poly(CG) than in poly(CT) structures.

The spectrum of the Lyapunov exponent γ (E) (which is the inverse of the localization length) of long DNA segments
nicely illustrates the above described features. The Green’s function recursion method based on Dyson’s equation (see
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Fig. 4.5. Plot of the electronic density of states (DOS) versus the reduced energy E (in units of eV), for the particular cases of the hopping term t = 1 eV.
(a) Poly(CG)-based DNA sequences: the band gap persists for poly(CG) chains with diluted base-pairing, and all van Hove singularities are rounded off;
(b) Poly(CT)-based DNA sequences: the band gaps coalesce for base-pair diluted poly(CT) before splitting in three bands. Disorder does not affect the van
Hove singularity at E = ϵT . The gap-less band structure, together with the non-localization of the resonance state, favors the electronic transport in this
case.

Refs. [168,169] for details) provides:

Gn+1
n+1,n+1 =


E − H0

n+1,n+1 − tn+1,nGn
n,ntn,n+1

−1
, (70)

with

Gn+1
1,n+1 = Gn

1,ntn,n+1Gn+1
n+1,n+1, (71)

where Gn+1
1,n+1 denotes theM×M Green’s function operator between the first and the (n+1)th base pairs. Also, Gn+1

n+1,n+1 and
H0

n+1,n+1 are the Green’s function operator and the free Hamiltonian for the isolated (n + 1) base pair, tn,n+1 is the diagonal
M × M matrix coupling the base pairs at position n and n + 1, and E is the diagonalM × M matrix for the electron energy.

In the recursive equation above, G1
1,1 = I (identity matrix) and G0

0,0 = 0. We stress that for a single-strand DNA-like
segmentM = 1. The Lyapunov exponent for a DNA segment is given by

γ (E) = (1/2N) ln

Tr

GN+1
1,N+1

2 . (72)

For extended states, γ (E) vanishes in the thermodynamic limit.
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Fig. 4.6. (a) Lyapunov exponent γ (E) versus the energy E (in units of eV) for a poly(CG) DNA sequence with p = 0.5 diluted base-pairing. All states are
exponentially localized, with the maximum localization length being of the order of 102 sites for the hopping term t = 1 eV, decreasing as 1/t2 . (b) Same
as in (a) but for a poly(CT ) DNA sequence. For E = ϵG one observes a strong localization as the renormalized energy ϵ∗

C diverges. At the resonance energy
E = E0 = ϵT the mode is not affected by disorder and keeps its Bloch-like character. Data from different values of the hopping term t confirm that the
resonance mechanism is robust with respect to this energy scale.

The resonance effect is robust with respect to distinct transfer integral values, and is more clearly analyzed without
considering the additional energy scale associated to distinct intra-strand (t) and inter-strand (w) hopping integrals. In
the following illustration, it was considered w = t = 1 eV which is somewhat larger than previously reported estimates
of intra-strand transfer integrals [170,171], and a typical set for the ionization energies values (see Section 3.2), namely
ϵC = 8.87 eV (cytosine), ϵG = 7.75 eV (guanine), and ϵT = 9.14 eV (thymine), all units in eV. An exact diagonalization of
the complete tight-binding Hamiltonian, given by Eqs. (63) and (64), provides the participation number of all eigenstates.

The electronic density of states (DOS) is obtained directly from the recursive Dean’s method. Fig. 4.5 shows the DOS for
three representative values of the concentration of paired cytosine bases, namely:

(i) p = 0, corresponding to pure poly(CG) and poly(CT) chains;
(ii) p = 1, describing the poly(CG) and poly(CT) chains with guanine bases laterally attached to all cytosine bases;
(iii) p = 0.5 representing a typical sequence of diluted base-pairing.

The DOS for the poly (CG) sequences is shown in Fig. 4.5(a). The electronic density of states has two main bands, which
is typical of binary sequences, with the gap for p = 1 being larger than for p = 0. Such enhancement of the energy gap
is a direct consequence of the base-pairing. For p = 0.5, all van Hove singularities at the band edges are rounded off by
the presence of disorder. The fluctuations in the DOS have been exploited in the literature to identify the nature of the
states [172,173]. The variance in the number of states in a given energy window shall scale linearly with the system size for
localized states, while having just a slow logarithmic scaling for extended states. These two regimes reflect the distinct level
spacing statistics of localized and extended states. As a result, much smaller fluctuations are attained in the normalized DOS
when extended states are present as compared to the fluctuations observed in the energy range corresponding to localized
states. These fluctuations are of the same magnitude in both bands, which indicate that these bands are equally affected by
disorder.

The DOS for poly(CT)-based chains are depicted in Fig. 4.5(b). For these sequences, a series of relevant features are not
found in the previous case. Firstly, the two band structure of the binary p = 0 case evolves to a three band structure at
p = 1, as expected for a periodic structure with three distinct sites in the unit cell. The bottom of the upper band at p = 0
coincides with the top of the middle band at p = 1. This energy corresponds exactly to the resonance energy E0 = ϵT .
When the concentration of the attached guanine bases increases, the two-band structure firstly coalesces in a single band,
before splitting in three bands, as shown for the particular case p = 0.5. Further, the van Hove singularities are rounded
off, except the one located at E0, which corresponds to the resonance state insensitive to disorder. Therefore, diluted base-
pairing produces a gap-less band structure while keeping the states around E0 extended, an ideal scenario for electronic
transport. Additionally, the DOS exhibits stronger fluctuations at the bottom than at the top of the energy band, pointing
out that the low-energy states are more localized than the high-energy ones.

The Lyapunov exponent γ directly probes the disorder effect on the nature of the electronic eigenstates. In Fig. 4.6(a),
the spectrum of the Lyapunov exponent for the base-pair diluted poly(CG) molecule with p = 0.5 is shown. For the hopping
amplitude t = 1 eV, the Lyapunov exponent achieves aminimumvalue of the order of 10−2 in both energy bands. Therefore,
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the maximum localization length in this chain is of the order of 100 sites, i.e., no delocalized mode survives to diluted base-
pairing in binary periodic DNA-sequences of corresponding bases, such as poly(CG). The average localization length scales
as 1/t2. Further, this kind of disorder affects both bands in a similar way, as already pointed out through the analysis of
the DOS fluctuations. Fig. 4.6(b) shows the corresponding Lyapunov exponent spectrum for a poly(CT) chain with p = 0.5
diluted base-pairing. The presence of two singularities are evident. The first one is at E = ϵG which corresponds to the
energy at which the renormalized ϵ∗

C diverges, thus leading to an effective infinite disorder. The one-electron mode at this
energy is strongly localized. The second singularity is at E = E0 = ϵT . This corresponds to the energy mode not affected
by the disorder and it has a Bloch-like character. The low-energy modes are more localized than the high-energy ones, in
agreement with the observation that these regions depict distinct DOS fluctuations. Fig. 4.6 shows the spectra of Lyapunov
exponents computed considering chains with weaker hopping amplitudes (t = 0.5 and 0.25 eV). They also display the
same resonances, thus corroborating the robustness of the resonance mechanism with regard to distinct energy scales of
the transfer integrals. The quite distinct effects caused by diluted base-pairing in poly(CG) and poly(CT) have a significant
impact on the electronic transport.

5. The role of symmetric and antisymmetric correlations

It is well known that a quasiperiodic two-chain model can support extended states at multiple values of the Fermi
energy [174]. Further, it was demonstrated analytically that a two-channel random model can display a band of Bloch-
type extended states, when the on-site potentials and the hopping amplitudes show a particular correlation [175]. In
particular, the effects of the coexistence of localized and extended states in the correlated random ladder model were
recently investigated by using numerical diagonalization and high-ordermethods to solve the Schrödinger equation [176]. It
was shown then that stationary and dynamical properties are dominated by extended states. In addition, it was numerically
demonstrated that the superposition of localized and delocalized bands gives rise to a new level-spacing distribution.

Correlated DNA-like tight-binding models can present an apparent delocalization transition [177]. The underlying
physical mechanism behind such apparent delocalization transition is directly related to the distinct roles played by
symmetric and antisymmetric correlations in the disorder distribution [178]. Considering a two-channel Hamiltonianwith a
single orbital per site and nearest-neighbor interactions, thewave-packet time evolution is governed by the time dependent
Schrödinger equation (with h̄ = 1) [178–180]:

i
dψ s

j

dτ
= ϵsjψ

s
j + t


ψ s

j+1 + ψ s
j−1


+ wψ s̄

j . (73)

Here s = ±1 labels each strand of the ladder, and s̄ = −s indicates its complementary. The index j = 1, . . . ,N (N being
the number of base pairs in the DNA segment) runs over the sites along one of the strands coupled by the longitudinal
intra-strand hopping parameter t . Also, w is the transverse inter-strand hopping parameter between complementary sites
on each strand.

On-site cross correlated energies ϵsj are generated as follows: ϵ+1
j are chosen as an uncorrelated random sequence with

⟨ϵ+1
j ⟩ = 0 and uniformly distributed within the interval [−1, 1]; the on-site energies of the another channel are chosen as

(a) ϵ−1
j = ϵ+1

j or (b) ϵ−1
j = −ϵ+1

j . These distinct rules impose, respectively, symmetric and antisymmetric cross correlations
in the two-channel Hamiltonian.

Taking the initial condition

ψ s
j (τ = 0) = δj,j0δs,s0 , (74)

the set of the above equations can be solved numerically by using a high-order method based on the Taylor expansion of
the evolution operator Υ [178]:

Υ (∆τ) = exp(−iH∆τ) = 1 +

n0
l=1

(−iH∆τ)l/(l!), (75)

H being the tight-binding Hamiltonian. The wave-function at time∆τ is given by

|Φ(∆τ)⟩ = Υ (∆τ)|Φ(τ = 0)⟩. (76)

This method can be used recursively to obtain the wave-function at time τ . As a first step, we define

H l
|Φ(τ = 0)⟩ =

N
j=1

2
s=1

(C s
j )

l
|j, s⟩. (77)

Using the above Schrödinger equation (73), we can compute H1
|Φ(τ = 0)⟩ to obtain (C s

j )
1 as

(C s
j )

1
= ϵsjψ

s
j + t


ψ s

j+1 + ψ s
j−1


+ wψ s̄

j . (78)
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Fig. 5.1. The time-dependentwave-packetwidthσ(τ) versus the time τ . Calculationswere doneusing the number of base-pairsN = 4000 and considering
distinct kinds of cross correlations within diagonal disorder. Antisymmetric cross correlations ϵ−1

j = −ϵ+1
j lead to a wave-packet width much larger than

that one produced by symmetric cross correlations ϵ−1
j = ϵ+1

j .

Therefore, using that

H l
|Φ(τ = 0)⟩ = H

N
j=1

2
s=1

(C s
j )

l−1
|j, s⟩, (79)

(C s
j )

l can be obtained recursively as

(C s
j )

l
= ϵsj (C

s
j )

l−1
+ t


(C s

j+1)
l−1

+ (C s
j−1)

l−1


+ w(C s̄
j )

l−1. (80)

Results were obtained by using∆τ = 0.5, and the sum in Eq. (75) was truncated at n0 = 20. This cutoff was enough to
keep the wave-function norm conservation along the entire time interval considered.

The square root of the mean-square displacement σ(τ), which gives an estimate of the wave-packet width at time τ , is
obtained from

σ(τ) =

 N
j=1

2
s=1


(j − j0)2 + (s − s0)2


|ψ s

j (τ )|
2. (81)

In the long-time regime, its scaling behavior can also be used to distinguish between localized and delocalized wave-
packets [179,180]. Further, the Lyapunov exponent γ (E) of long two-channel segments can be obtained using the same
formalism described in Section 4.3.

Fig. 5.1 depicts the time dependence of the wave-packet width σ(τ) given by Eq. (81). We have considered N = 4000
sites and the hopping terms t = w = 1 eV, using both kinds of cross correlations and a standard uncorrelated random two-
channel system. Antisymmetric cross correlations ϵ−1

j = −ϵ+1
j (see the dotted-line profile) produce a localization degree

much weaker than the other cases (see the solid-line data for ϵ−1
j = ϵ+1

j and the dashed line profile for the uncorrelated
case).

Fig. 5.2 shows a comparative numerical analysis between both types of cross correlations by considering the scaled
wave-packet width σ(τ)/N versus the scaled time τ/N . Calculations were done using the same values of t and w but
distinct segment sizes. For extended states, data from distinct chain sizes would collapse into a single curve, signaling a
ballistic transport (σ(τ) ∝ τ ). Both calculations show no data collapse. Further, the scaled asymptotic wave-packet width
decreases as the system size increases, pointing out to an ultimate localization of the wave-packet in the thermodynamic
limit. Therefore, the cross correlations used here do not induce the emergence of truly extended states. These results agree
with previous calculations found in Refs. [179–181], confirming that diagonal cross correlations are not enough to promote
a metal–insulator transition in a two-channel disordered Hamiltonian.
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Fig. 5.2. Scaled wave-packet width σ(τ)/N versus the scaled time τ/N . Calculations were done using t = w = 1 eV and the number of base-pairs
N = 1000 up to 16,000 sites. Our calculations indicate that the asymptotic scaledwave-packetwidthσ(τ)/N → 0 asN increases for both cross correlations
used here, a typical signature of localized wave-packets.

However, it is clear from both Figs. 5.1 and 5.2 that the antisymmetric cross correlation (ϵ−1
j = −ϵ+1

j ) leads to a wave-
packet spread much larger than the symmetric one (ϵ−1

j = ϵ+1
j ). Let us stress that antisymmetric cross correlation contains

the same ingredients used in the generic DNA model studied in Ref. [177], i.e., when ⟨ϵ−1
j + ϵ+1

j ⟩ = 0. Additional data and
theoretical arguments unveiled the origin of the substantial decrease of the degree of localization, and the apparent phase
transition found in the two-channel model with antisymmetric diagonal cross correlations [177].

In the two-channel model with symmetric cross correlated disorder, the Hamiltonian model of an isolated dimer pair
has eigenvalues given by ϵj ±w. In the regime of strong inter-chain coupling, these two modes cannot be efficiently mixed
by the intra-chain coupling. Therefore the system shall behave as two uncoupled random chains with energy offset given by
±w and the disorder strength is simply the one originally present in the on-site energies. Within this scenario, the degree
of localization shall be similar to the one present in the system without cross correlations.

On the other hand, the Hamiltonian model of an isolated dimer pair with antisymmetric diagonal terms has eigenvalues
given by ±[ϵ2j + w2

]
1/2. In the regime of strong inter-chain coupling, these can be written as (ϵ2j /2ω) ± w. These modes
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Fig. 5.3. (a) The wave-packet width σ(τ) versus the time τ for the number of base-pairs N = 4000, ϵ−1
j = −ϵ+1

j , intra-chain hopping t = 1 eV and
inter-chain hopping w = 1 up to 5 eV. When the inter-chain hopping w is increased in the two-channel systems with antisymmetric cross correlations
⟨ϵ−1

j + ϵ+1
j ⟩ = 0, the local effective disorder along the quasi-unidimensional system goes to zero, thus increasing the localization length. (b) Scaled spread

σ(τ)/N versus the scaled time τ/N for t = 1 eV,N = 1000 up to 16,000 sites andw = 1 up to 5 eV. In spite of the fact that antisymmetric cross correlations
favor the increase of the localization length, it does not lead to truly extended wave-packets once σ(τ)/N → 0 as N increases.

also are not effectively mixed by the intra-chain coupling, and the system shall behave as two independent random chains.
However, the effective disorder is rescaled, and becomes of the order of 1/w. Recalling that the localization length in random
chains is proportional to the square of the inverse disorder width, antisymmetric cross correlations shall have exponentially
localized states, whose localization length grows withw2 in the regime of strongly coupled chains.

The above picture is corroborated by additional numerical data of the wave-packet width, density of states and
localization length of the energy eigenmodes for both models with cross correlated disorder, as well as for the two-channel
model with uncorrelated disorder.

In Fig. 5.3(a), the wave-packet width σ(τ) is plotted versus the time τ for N = 4000, and the following physical
parameters: antisymmetric cross correlations ϵ−1

j = −ϵ+1
j ; t = 1 eV; and w = 1 up to 5 eV. The results show that

the wave-packet spread increases as the inter-chain coupling w is also increased. However, even in the regime of strong
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Fig. 5.4. (a) The normalized density of states DOS(E) versus the energy E computed using the number of base-pairs N = 5000 sites, 500 disorder
configurations and (a) inter-chain hopping w = 1 eV, (b) inter-chain hopping w = 5 eV. When the inter-chain hopping w is increased in the two-
channel systems with antisymmetric cross correlations ⟨ϵ−1

j + ϵ+1
j ⟩ = 0, the density of states becomes similar to the DOS of two uncoupled perfect chains

with on-site energies w and −w. Symmetric cross correlations produce a DOS with rounded band edges, signaling that the underlying disorder remains
relevant even in the regime of strong interchain coupling.

inter-chain coupling (w), the asymptotic scaled spread σ(τ)/N decreases with the system size, indicating an ultimate
localization in the thermodynamic limit. Therefore, the reduction on the degree of localization reported in Ref. [177] actually
reflects theweakening of the effective disorder in the two-channel systemwith antisymmetric cross correlations and strong
intra-chain hopping. This specific cross correlation does not promote the emergence of truly extended states.

To reinforce the above picture, Fig. 5.4 shows the normalized density of states (DOS)

ρ(E) =


En

δ(E − En), (82)

En being the eigenvalues obtained from numerical diagonalization. Calculations were done using N = 5000 sites and 500
disorder configurations, with w = 1 eV (see Fig. 5.4(a)) and w = 5 eV (see Fig. 5.4(a) and (b)). When the intra-chain (t)
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Fig. 5.5. The localization length Λ(E) versus the energy E computed using the number of base-pairs N = 107 sites, considering both kinds of cross
correlations and a standard uncorrelated random two-channel system. Calculations were done using the intra-chain hopping t = 1 eV: (a) inter-chain
hoppingw = 1 eV; (b) inter-chain hoppingw = 5 eV. (c) The largest localization lengthΛmax(E) versus the inter-chain hoppingw. The localization length
diverges withw2 in the two-channel systems with antisymmetric cross correlations, while it remains finite in the other two cases.

and the inter-chain (w) couplings are of the same order, the DOS displays a single band which start to split in a two band
structure when the intra-chain coupling t is increased. Even in this regime of intermediate intra-chain coupling, the band
edges in the presence of antisymmetric cross correlations are sharper than in the other cases. For large intra-chain coupling,
the density of states of the two-channel systems with symmetric cross correlations is quite similar to the one displayed by
the corresponding uncorrelated model. The DOS in these two cases resembles the one of two uncoupled chains with a finite
disorder width, signaled by the rounding of the band edges. On the other hand, the DOS of the model with antisymmetric
cross correlations displays quite sharp band edges in the limit of strong intra-chain coupling, which is consistent with the
vanishing of the effective disorder.

Finally, Fig. 5.5 shows the localization lengthΛ(E) as a function of energy computed using N = 107 sites, for both kinds
of cross correlations, and a standard uncorrelated random two-channel system, considering the same values for the hopping
terms t and w, as in the previous example. Even in the regime of intermediate intra-chain coupling, the localization length
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near the band edges is one order of magnitude larger in the presence of antisymmetric cross correlations when compared
with the other two cases. This effect becomes much more pronounced in strongly coupled channels.

In Fig. 5.5(c), the largest localization length Λmax versus the inter-chain hopping w is plotted. The localization length
diverges asw2 in the two-channel systems with antisymmetric cross correlations, while the symmetric correlations have a
small influence on the degree of localization.

In summary, quasi-unidimensional structures with diagonal disorder displaying local correlations do not support truly
extended states. Symmetric cross correlations (ϵ−1

j = ϵ+1
j ) have a very limited influence on the degree of localization,

although antisymmetric correlations (ϵ−1
j = −ϵ+1

j ) substantially inhibit the Anderson localization, specially in the regime
of strongly coupled chains.

6. Nonlinearity and field effects

In low-dimensional systems, the effect of nonlinearity seems to be dominant over the role played bydisorder. Considering
a discrete nonlinear Schrödinger and quartic Klein–Gordon equations with disorder, it was recently proved that the second
moment and the participation number of the wave-packet do not diverge simultaneously [182,183]. The spreading of a
wave-packet in a 1D discrete nonlinear Schrödinger lattice with disorder was also recently studied, and it was observed
that Anderson localization is suppressed and a subdiffusive dynamics takes place above a certain critical nonlinearity
strength [184]. Moreover, analytical and numerical calculations for a reduced Fermi–Pasta–Ulam chain indicate that energy
localization does not require more than one conserved quantity [185]. From the experimental point of view, investigations
were made to clarify the interplay between disorder and nonlinearity, by means of the evolution of linear and nonlinear
waves in coupled optical waveguides patterned on AlGaAs substrate. It was also observed that nonlinear perturbations
enhance localization of linear waves, while inducing delocalization of the nonlinear one [186].

Nonlinearity, disorder and correlations will be investigated in this section, once they are particularly important for
the description of DNA-like segments. A systematic ab initio study of the DNA conformational modes and their possible
interactions with the electron motion was already provided together with an effective Hamiltonian for distinct kinds of
DNA polarons [187]. The electron–phonon interaction can also be taken within the adiabatic approximation proposed in
Refs. [188–190]. The effective third order electron–phonon contribution was pointed out as a possible mechanism to break-
down the localization rules in disordered chains [191]. Recently, the competition between nonlinearity and a perpendicular
electric field has been investigated, suggesting that disordered ladder models, with a topology similar to the effective
Hamiltonian models of DNA molecules (see Section 3), display a subdiffusive spread of the electronic wave-packet induced
by a weak nonlinearity, while a partial self-trapping of the wave-packet is achieved in the strongly nonlinear regime [192].
Further, thewave-packet subdiffusive spreading can be suppressed by an external electric field applied perpendicular to the
ladder helicity axis.

6.1. Adiabatic electron–phonon interaction

In this approach, one makes use of an adiabatic electron–phonon interaction, within an effective nonlinear tight-binding
model Hamiltonian, describing an electron moving in a twisted ladder geometry with correlated disorder. This structure
mimics the topology and the inter-strand correlations presented in DNA segments.

Consider now the time dependent Schrödinger equation given by Eq. (73), provided the term ϵsj is replaced by ϵsj +χ |ψ s
j |

2,
χ being the nonlinear coupling associated with an underlying local electron–phonon interaction. The electron is taken as
initially localized at the orbital |j0, s0⟩. The wave-packet dynamics is probed by following the temporal evolution of the
square root of the mean-square displacement σ(τ), given by Eq. (81), as well as the participation function ξ(τ ) and the
return probability R(τ ) defined by

ξ(τ ) =


j,s

|ψ s
j (τ )|

4

−1

, (83)

R(τ ) = |ψ
s0
j0
(τ )|2. (84)

The participation function ξ(τ ) gives an estimate of the number of sites over which the wave-packet is spread at time
τ . In the long-time regime, its scaling behavior can also be used to distinguish between localized and delocalized wave-
packets. In addition, in a regime of strong localization, the probability of finding the particle at the initial site at long times
R∞ ≡ limτ→∞ R(τ ) is always nonzero [193].

Uncorrelated random sequences, containing four distinct values of the on-site potentials, were generated mimicking
the sequence of the four nucleotides present in DNA segments (A,G, T , C). Further, the generated sequences had the same
fraction of each nucleotide found in the human chromosome Ch22. In DNA molecules, the intra-strand hopping amplitude
is smaller than the disorder width due to the variability of the on-site energies. The inter-strand coupling mediated by
the hydrogen bonds between complementary sequences is weaker than the intra-strand one. In order to reproduce some
specific features of real DNA molecules, it would be important to consider both inter- and intra-strand hopping variability.
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Fig. 6.1. Log–log plot of the wave-packet width σ(τ) for several values of the nonlinear coupling constant χ . At long times σ(τ) ∝ τ 0.15(2) , irrespective
to the nonlinear strength.

Although the following numerical results were obtained for a particular parameter set motivated by the previous effective
Hamiltonian descriptions of DNA-segments, discussed in Section 3, the overall physical properties do not depend on the
specific choice of the Hamiltonian physical parameters.

6.2. Wave-packet dynamics

Awave-packet initially localized at the guanine closer to the center of the double-strand segmentwas considered. In order
to avoid finite-size effects, large segmentswithN = 1000base-pairswere used. All quantitieswere averaged over 20distinct
segments to account for configurational variability. Fig. 6.1 shows the mean-square displacement σ(τ) for several values of
the electron–phonon coupling constantχ . In the absence of nonlinearity (χ = 0) thewave-packet spreads over a segment of
finite length. This is the well-defined Anderson localization regime in low-dimensional systems with uncorrelated disorder.

For nonlinear double-strand chains, a subdiffusive regime σ(τ) ∝ τ 0.15(2) is observed. This exponent agrees with the
numerical calculations for 1D nonlinear chains with uncorrelated disorder [184]. However, two distinct trends in the regime
ofweak and strong nonlinearities are observed. Forχ < 3 eV, thewave-packetwidth in the asymptotic sub-diffusive regime
increases as χ is increased. On the other hand, a reverse trend sets up for stronger nonlinearities. Although the wave-packet
width remains subdiffusive in these two regimes, such non-monotonic dependence on the nonlinearity points to distinct
dynamical properties, as explored below.

Fig. 6.2 depicts the time dependence of the participation function ξ(τ ) computed considering N = 1000 base-pairs. The
nonlinear coupling ranged fromχ = 0.5 up to 8 eV. Thewave-packet displays a subdiffusive dynamics in the regime ofweak
nonlinear couplings (χ < 3 eV), in which the time dependent participation function behaves like ξ(τ ) ∝ τ 0.25(2). However,
the participation function remains finite in the regime of strong nonlinearities and, as a consequence, the divergences of the
wave-packet width and participation number are not simultaneous. This feature has already been pointed out in disordered
nonlinear systems [182]. The regime ofweak nonlinearity corresponds to a true delocalized phase forwhich thewave-packet
spatial extension diverges as the wave-packet continuously spreads over the system. For strong nonlinearities, the wave-
packet extension remains finite, although the second moment of the distribution continues to increase sub-diffusively. This
feature is related to a partial self-trapping of the wave-packet while the rest subdiffuses [183].

In order to have a more precise estimation of the critical nonlinearity delimiting the regimes of delocalized and partially
self-trapped wave-packets, we plot in Fig. 6.3 the return probability at very long times R(τ → ∞) versus the strength of
the nonlinear coupling χ (after reflection at the chain boundaries). A clear transition is signaled at χc ≃ 2.5–3.0 eV. Below
χc the return probability decays as 1/N , as stressed in the inset. For χ > χc the return probability becomes roughly size
independent. This result gives further support to the below claims, namely:

(i) For weak nonlinear couplings χ < χc , the asymptotic return probability R(τ → ∞) approaches zero, in agreement
with the delocalized subdiffusive dynamics exhibited by both the wave-packet width and participation function.
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Fig. 6.2. Log–log plot of the time dependent participation function ξ(τ ) for several values of the nonlinear coupling χ . At moderate electron–phonon cou-
plings the participation function displays clear signatures of an asymptotic dynamics with ξ(τ ) ∝ τ 0.25(2) . For large couplings (χ > 3 eV) the participation
function saturates, thus indicating partial spatial localization of the wave-packet.
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Fig. 6.3. Asymptotic return probability R(τ → ∞) as a function of the nonlinear coupling χ in eV. For 0 < χ < 2.5 − 3.0 eV, the asymptotic return
probability approaches zero as the system size increases, in agreement with the subdiffusive regime of the participation function shown in Fig. 6.2. For
larger nonlinearities, the return probability remains finite and size independent. The inset shows the re-scaled asymptotic return probability NR(τ → ∞)

as a function of the nonlinear coupling χ in eV. The collapse of data at small nonlinearities signals the 1/N scaling of R(τ → ∞) in the partially trapped
regime.

(ii) For strong nonlinear couplings χ > χc , there is a localized regime where R(τ → ∞) ≠ 0 corresponding to the
self-trapping phenomenon already reported in 1D nonlinear chains. However, due to the subdiffusive growth of the
wave-packet width, such self-trapping is only partial [188,193].

An external electric fieldE applied perpendicular to the laddermain axis can be used tomanipulate the trapped electronic
density. In this case, the helix conformation of the strands becomes important. This is equivalent to take into account a gate
voltage drop across the double helix. AN = 10 base-pairs full-twist period is consideredwhich is similar to the one exhibited
by the B form of the DNA. Neglecting the difference between the major and the minor grooves, the site energies under the
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Fig. 6.4. (a) The wave-packet width σ(τ) and (b) the participation function ξ(τ ) as a function of time at the nonlinear coupling constant χ = 1 eV
and several values of the perpendicular gating energy F , indicated on the labels. Notice that a partial self-trapping is attained at strong fields, signaled
by the subdiffusive wave-packet width spread together with a saturated participation function. (c) Asymptotic return probability R(τ → ∞) versus the
perpendicular gating energy F , indicating that the partial self-trapping takes place for gating energies F > 0.5 eV. The inset shows the re-scaled asymptotic
return probability NR(τ → ∞) as a function of F , which exhibits a data collapse in the delocalized regime.

gating electric field E are taken as [194]:

E = ϵsj + Fj cos(2π j/10), (85)

with ϵsj being the site energy of the jth base at the strand s of the DNA molecule at zero field. Also, Fj is the perpendicular
gating energy, defined by Fj ≡ F = eEr (considered homogeneous for simplicity), where r ∼ 1 nm is the strand radius.

In Fig. 6.4(a) and (b), the wave-packet width σ(τ) and the participation function ξ(τ ) are plotted as a function of
time, for several values of the perpendicular gating energy F . For these values of F , the wave-packet spreads continuously
over the lattice in the absence of the external field, with both the wave-packet width and participation function growing
subdiffusively, showing that the perpendicular gating electric field F reduces the wave-packet spreading. However, the
subdiffusive character of both wave-packet width and participation function seems to remain for weak fields. This feature
can be associated with the effective increase of the disorder width introduced by the perpendicular external electric field E .

On the other hand, the external electric field E has a strong impact in the self-trapping phenomenon. Fig. 6.4(b)
clearly show that the participation function saturates at stronger fields even though the wave-packet width still keeps its
subdiffusive character. For completeness, Fig. 6.4(c) shows the asymptotic return probability versus the perpendicular gating
energy F . While the return probability vanishes as the number of base-pairs N increases in the absence of the external field,
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a finite fraction of the electronic wave-packet becomes trapped on its initial location when the perpendicular gating energy
exceeds a critical value of the order of Fc = 0.5 eV. The fraction of the electronic density that becomes trapped increases as
the electric field is increased.

In summary, the dynamics of an electronwave-packet in a double-strandedDNA chainwith a random sequence of on-site
potentials and a cubic nonlinearity associated with an adiabatic electron–phonon interaction can be manipulated by using
a transverse electric field E . In the absence of nonlinearity the system shows a well defined Anderson localization regime.
However,when the electron–phonon coupling is turned on, a subdiffusive regime arises in the regimeof small nonlinearities,
and the electronic wave-packet completely escapes from its initial location. In the regime of strong nonlinearities, a partial
self-trapping emerges. In this regime a finite portion of the wave-packet remains trapped near its initial position while the
other part spreads subdiffusively. Furthermore, the gating electric field E reduces the wave-packet spreading, being able
to trap a finite fraction of the electronic density of states near its initial location, a phenomenon that is controlled by its
intensity. It is important to stress that field-controlled devices play a mayor role in conventional electronics, and therefore,
the mechanism for trapping electrons in helical double-strands described above opens up the possibility of tailoring new
field-controlled nanoscale bio-electronic devices.

7. Thermodynamic properties

One important issue worthy of attention, and so far little explored in quasiperiodic structures, is the connection between
the scale invariance of their energy spectra and their thermodynamic properties. In order to fill this gap, it is our intention in
this section to pay close attention to this issue, considering the thermodynamics properties of theDNAmolecule as described
by quasiperiodic systems in the classical (Maxwell–Boltzmann), quantum (Fermi–Dirac) and the so-called extensive statics.

Simplified fractals based on the Cantor sequence [195,196], as well as the critical attractor of the logistic and circle maps
at the onset of chaos [197–199], have been used recently to model the energy spectrum of quasiperiodic systems. The
thermodynamic behavior derived from such self-similar spectra display some anomalous features, with themost prominent
one being related to the emergence of log-periodic oscillations in the low-temperature behavior of the specific heat.

A series of recent works looking for connections with the quasiperiodic aspects of these spectra (scaling laws, fractal
dimension, etc.), as well as for some kind of common behavior in the specific heat spectra, have shown, among other
things, that the average low-temperature specific heat is intimately connected with some underlying fractal dimension
characterizing the energy spectrum [200].

The unique structure of DNA also allows various alterations of its material properties, which could modify its electrical,
optical, and thermodynamic properties, revealing additional features. Early theoretical and experimental works on the low-
temperature heat capacity of DNA primarily took into account the phonon contributions, specifically the redundant low-
energy density of the vibrational states, concluding that the low-energy of the DNA is not unique among biopolymers,
and that its specific heat possesses a combination of the properties similar to those of glasses and other disordered
materials [201].

Another important issue concerns the relationship between the low-temperature thermodynamic properties and the
multi-fractal character of the energy spectra of a sequence dependent finite segment of a DNA molecule. More specifically,
what happens to the specific heat spectra profile in these cases? Does it present log-periodic oscillations as a function of
the temperature T in the low temperature region, around a mean value given by a characteristic dimension of the energy
spectrum?The answers for these andother questions are themain purposes of this section. Our principal intent is to compare
the different spectra profiles, seeking possible differences and similarities among them, with the objective to establish some
kind of standard behavior.

7.1. Maxwell–Boltzmann statistics: the single-strand DNA structure

Consider the effective tight-binding Hamiltonian with a single orbital per site, ϵn, at the orbitalψn, and nearest-neighbor
interactions describing a single-strand DNA structure, as depicted in Eq. (11). This (discrete) Schrödinger equation can be
also written (like in Section 3.3 for the double-strand case) as [202]

ψn+1
ψn


= M(n)


ψn
ψn−1


, (86)

whereM(n) is the transfer matrix

M(n) =


t − ϵn −1

1 0


. (87)

After successive applications of the transfer matrices we have
ψn+1
ψn


= M(n)M(n − 1) · · ·M(2)M(1)


ψ1
ψ0


. (88)
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Fig. 7.1. Energy spectrum for finite segment of a single-strand DNA molecule following: (a) Fibonacci sequence; (b) Rudin–Shapiro sequence; (c) DNA
sequenced human chromosome 22 (Ch22).

In this way, we have the wave function at an arbitrary site. As before, calculating the product of transfer matrices is com-
pletely equivalent to solve the Schrödinger equation for the system. The criterium for allowed energy is when (1/2)Tr[Tn] <
1, with Tr meaning the trace of the transfer matrix Tn, and Tn = M(n)M(n − 1) · · ·M(2)M(1).

Fig. 7.1 shows the electron energy spectra, as measured by their equivalent bandwidth∆ (the sum of all allowed energy
regions in the band structures), as a function of the number of nucleotides n, for the quasiperiodic sequences of (a) Fibonacci,
(b) Rudin–Shapiro, and (c) the genomic Ch22 DNA structure.

We have also investigate their multifractal behavior which is, in general, a common property of strange attractors in
nonlinear systems [203]. In order to characterize these objects, it is convenient to introduce the function f (α), known as
the multifractal spectrum or the spectrum of scaling indices. Loosely, onemay think of the multifractal as an interwoven set
of fractals of different dimensions f (α), where α is a measure of their relative strength [204]. The formalism relies on the
fact that highly nonuniform probability distributions arise from the nonuniformity of the system. Usually, the singularity
spectrum has a parabolic-like shape, distributed in a finite range [αmin, αmax], which are the minimum and maximum
singularity strengths of the intensity measure, respectively. They correspond also to the exponents governing the scaling
behavior in the most concentrated (αmin) and rarefied (αmax) regions of the attractor. The value ∆α = αmax–αmin may be
used as a parameter to measure the degree of randomness of the band width distribution.

Themost powerfulmethod to calculate the f (α) functionwas developed by Chhabra [205], and is described as follows: let
us define a measure ζi by normalizing the local energy band widths∆i, i.e., ζi = ∆i/


i∆i (here i characterize a particular

value of the number of nucleotides in Fig. 7.1). Then we construct a parametrized family of normalized measures defined by
µi = ζ vi /


i ζ
v
i , which represents a generalization of the original measure ζi. The f (α) function is obtained by varying the

parameter v and calculating

f (αv) = lim
B→∞


−


i

µi lnµi/ ln B

, (89)

αv = lim
B→∞


−


i

µi ln ζi/ ln B

, (90)
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where B is the number of boxes (bands in Fig. 7.1). The value of∆α = αmax−αmin could be used as a parameter tomeasure the
degree of randomness of the bandwidth distribution. The values of αmin and αmax for the energy spectra of the quasiperiodic
structures (Fibonacci and Rudin–Shapiro) as well as of the genomic Ch22modeling the DNAmolecules, can be found below:

(a) for the Fibonacci quasiperiodic sequence, with the number of nucleotides nFB = 377, we have αmin = 0.82577 and
αmax = 1.65676 (∆α = 0.83099);

(b) for the Rudin–Shapiro quasiperiodic sequence, with the number of nucleotides nRS = 64, we have αmin = 0.57357 and
αmax = 3.61395 (∆α = 3.04038);

(c) for the DNA Ch22 sequence, with the number of nucleotides nCh22 = 64, we have αmin = 0.39656 and αmax = 2.78862
(∆α = 2.3920).

Therefore, from the values of∆α shown above, the Fibonacci structures is the less randomic when it is compared with the
Rudin–Shapiro and the Ch22 one.

Let us consider again the energy spectra depicted in Fig. 7.1. The bandwidth∆i for the nth number of nucleotides is given
by

∆1 = E2 − E1 H⇒ E2 = E1 +∆1, (91)
∆2 = E4 − E3 H⇒ E4 = E3 +∆2, (92)
...

∆i = E2i − E2i−1 H⇒ E2i = E2i−1 +∆i, (93)

where E1 and E2 are the energy values of the bottom and the top of the first band of energy (counting from the smallest to
the largest value of the energy). Also, E3 and E4 are the energy value of the bottom and the top of the second band of energy,
and so on, for increase n. We take the level density inside each band to be constant, and the same for all bands in a given
hierarchy. In this case, a fractal or multifractal emerges at the n → ∞ limit. Obviously the number of bands depends on the
number of nucleotides as it is shown in Fig. 7.1. In what follows, we consider a normalization in the frequency spectrum, in
such a way that the bands stay within the limits 0 and 1.

Within a classical Maxwell–Boltzmann statistics, the partition function ZMB is given by:

ZMB =


∞

0
ρ(E) exp(−βEi)dE (94)

where we have considered a unit Boltzmann’s constant, i.e. β equal to 1/T . Also, we take the density of states ρ(E) = 1.
We justify the use of the classical Maxwell–Boltzmann statistics, as ours first example, instead of the one appropriated for
a fermionic system because, as explained in Ref. [206], the electrons behave as Boltzmann particles once the gaps in their
energy spectra are becoming smaller than the Fermi temperature TF (which is our case). The Fermi–Dirac statistics case will
be the topic of a later Sections 7.3 and 7.4.

After some calculations, it is easy to write the partition function ZMB as

ZMB =
1
β

2N−1
i=1,3,...

(1 − e−β∆i) exp(−βEi). (95)

Note that it is only necessary to know the distribution of the energy spectrum of a givenmultifractal system to calculate the
partition function [200]. Once we know the partition function, it is possible to calculate the specific heat using:

C(T ) =
∂

∂T


T 2 ∂ ln ZMB

∂T


, (96)

which can be written as

C(T ) = 1 +
βfn
ZMB

−
g2
n

Z2
MB
. (97)

Here

fn =

2m−1
i=1,3,...

[E2
i e

−βEi − E2
i+1e

−βEi+1 ], (98)

and

gn =

2m−1
i=1,3,...

[Eie−βEi − Ei+1e−βEi+1 ]. (99)
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Fig. 7.2. Specific heat spectra C(T ) vs temperature (T ) plot corresponding to the 10th, 11th, 12th and 13th (89, 144, 233, and 377) Fibonacci poly(GC)
sequence generation (number of nucleotides) DNA models. The inset shows the rather interesting oscillatory behavior of the specific heat spectra.

Therefore, once we know the electronic energy spectra of a given DNA chain, we can determine the associated specific heat
by using (97).

Fig. 7.2 shows the electrons’ specific heat C(T ) as a function of the temperature T for the Fibonacci poly(CG) DNA
structure. It is possible to see that these spectra are almost independent of the Fibonacci’s generation number nFB. More
important, the inset of this figure shows the oscillatory behavior of the specific heat for low temperatures, with two classes
of oscillations, one for the even and the other for the odd generation numbers of the sequence, the amplitude of the even
oscillations being slight bigger than the amplitude of the odd one. The number of times that the specific heat oscillate for a
given generation number nFB is (nFB − 2)/2 for nFB even, and (nFB − 1)/2 for nFB odd.

These behaviors are illustrated in Fig. 7.3(a) and Fig. 7.3(b), where are depicted log plots of the specific heat against the
temperature, corresponding to the even and odd generation numbers of the Fibonacci sequence, respectively. This peculiar
behavior is some kind of signature, with no counterpart in the other quasiperiodic structures, and should be connected to
the properties found for other Fibonacci spectra [200]. The log-periodic behavior of the specific heat shows a mean value
d, around it C(T ) oscillates log-periodically, although this value is not related with the fractal dimension of the Fibonacci
quasiperiodic structure because our specific heat spectra are not strictly invariant under changes of scales. Instead, thismean
value d can be given approximately by the so-called spectral dimension (the exponent of a power law fit of the integrated
density of states), which in this case is approximately equal to 0.8. It is also associated to theminimum singularity exponent
αmin in the Fibonacci multifractal f (α) spectrum. Furthermore, the self similarity of the specific heat spectra is bigger for
sequences with a difference of two in the generation process. Note that the specific heat properties in log-scale are basically
controlled by the behavior of the low energy region at the scale considered (i.e., each oscillation can be considered as a
change of scale in the spectrum). In this sense, at a high scale defined by the Fibonacci’s generation number nFB, the low
energy region would be controlled by the generation number (nFB − 2); at a smaller scale, the low energy region would be
controlled by the generation number (nFB − 2)− 2 = nFB − 4 and so on.

Fig. 7.4 shows the specific heat spectrum against the temperature for a DNA molecular structure modeled by the
Rudin–Shapiro sequence. In this case there are oscillations with amplitude very superior to those found in the Fibonacci
case. Moreover, the number of oscillations is not directly proportional to the number of generations, and there is no well-
defined parity behavior, as in the Fibonacci model. The inset of this figure clearly shows these facts. A similar spectra was
found for the genomic Ch22 DNA structure, as it is depicted in Fig. 7.5, which shows random oscillations with amplitudes
slightly bigger to those obtained for the Rudin–Shapiro chain.

In all situations studied here, for high temperatures (T → ∞), the specific heat for all generation numbers nFB converges
and decays as T−2. This asymptotic behavior is mainly due to the fact that we have considered our system bounded. On the
other hand, when (T → 0), the specific heat display an oscillation profile, no matter the model is considered.

7.2. Maxwell–Boltzmann statistics: the double-strand DNA structure

Consider the tight-binding Hamiltonian appropriated to the double-strand DNA molecule, as described in Section 3.3,
whose energy spectrum, as measured by their equivalent bandwidth ∆, is depicted in Fig. 3.5(a) (Fibonacci case), 3.5(b)
(Rudin–Shapiro case) and 3.5(c) (Ch22 human chromosome) [207]. Their multifractal behavior, obtained from the analysis
of the function f (α) as in the previous section, can be summarized as follows:
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Fig. 7.3. Specific heat log-periodic spectra for the Fibonacci poly(GC) DNA model: (a) even Fibonacci generation number (nFB = 4, 6, 8, 10, and 12);
(b) odd Fibonacci generation number (nFB = 5, 7, 9, 11, and 13).

Fig. 7.4. Specific heat for the Rudin–Shapiro quasiperiodic DNA model as a C(T ) vs temperature (T ) plot for nRS = 32, 64, 128, and 256 nucleotides. The
inset shows the oscillatory behavior of the specific heat spectra.
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Fig. 7.5. The same as in Fig. 7.1, but for the Ch22 genomic DNA model.

(a) for the quasiperiodic Fibonacci sequence, we have αmin = 0.835 and αmax = 1.858 (∆α = 1.023);
(b) for the quasiperiodic Rudin–Shapiro sequence, we have αmin = 0.743 and αmax = 3.821 (∆α = 3.078);
(c) for the human chromosome 22 (Ch22) DNA chain, we have αmin = 0.414 and αmax = 3.612 (∆α = 3.198).

From the above, we can infer that regarding the degree of randomness of the band width distribution for each structure,
the RS sequence is more close related to the Ch22 structure than the FB one for this DNA model.

We address now the specific heat obtained from the spectra shown in Fig. 3.5, following the lines of the previous section,
after calculating the partition function for n nucleotides spectrum, using a Maxwell–Boltzmann statistics as yielded by
Eq. (95). In Fig. 3.5 each spectrum, for a fixed number of nucleotides n, has m allowed continuous bands. We consider the
level density within each band to be constant.

Fig. 7.6(a) shows the electronic specific heat spectra for the Fibonacci DNA chains, corresponding to its 10th (number of
nucleotides nFB = 89), 11th (number of nucleotides nFB = 144), 12th (number of nucleotides nFB = 233), and 13th (number
of nucleotides nFB = 377) generation numbers, as a function of the temperature. As expected, for the high-temperature
limit (T → ∞), the specific heat for all cases converges and decays as T−2, as a consequence of the existence of a maximum
energy value in the spectrum (once the spectrum is bounded). As the temperature decreases, the specific heat increases
up to a maximum value. The corresponding temperature for this maximum value depends on the number of nucleotides
nFB, although one can see a clear tendency for a common temperature value as nFB increases. After the maximum value,
the specific heat falls into the low temperature region. In this region it starts to present a non-harmonic small oscillation
behavior, as shown in the inset of Fig. 7.6(a). This can be interpreted as a superposition of Schottky anomalies corresponding
to the scales of the energy spectrum. Furthermore, the profiles of these oscillations define also two classes of oscillations,
as far as the parity (even or odd) of the generation number of the Fibonacci sequence is concern, as in the single-strand
case. These behaviors are better illustrated in 7.6(b) and (c), where are depicted log-plots of the specific heat against the
temperature, showing clearly a log-periodic behavior, i.e., Cn(T ) = ACn(aT ), where A is a constant, and a an arbitrary
number. Themean value d, around it C(T ) oscillates log-periodically, can be given approximately, as in the previous case, by
the so-called spectral dimension associated to the minimum singularity exponent α in the multifractal curve f (α), namely
αmin = 0.835. Of course, the number of oscillations observed in the specific heat spectra is related to the number of
nucleotides nFB, once nFB depends on the hierarchical generation of the Fibonacci sequence (more oscillations appear as
nFB increases).

A different scenario appears when one consider the other quasiperiodic structure studied here (i.e., modeling the DNA
molecule by the RS sequence), which is depicted in Fig. 7.7. Similarly to the Fibonacci case, in the limit when T → ∞,
the specific heat goes to zero as T−2 for all values of nRS . Also there are oscillations in the region near to T → 0 (which
are better shown by the inset of the figure). Although these oscillations can be interpreted as Schottky anomalies, as in the
Fibonacci case, they do not have the same standard of behavior, i.e., two groups of oscillations corresponding to even and
odd generation numbers of the sequence. Additional differences should be pointed out. In this case there are oscillations
with amplitude very superior to those found in the Fibonacci case. More important, the log-plot does not show a log-
periodic behavior. Instead, it shows an erratic-like profile, which can be attributed to the more disordered structure of
the Rudin–Shapiro sequence. Therefore, apart of the common asymptotic behavior of the specific heat when T → ∞ and
T → 0, there is no other connection between the Fibonacci and Rudin–Shapiro DNA chains considered here, regarding their
specific heat spectra.

Finally, for comparison purposes, we present in Fig. 7.8 the specific heat behavior of the human chromosome Ch22 chain.
As in the two previous cases, in the limit when T → ∞, the specific heat goes to zero as T−2 and also there are oscillations in
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Fig. 7.6. (a) Specific heat (in units of kB) versus temperature (in units of∆, the sum of all allowed energy regions in the band structures) for the Fibonacci
DNA chain. The inset shows the low-temperature behavior of the specific heat. (b) Log-periodic behavior of the specific heat for the even (6th, 8th, 10th,
and 12th generation, respectively) Fibonacci DNA chain. (c) Log-periodic behavior of the specific heat for the odd (5th, 7th, 9th, 11th, and 13th generation,
respectively) Fibonacci DNA chain.

the low temperature region due to Schottky anomalies (which are better shownby the inset of the figure). One can see clearly
that the overall behavior of the specific heat of Ch22 DNA chains is very close to the specific heat of the Rudin–Shapiro one,
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Fig. 7.7. Specific heat (in units of kB) versus temperature (in units of∆, the sum of all allowed energy regions in the band structures) for the Rudin–Shapiro
DNA chain, corresponding to its 8th (number of nucleotides nRS = 128), 9th (number of nucleotides nRS = 256), and 10th (number of nucleotides
nRS = 512) generation number. The inset shows the low-temperature behavior of the specific heat.

Fig. 7.8. Specific heat (in units of kB) versus temperature (in units of ∆, the sum of all allowed energy regions in the band structures) for the Ch22 DNA
chain, corresponding to the number of nucleotides nCh22 = 128, 256, and 512. The inset shows the low-temperature behavior of the specific heat.

in contrast with the Fibonacci case. For example, Ch22 and Rudin–Shapiro specific heats both present similar amplitude of
oscillations, as well as an erratic-like behavior in their log-plots, instead of the log-periodic behavior found in the Fibonacci
case.

Before concluding, let us comment on a possible connection between this present results with those of Mrevlishvili
and collaborators [208,209]. Their experimental data show oscillations of the specific heat at low temperature, which are
qualitatively similar to our present numerical theoretical results. They attribute their results to the non-crystalline order of
the DNA samples which may be modeled, as we have shown here, by quasiperiodic systems.

7.3. Fermi statistics: the single-strand DNA structure

The multifractal energy spectrum of the FB and RS sequences, for both single- and double-strands DNA-like sequences,
was obtained in previous sections, and it will be taken into account to determine the specific heat spectra by using the
quantum-mechanical Fermi–Dirac statistics. Since the spin degree will not be considered in this work, each occupied
quantum state can support only one particle. According to the Fermi–Dirac statistics, the average occupation number of
each state is given by

⟨ni⟩ =
1

1 + exp[β(Ei − µ)]
, (100)



Author's personal copy

184 E.L. Albuquerque et al. / Physics Reports 535 (2014) 139–209

Fig. 7.9. (a) Log–log scale of the fermionic specific heat at constant volume (in units of Ne) versus the temperature T for the 14th generation of the
Fibonacci DNA chain, corresponding to nFB = 610 nucleotides. Four different concentrations are analyzed. The inset in Fig. 7.9(a) depicts the case for the
15th generation of the Fibonacci DNA chain, corresponding to nFB = 987 nucleotides. (b) Chemical potential µ versus the temperature T .

where µ is the chemical potential, which can be computed as a function of temperature and band filling from

Ne =

N
i=1

⟨ni⟩, (101)

from which µ(Ne/N, T ) can be extracted by numerical methods. Here, Ne is the number of non-interacting Fermi particles
(electrons), while N is the total number of one-particle accessible states (electrons and holes).

The average internal energy is obtained from

U(Ne/N, T ) =

N
i=1

Ei⟨ni⟩, (102)

where the temperature dependence of the chemical potential µ(Ne/N, T ) is explicitly taken into account.
We compute the specific heat at constant volume by differentiating U(Ne/N, T ) with respect to the temperature T ,

i.e., CV = dU(Ne/N, T )/dT . It is then straightforward to calculate the fermionic specific heat yielding [210]

CV =
1

4T 2


i

E2
i cosh−2

[(Ei − µ)/2T ] −


i
Ei cosh−2

[(Ei − µ)/2T ]

2


i
cosh−2

[(Ei − µ)/2T ]

 . (103)

Fig. 7.9(a) shows a log–log plot of the electronic specific heat spectra at constant volume (in units of Ne, the number of
non-interacting Fermi particles) versus the temperature T for the 14th generation of the Fibonacci DNA chain, corresponding
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Fig. 7.10. Same as in Fig. 7.9, but for the 10th generation of the Rudin–Shapiro DNA chain, corresponding to nRS = 512 nucleotides. The inset in Fig. 7.10(a)
depicts the case for the 11th generation of the Rudin–Shapiro DNA chain, corresponding to nRS = 1024 nucleotides.

to nFB = 610 nucleotides. Several values of the band fillings Ne/N are considered, and indicated in the figure. For the high
temperature limit (T → ∞), the specific heat for all cases converges and decays with T−2. As the temperature decreases,
the specific heat increases up to a maximum value, the corresponding temperature for this maximum value depending on
the number of band fillingsNe/N , although one can see a clear tendency for a common temperature value asNe/N increases,
independently of the occupation number ratio. After the maximum value, the specific heat falls into the low temperature
region and starts, due to the fractality of the energy spectrum, a complex pattern of log-periodic oscillations which signals
the discrete scale invariance of the spectrum at the vicinity of the Fermi energy. These oscillations occur around a linear
trend (in log–log scale), whose power-law behavior is CV ∝ TφFB , with φFB = 0.7385, lasting until the temperature reaches
a value around 10−3. At this point, a phase transition (in the sense of a oscillatory regime) occurs, and the specific heat
falls again linearly with T . The inset of this figure considers the 15th generation of the Fibonacci DNA chain, corresponding
to nFB = 987 nucleotides. From there we can see a larger number of oscillations of the specific heat for low T (in general
the number of oscillations of the specific heat for fractal spectra increases with the order of the generation of the fractal).
Besides, the oscillatory regime disappears at a lower temperature, when compared to the 14th generation of the Fibonacci
DNA chain.

In Fig. 7.9(b), the profile of the chemical potentialµ(T ,Ne/N) against the temperature T is presented, for a Fibonacci DNA
chain, considering the occupation ratios Ne/N = 1/2, 4/9, 2/5 and 1/3. For lower values of T , there is a transient period, on
which the chemical potential reaches a maximum value, and then starts to decrease (in all cases but Ne/N = 0.5) linearly,
as the ratio Ne/N decreases. For Ne/N = 0.5, the chemical potential has a constant value. This is an expected feature, since
the chemical potential is a measure of the energy per particle, for a given entropy.

A similar scenario appears when one consider the other quasiperiodic structure studied, modeling the DNA molecule
by the Rudin–Shapiro sequence, whose log–log plot of the specific heat at constant volume (in units of Ne) is depicted in
Fig. 7.10(a), considering its 10th generation (whichmeans 512nucleotides). Its profile is very similar to those of Fig. 7.9,when
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one consider the same band fillings Ne/N . There is a transient region where the CV oscillates non-harmonically around an
inclined straight line, CV ∝ TφRS , with φRS = 1.01, and then suddenly it falls to zero, linearly with T . However, now this
decrease dependsmore strongly on the band fillingsNe/N considered. The inset shows the case for the Rudin–Shapiro’s 11th
generation, corresponding to nRS = 1024 nucleotides. The chemical potential for this sequence is shown in Fig. 7.10(b), with
qualitative behavior similar to the FB case.

This work would not be complete if we did not compare our results with a real system. For this purpose, the log–log
plot of the specific heat at constant volume (also in units of Ne) for the Ch22 chromosome, analyzed through a Fermi–Dirac
statistics, is depicted in Fig. 7.11(a). Again, the specific heat falls to zerowhen T → ∞, but now in a slightly higher ratio. Also,
after the maximum value of CV is reached, in the low temperature region the specific heat falls roughly linearly with T , and
at T = 0.5×10−2, it falls more rapidlywith T . Note that in this case there is less oscillationswhen T → 0when compared to
the quasiperiodic structures. Probably this is due to the fact that, in contrast to a real fractal, human chromosomes present
a common compositional structure with two characteristic scales, the large one corresponding to long, homogeneous DNA
segments (the isochores), and the other one to small and medium scale genomic elements. The inset presents the case for
the human chromosome Ch22 with 1024 nucleotides.

The chemical potential, depicted in Fig. 7.11(b), resembles strongly the RS one, whichmeans that the energy distribution
per particle is very similar in these two cases. This qualitative resemblance is an indication that a real DNA chain can, at least
in principle, be modeled through substitutional sequences, like FB and RS. Also, the lack of an oscillatory behavior around
a medium value (the spectral or fractal dimension of the system), a common feature presented in previous works, clearly
indicates that the statistics considered (Fermi–Dirac), which forbid more than one particle per state (excluding the spin),
plays a decisive role on the collective behavior of electrons propagating in real and modeled DNA chains.

7.4. Fermi statistics: the extended double-strand DNA structure

Consider now the extended double-strand DNA structure discussed in Section 3.4. The thermodynamic behavior can be
now directly obtained from the electronic density of states depicted in Fig. 3.7, following the lines presented in the previous
section.

Fig. 7.12 depicts a log–log plot of the normalized specific heat spectra at constant volume (in units of the number of non-
interacting Fermi particlesNe times the Boltzmann’s constant kB) versus the temperature T for the Fibonacci sequence (solid
line), the Rudin–Shapiro sequence (dashed line), and the DNA human chromosome 22—Ch22 (dotted line). Three values of
the band fillings Ne/N are considered, namely Ne/N = 0.9 (Fig. 7.12(a)), 0.6 (Fig. 7.12(b)), and 0.4 (Fig. 7.12(c)), for all
sequences studied.

Broadly speaking, Fig. 7.12 shows that an increased disorder (Fibonacci → Rudin–Shapiro → Ch22) gives rise to a
structured specific heat CV , with a different band filling Ne/N and temperature T dependence. Although the existence of
a structure in the DNA heat capacity at low temperatures has already being demonstrated experimentally, it was strictly
assigned to the difference in hydration and/or structural transitions related to the various DNA conformations. Our theoret-
ical/computational analysis indicates that only the CV behavior of a more disordered nucleotides arrangement can approach
that of the human chromosome 22. This last finding supports the visionary and historical idea of Schrödinger [211], in which
he predicted that a gene or perhaps a whole chromosome thread represents an aperiodic solid.

Furthermore, at these band fillings (Ne/N = n/10, n = 4, 6, 9) the Fermi energy falls in a dense region of the energy
spectrum. Therefore, there are empty states closer to the ground state, and these can be thermally occupied even at very
low temperatures. For a periodic infinite crystal, the energy spectrum yields a linear temperature dependence (in the low-
temperature regime) of the electronic specific heat. However, although quasiperiodic systems may not being classifiable
in the nonlinear physics context, they do exhibit a multifractality in their spectra and, instead of the expected linear
temperature behavior, the internal energy scales as a power-law U − U0 ∝ T 1+φ , and consequently CV ∝ Tφ . In our
case, these φ exponents are equal to 0.12 (Fibonacci sequence), 0.15 (Rudin–Shapiro sequence) and 0.23 (Ch22 DNA finite
segment), no matter the value of the band fillings Ne/N . This universality class of the specific heat decay exponent at
low-temperature, as far as the band fillings Ne/N are concerned, can be understood on basis of a simple multifractal scale
argument. For small thermal excitations, each particle can absorb an energy of the order of T . The number of particles that
can be excited corresponds to the number of states in an energy range of the order of T around the Fermi energy. Therefore,
the observed specific heat exponents φ lies within the range of values of the singularity strength exponent (αmin, αmax)
defined by the so-calledmultifractal f (α) spectrum [212],which in turn gives support to the above scaling analysis, unveiling
a relationship between the low-temperature power-law decay of the electronic specific heat of a molecular system with
multifractal spectrum and the underlying energy distribution singularities, disregarding the values of Ne/N and, of course,
any finite size effect. This findingmay provide a useful tool for the analysis of the low-temperature thermodynamic behavior
of more robust protein models modeled by a quasiperiodic system.

There are some other features in the temperature dependence of the specific heat that deserve to be stressed:

(a) at temperatures around the normal human being temperature TNHB = 310 K a striking difference is observed: while the
electronic specific heat for the Fibonacci sequence shows a peak, regardless the value of the band filling Ne/N , the same
do not occur for the RS and Ch22, which have similar behavior;

(b) the RS and Ch22 structures show a peak at the temperature around 100 K with similar profiles;
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Fig. 7.11. Same as in Fig. 7.9, but now for the human chromosome Ch22 considering 512 nucleotides. The inset in Fig. 7.11(a) depicts the case for the
human chromosome Ch22 with 1024 nucleotides.

(c) at low temperature the electronic specific heat falls linearly to zero, faster for the Fibonacci sequence than for the
Rudin–Shapiro one, which in turn is faster than the DNA human chromosome 22.

7.5. Non-extensive thermodynamics

It is by now well established that the powerful standard Boltzmann–Gibbs (BG) statistical mechanics and the associated
thermodynamics are valid when certain conditions are satisfied. The typical situation occurs for microscopic dynamics
exhibiting strong chaos i.e., positive largest Lyapunov exponent and, consistently, the usual thermodynamic extensivity.
This is the scenario which typically occurs for short-range-interacting many-body Hamiltonian systems.

On the other hand, a vast class of natural and artificial systems exists for which the largest Lyapunov exponent vanishes,
situation which is referred to as weak chaos. Weak chaos is typically associated with power-law, instead of exponential,
sensitivity to the initial conditions and relaxations, fractal or multifractal occupation of phase space and thermodynamic
nonextensivity, i.e., phenomena involving long range interactions (see [213–215] for recent reviews).

Taking into account the above requirements, a possible generalization of BG statistical mechanics was proposed many
years ago by Tsallis [216], on the basis of the following distribution

pq(E) =


1 − (1 − q)βE

1/(1−q)
, (104)

where pq is the probability of the system has energy E, β = 1/kBT , and q, the entropic index (intimately related to and
determined by the microscopic dynamics), characterizes the degree of nonextensivity, a number which is believed to have
some relationship to the intrinsic characteristics of the system. When q → 1 that expression recover the well-known
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Fig. 7.12. (Color online) The log–log plot of the electronic specific heat spectra against the energy E (in eV) for the Fibonacci sequence (solid line), the
Rudin–Shapiro sequence (dashed line), and the DNA human chromosome 22—Ch22 (dotted line). Three values of the band fillings Ne/N are considered,
namely (a) Ne/N = 0.9; (b) Ne/N = 0.6; (c) Ne/N = 0.4. The limit of the temperature scale (right-hand side) represents the normal human body
temperature TNHB = 310 K.

Boltzmann–Gibson distribution. The entropy of the system follows [216]:

Sq(E) = kB

W
i=1

pqi − 1

1 − q
, (105)
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where W is the total number of microscopic possibilities of the system. Observe that for the q < 0 case, care must be
taken to exclude all those possibilities whose probability is not strictly positive; otherwise Sq(E) would diverge. Such care
is not necessary for q > 0. This generalization of BG statistical mechanics is usually referred to as nonextensive statistical
mechanics. Its denomination nonextensive comes from the following property: if we have two probabilistically independent
systems A and B, i.e., pij(A + B) = pi(A)pj(B), we straightforwardly verify that

Sq(A + B) = Sq(A)+ Sq(B)+ (1 − q)Sq(A)Sq(B). (106)
Consequently, q = 1, the BG case, corresponds to extensivity, whereas q < 1 (q > 1) corresponds to superextensivity
(subextensivity), where the nonnegativity of q has been taken into account.

Within nonextensive statistical mechanics, many of the above cited anomalous systems have found a frame of inter-
pretation. In particular, several authors has recently reported investigation of thermodynamical properties associates with
systems that exhibit long-range correlated structures, with hierarchical or fractal structure. The first results [217] showed
that the specific heat of quasiperiodic spin chains presents logarithmic-periodic oscillations in the low temperature region.
Similar results were found in the specific heat properties associated to hierarchical structures [218] or to the specific heat
corresponding to the Heisenberg model with quasiperiodic exchange couplings at some circumstances [219]. All these ex-
amples share in common that the corresponding energy spectra show fractal properties.

The energy spectra with fractal structure present an additional interest: quasiperiodic sequences, often used to model
quasicrystals, are known to have energy spectrawith fractal properties, similar in structure to fractal sets of Cantor type. This
is the reasonwhy the results obtained from studies performedon energy spectra of Cantor type have beenused to explain the
properties of the specific heat of Fibonacci sequences, either modeled as one-dimensional (1D) tight-binding Hamiltonians
(as discussed previously in this review) or as superlattices [220]. Also, the properties of the specific heat associated to fractal
spectra presents similar properties when quantum, fermionic, or bosonic statistics are considered [221,222].

This sub-section reports the study of the electronic specific heat at low temperature, considering nonextensive
distribution of long-range correlated quasiperiodic (Fibonacci and Rudin–Shapiro types) DNA molecules, as well as the real
genomic DNA sequence. Our theoretical model is an effective tight-binding Hamiltonian describing one electron moving in
a double-strand DNA molecule, with a single orbital per site and nearest-neighbor interactions, as discussed in Section 3.3.

Defining the internal energy as [223]

U ≡

W
i

pqi Ei, (107)

the optimization of the entropy defined as Sq = k lnqΩ (Ω is the number of accessible states) yields

pi =
eq(−βEi)

Zq
, (108)

with the partition function written as

Zq ≡

W
j=1

eq(−βEj). (109)

In the above expressions,

lnq(x) ≡
x1−q

− 1
1 − q

; ln1 x = ln x, (110)

eq(x) ≡ [1 + (1 − q)x]1/(1−q)
; ex1 = ex. (111)

After a straightforward calculation, and taking the density of states ρ(E) = 1, we can write Zq as

Zq =
1

β(2 − q)

2n−1
i=1,3,...


eq(−βEi)2−q

− eq(−βEi+1)
2−q , (112)

where the index i with odd (even) value refers to the bottom (top) of the energy band. The specific heat can then been
derived yielding:

Cq(T ) = 1 +
βfq
Zq

−
g2
q

Z2
q
. (113)

Here

fq =

2n−1
i=1,3,...


E2
i eq(−βEi)

q
− E2

i+1eq(−βEi+1)
q

, (114)

gq =

2n−1
i=1,3,...


−Eieq(−βEi)+ Ei+1eq(−βEi+1)


. (115)
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Fig. 7.13. Specific heat as a function of the temperature T in logarithmic scale corresponding to a Fibonacci quasiperiodic DNA obtained for different
values of the entropic index q. We have considered energy spectra corresponding to the 13th Fibonacci generation, which means a number of nucleotides
nFB = 377.

We address now the specific heat spectra obtained in Eq. (113). In Fig. 7.13, we show several specific heats Cq(T ) for a
Fibonacci quasiperiodic DNAobtained for different values of the entropic index q.We focus our attention in the low tempera-
ture region,where the specific heat spectra start to present an oscillatory behavior. This can be interpreted as a superposition
of Schottky anomalies corresponding to the scales of the energy spectrum [224]. Although the number of oscillations ob-
served in the spectra is related to the number of nucleotides nFB, once nFB depends on the hierarchical generation of the
Fibonacci sequence (more oscillations appear as nFB increases), we consider the energy spectra corresponding to the 13th
Fibonacci generation, which means a number of nucleotides nFB = 377. In general, we see that when q decreases, the os-
cillations become more pronounced, as expected. As a remark, we may notice that different values of q might corresponds
to different (multi) fractal structures. An illustration of such behavior can be seen in nonlinear unimodal maps, where an
analytic connection exists between the entropic index q and the multifractality [225,226]. A discussion of the effect of the
fractal properties of the spectrum in the amplitude of the oscillations of the specific heats C(T ) can be found in Ref. [227].

Let us define the separation between consecutive local maxima (or minima) of the specific heat spectra for a given q as
[228]:

∆q = log10 Ti+1 − log10 Ti, (116)

where Ti stands for the temperature value for which C(T ) reaches its ith local maxima or minima. For q ≠ 1 (the nonexten-
sive case), the period is constant. As q becomes more and more different of the unity, more wider and well behaved is the
distribution of scales presented in the oscillation spectrum, and therefore, one should expect a higher regularity in the corre-
sponding specific heat.When q = 1 (the BG case), the period is not a constant value and depends on the particular oscillation
considered. Furthermore, it leads to a wider distribution of periods, because of the presence of a larger diversity of scales.

Similarly, let us define the amplitude of the oscillations as [229]:

A± = ±C(T±)∓ ⟨C(T )⟩, (117)

where C(T±) stands for a local maximum (minima) of C(T ), and ⟨C(T )⟩ is the mean value around it C(T ) oscillates log-
periodically. The mean value ⟨C(T )⟩ can be given approximately by the minimum singularity exponent αmin = 0.835 [207]
(see Section 7.2). Besides, when deterministic fractal spectra are considered (like the Fibonacci one), the oscillations of the
specific heat, although perfectly regular and periodic, are nonharmonic. This nonharmonicity is reflected in the amplitudes.
For decreasing q, the amplitudes start to be nonconstant and depend on the particular oscillation considered. These results
suggest that when q ≠ 1, instead of single values of period and amplitude, we have distributions of these values. On the
other hand, for q = 1 (the BG case), although the spectrum presents a nonperiodicity behavior, the amplitudes are almost
constant, and independent on the particular oscillation considered.

A different scenario appears when one consider the other quasiperiodic structure studied here (i.e., the modeling the
DNA molecule by the RS sequence), which is depicted in Fig. 7.14. Similarly to the Fibonacci case, there are oscillations in
the region near to T → 0 (which are better shown by the inset of the figure, where a log-plot curve is presented). Although
these oscillations can be interpreted as Schottky anomalies, as in the Fibonacci case, the log-plot curve C(T ) versus T in the
inset does not show a log-periodic behavior. Instead, it shows an erratic-like profile, which can be attributed to the more
disordered structure of the Rudin–Shapiro sequence. For comparison purposes, we present in Fig. 7.15 the specific heat
behavior of the human chromosome Ch22 chain. As in the two previous cases, the specific heat spectra show oscillations in
the low temperature region due to Schottky anomalies (better shown by the inset of the figure), with an erratic-like behavior
in their log-plots, instead of the log-periodic behavior found in the Fibonacci case.



Author's personal copy

E.L. Albuquerque et al. / Physics Reports 535 (2014) 139–209 191

Fig. 7.14. Specific heat as a function of the temperature T corresponding to a Rudin–Shapiro quasiperiodic DNA structure obtained for different values of
the entropic index q, and considering a number of nucleotides nRS = 256. The inset shows a log-plot curve to emphasize the erratic oscillation profile.

Fig. 7.15. Same as in Fig. 7.13, but for the human chromosome Ch22 sequence.

8. DNA bases crystals

Guanine (G), adenine (A), cytosine (C), and thymine (T ) nucleotide bases are the essential building blocks of DNA, which
contains the genetic information used to build living cells. Almost ten years after the elucidation of the helical DNA structure,
where the coupling of nucleobases through hydrogen bonds and van der Walls forces has a fundamental role, Eley and
Spivey [230] argued that π − π interactions between stacked base pairs in double-stranded DNA could provide a pathway
for rapid, one-dimensional charge separation.

London dispersion forces originated from electron correlation in π stacking [231,232] and hydrogen bonding
[233–235] of DNA nucleobases affect the structural, electronic, optical, and transport properties of DNA strands and derived
nanostructures, being determinant to obtain the features required for technological applications. The DNA nucleobases
were mainly studied in vacuum [236–238] and aqueous environments [239–242], with few works being published on
their crystals, some focusing on the structural, electronic, and transport properties of guanine crystals [243] and others
investigating the dielectric function of anhydrous DNA films [244]. Recently, a new generation of exchange–correlation
functionals within the density functional theory (DFT) approach has been employed to provide an improved description of
hydrogen bonding and van der Waals interactions in π-stacked DNA systems [245–248].

In vacuum, earlier MP2/6-31G* ab initio calculations predict that the most stable stacked pair of DNA nucleobases
(considering only G . . .G, C . . . C , and A . . . A dimers) is the G . . .G dimer, while the least stable is the C . . . C dimer [249], a
result which was obtained considering a 3.3–3.4 Å vertical separation between bases, which agrees with the 3.3–3.5 Å value
observed in crystals of DNA constituents [250] and in high-resolved oligonucleotide crystals [251]. MP2/6-31G* calculations
in the complete basis set limit (CBS) corrected by the coupled-clustermethod (abbreviated as CBS(T)) have shown a different
stability ordering for the same set of stacked dimers [252], with guanine being the most stable dimer and adenine the
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less stable one (replacing cytosine). The orientational dependence of the stacking energy is dominated by twist and rise
contributions [252,253].

DFT calculations for guanine dimers in a supercell revealed that dimers connected by hydrogen bonds have dispersionless
bands, which are not good for electronic transport, while stacked dimers have dispersive bands originated from π − π
interactions (dispersive bands create channels for charge migration) [231]. Band transport may also be partially responsible
for the charge mobility in nucleotide aggregates characterized by a large base–base superposition. This scheme is probably
complemented by a hopping mechanism connecting spatially different regions where such base superposition occurs. The
ab initio Hartree–Fock crystal orbital method with a basis of atomic orbitals was employed by Ladik et al. [232] to study
the electronic structure of stackings made from the four DNA nucleobases. For the valence bands, thymine and guanine
(adenine and cytosine) stackings exhibited the widest (narrowest) band widths, favoring (unfavoring) the band transport of
holes. For the conduction bands the picture is somewhat different, with the band widths of guanine and cytosine (adenine
and thymine) stackings being the largest (smallest), aiding (opposing) the band transport of electrons. The DFT estimated
energy gap of stacked guanine nucleobases is 7.20 eV, larger than the gap of stacked adenine nucleobases (6.87 eV), but
smaller than the gaps for cytosine and thymine (both equal to 7.41 eV) [232].

Sugar–phosphate chains, water structures and counterions contribute to enhance DNA structural stability, and promote
the formation of energy levels inside the energy gap of stacked nucleobases which strongly affect DNA electronic, opti-
cal, and charge transport properties. DFT calculations within the generalized gradient approximation (GGA) for the ex-
change–correlation energy using the BLYP functional were performed for A-type DNA with 11 base pairs and B-type DNA
with 10 base pairs [254], including base molecule, sugar, phosphoric acid, and sodium. The geometries of the A- and B-DNA
crystals used in these computations were estimated through classical molecular mechanics/molecular dynamics. The elec-
tronic band structures of A-DNA showed valence (conduction) band widths of 0.081 (0.133) eV for the Poly(dG)–Poly(dC)
configuration and 0.244 (0.360) eV for Poly(dA)–Poly(dT) [254]. In the case of B-type DNA with 10 base pairs, the widths
of the valence (conduction) bands were estimated as 0.045 (0.120) and 0.421 (0.143) eV for Poly(dA)–Poly(dT) and
Poly(dG)–Poly(dC) strands, respectively. The calculated energy gaps were 1.249 eV (A Poly(dA)–Poly(dT)), 0.824 eV (A
Poly(dG)–Poly(dC)), 2.743 eV (B Poly(dA)–Poly(dT)), and 1.448 eV (B Poly(dG)–Poly(dC)) [254].

On the other hand, other first principles studies suggest that significant charge transport in van derWaals bonded layered
guanine crystals is possible along the stacking direction [243] due to a dispersive band energy along the π −π stacking axis
with predicted valence bandwidth of 0.83 eV and a direct band gap of 2.73 eV, much smaller than the 3.90 eV HOMO–LUMO
energy gap of the gas-phase guanine molecule. Finally, spectroscopic ellipsometry measurements were performed using
synchrotron radiation to obtain the dielectric functions of G, A, C , T films grown on hydrogen terminated Si(111) surfaces
under ultra-high vacuum conditions. Guanine and adenine films exhibited strong optical anisotropy, with the ordinary
(⊥ [111]) component of the dielectric function being larger compared to the extraordinary (∥ [111]) component, while
cytosine and thymine dielectric functions were shown to be isotropic [244].

Although the crystal structures of anhydrous thymine [255,256] and cytosine [257,258] were determined several years
ago, it is remarkable that the crystal structures of anhydrous guanine and adenine were not obtained until recently, due to
the lack of good quality crystals [259]. In this section, using the published crystallographic data for the four anhydrous DNA
nucleobase crystals (ACrs) guanine, adenine, cytosine and thymine, we carry out, using DFT computations, a comparative
study of their structural, electronic, and optical properties, looking for the determination of the effectivemasses of electrons
and holes along directions parallel and perpendicular to the π-stacking planes, as well as the nature of the energy band gaps
(if they are direct or indirect) [260]. In fact, considering that the carrier effective masses could be very useful to model
the carrier transport in DNA-based films and nanostructures, it is surprising to note the absence in the literature of any
estimates on their values for crystals of DNA nucleobases. Experimental measurements of optical absorption for each ACr
are also performed, allowing the estimation of their band gaps, and showing that they resemble wide gap semiconductors.
Finally, the dielectric function of each crystal is obtained for different polarization planes of incident radiation, and compared
with available experimental data.

8.1. Crystal structures

Anhydrous guanine crystals are monoclinic with space group P21/c [261], four C5H5N5O molecules per unit cell, and
molecular stacking along (1 0 2) planes. The anhydrous adenine crystals, on the other hand, are monoclinic with eight
C5H5N5 molecules per unit cell, space group P21/c [259] and (1 0 −1) stacking planes. The anhydrous cytosine crystals are
orthorhombic with four C4H5N3O formulae in each unit cell, space group P212121 [257,258] and two intercalated stacking
planes (2 0 1) and (−2 0 1), which are symmetrically equivalent. Finally, anhydrous thymine crystals have four C5H6N6O2
molecules in each unit cell, being monoclinic with space group P21/c [255,256] and (−1 0 1) stacking planes. Guanine and
adenine molecules appear twisted along the stacking direction, cytosine molecules are slided and the thymine molecules
are slided and shifted, as shown both in Fig. 8.1 and, more clearly, in the top part of Fig. 8.4. The orientation of the stacked
bases in these crystals has an important role on their physical properties.

Nucleobase powders (guanine 98% (G11950), adenine 99% (A8626), cytosine 99% (C3506), thymine 99% (T0376)) were
purchased from sigma-Aldrich and used with no further purification. They are mixed with KBr to form six pellets for each
nucleobase. Experimental measurements of the UV absorption spectra for the anhydrous crystals were carried out on these
pellets using a Varian Cary 5000 UV–visible NIR spectrophotometer, equipped with solid sample holders. The absorption
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Fig. 8.1. (Color online) Unit cells of the G (guanine), A (adenine), C (cytosine), and T (thymine) anhydrous crystals.

spectrum of the samples was recorded in the 200–800 nm (50,000–12,500 cm−1) wavelength range. The optical absorption
measurements were accomplished by transmittance and the background removal was accomplished by comparison with
the absorption spectrum of a KBr pellet. Baseline corrections were made when necessary.

8.2. Computational details

The computational simulations were performed using the CASTEP code [262,263], which is based on the DFT ap-
proach. The LDA exchange–correlation potential, developed by Ceperley and Alder [264] and parametrized by Perdew and
Zunger [265], was adopted aswell.With respect to our choice of functional, a note of cautionmust bemade. The LDA approx-
imation is not the best option to provide an accurate account of hydrogen bonds, the generalized gradient approximation
(GGA) being preferable in this aspect. However, van der Waals interactions along the molecular stacking axis and hydrogen
bonding between molecules in the same stacking plane are relevant to explain the structural features of anhydrous DNA
bases crystals, and it is well known that pure DFT methods are unable to give a good description of dispersive forces. Even
hybrid functionals, which predict improved band gaps in comparisonwith LDA andGGA approaches, do not significantly im-
prove the electronic ground state. However, some DFT studies of crystals such as CaCO3 [266], as well as guanine hydrated
crystals [267,268] have shown that the local density approximation (LDA) gives reasonable values for atomic distances,
notwithstanding the limitations of this functional. This and the relatively low cost of LDA computations have motivated us
to adopt LDA instead of more sophisticated (and computationally expensive) means.

Vanderbilt ultrasoft pseudopotentials were used to describe the core electronic states of each atomic species [269], and
the Kohn–Sham orbitals were evaluated using a planewave basis set with a converged energy cutoff of 610 eV. Each unit cell
was relaxed to attain a total energyminimum allowing for lattice parameter and atomic position adjustments. Convergence
thresholds selected for all geometry optimizationswere: total energy variation smaller than 0.10×10−4 eV/atom,maximum
force per atom smaller than 0.03 eV/Å, maximum displacement smaller than 0.001 Å, and maximum stress component
smaller than 0.05 GPa. A two steps convergence tolerance window was employed, and the optimization method used was
the BFGSminimizer [270]. The basis set qualitywas kept fixed throughout unit cell volume changes. The self-consistent field
steps have taken into account tolerances of 0.1 × 10−5 eV/atom for total energy and 0.4979 × 10−6 eV for the electronic
Eigen-energies. From the valence band (VB) and conduction band (CB) curves at their critical points (maxima for VB and
minima for CB) we have estimated the effective masses for electrons and holes for the anhydrous DNA bases crystals as
follows: we take a band curve starting at some extremum in reciprocal space along a k⃗ direction of interest, and perform
a parabolic fitting of this curve, which allows the determination of the corresponding effective mass through the relation
E(k⃗) = h̄2 k2/2m. For the band structure computations, paths formed from a set of high symmetry points in the first Brillouin
zone were chosen, as shown in Fig. 8.2. However, we present here only the band structures near the valence band maxima.

8.3. Geometry optimization

From the LDA-DFT calculations, we have obtained the following formation energies for the anhydrous DNA base crystals:
−60.5 kcal/mol for guanine,−42.8 kcal/mol for adenine,−47.6 kcal/mol for cytosine and−39.4 kcal/mol for thymine,which
suggests that the stability of these crystals obeys the sequence G > C > A > T . This must be put in contrast with the result
of Šponer et al. [249,252] for guanine, adenine, cytosine and uracil stacked dimers, which predicts aG . . .G dimer as themost
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Table 2
Calculated a, b, c lattice parameters, β angle, unit cell volume V , and distance d between successive stacked molecular planes for the guanine, adenine,
cytosine, and thymine anhydrous crystals. Experimental values are indicated between parentheses and were obtained from: guanine, Ref. [261]; adenine,
Ref. [259]; cytosine, Refs. [257,258]; and thymine, Refs. [255,256].

a (Å) b (Å) c (Å) β (°) V (Å3) d (Å)

G 3.45 (3.55) 9.46 (9.69) 16.03 (16.35) 96.23 (95.75) 519.01 (560.08) 2.53 (2.59)
A 7.66 (7.89) 21.52 (22.24) 6.97 (7.45) 112.44 (113.19) 1057.86 (1201.57) 2.99 (3.19)
C 12.60 (13.04) 9.24 (9.50) 3.60 (3.81) - 419.01 (472.42) 3.21 (3.43)
T 10.70 (12.87) 6.71 (6.83) 6.87 (6.70) 97.00 (105.00) 489.88 (568.88) 2.99 (3.19)

Fig. 8.2. First Brillouin zones of G (guanine), A (adenine), C (cytosine), and T (thymine) crystals. High-symmetry points are shown.

stable stacked DNA base pair in vacuum. Moreover, stacked cytosine dimers have larger binding energy in comparison with
stacked adenine dimers [252], while our results point out that anhydrous cytosine crystals rank in second place of stability
in comparison with the other crystals of DNA nucleobases (Refs. [249,252] have not dealt with thymine).

In order to check if the distinct boundary conditions of nucleobase dimers in comparison with the crystalline phase
affect the results, we have carried out LDA calculations for the same dimers studied by Šponer et al. [249,252], using a 20 Å
× 20 Å × 20 Å cubic supercell and the same basis set/convergence thresholds of the crystal simulations. The obtained LDA
binding energies of the dimers were −10.8 kcal/mol (G . . .G), −7.0 kcal/mol (A . . . A), and −8.68 kcal/mol (A), which are
close to the values obtained using themore accurate CBS(T) approach:−12.7 kcal/mol (G . . .G),−8.5 kcal/mol (A . . . A), and
−10 kcal/mol (C . . . C). Notwithstanding the limitations of the LDAmethod, its data reproduces the same ordering of dimer
stabilities from the CBS(T) calculations: G . . .G > C . . . C > A . . . A. A direct comparison with experiment, on the other
hand, is very difficult as experimental errors can be originated from a series of factors, namely: limited resolution, averaged
samples, poor refinement, averaged geometries, sensitivity of hydrogen bonds, etc. However, the values reported using the
CBS(T) method, as it is discussed in [252], seem to be in fair agreement with the experimental data, and the LDA values
obtained here are close to the CBS(T) values. One must consider, however, that even for high level methods the calculated
energiesmay be highly sensitive to details of themethod, as the CBS(T) results disagreewith previous CBS simulations [252],
so the proximity of the theoretical values to experimental data could be only coincidental. So we hope that our data will
reproduce qualitative trends at least when compared with experiment.

The calculated lattice parameters of the ACrs are shown in Table 2 together with the experimental data. In order to
perform an analysis of these results, we define here the relative difference between theory (LDA) and experiment (Exp) for
a given parameter X , i.e.,∆(LDA–Exp) = 100× (X LDA− XExp)/(X Exp). It is usual for LDA computations to predict lattice
parameters smaller (in comparison with Exp) by about 5% for organic crystals [271]. The figures presented here follow this
trend. As a matter of fact, the guanine crystal has the smaller values for∆(LDA–Exp), with LDA lattice parameters being at
worst 2.9% smaller (for the a length) than themeasured value. In the case of adenine,∆(LDA–Exp) ismore pronounced for the
c length, which has a computed value∆(LDA–Exp) of approximately −6.5%. For cytosine, the most pronounced difference
between LDA and experiment is approximately −5.5% along c , while thymine presents the worst figures, with∆(LDA–Exp)
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Fig. 8.3. Close-up of the electronic band structures of G (guanine), A (adenine), C (cytosine), and T (thymine) anhydrous crystals near their main band
gaps. Direct and indirect transitions are indicated by the arrows.

of−16.9% for the a parameter (a result due to the LDA overestimation of the interaction energy between thyminemolecules
along a directionwhere van derWaals forces are dominant). Also for thymine, one observe that the c parameter predicted by
the LDA computations is about 2.5% larger than the experimental value, in contrast with the typical overbind trend observed
for this exchange–correlation functional.

The β angle for guanine, adenine and thymine (cytosine is orthorhombic) exhibits∆(LDA–Exp) variations of 0.5%,−0.7%,
and −7.6%, respectively (again, the worst figures are for thymine), while the unit cell volume V has ∆(LDA–Exp) of −7.3%
for guanine, −12% for adenine, −11% for cytosine and −14% for thymine. The distance between stacking planes d for each
crystal has ∆(LDA–Exp) of −2.3% for guanine, −6.3% for adenine and thymine (both have practically the same value of d),
and −6.4% for cytosine. The calculated d values are in general smaller than the 3.29–3.30 Å interplanar spacing between
stacked G, A, C, T dimers of<100 nm thick films grown on hydrogen terminated Si(111) surfaces under ultra-high vacuum
conditions [244], and the 3.15Å in LDA and3.64Å inGGA calculated intermolecular plane spacings ofmonohydrated guanine
crystals, whose experimental value is 3.30 Å [272]. Furthermore, they are practically in the range defined by the average
interplanar distance of 2.56 Å and 3.38 Å in A- and B-type DNA, respectively [254]. Thus, the role of interplanar base coupling
in anhydrous crystals of DNAbases on their physical properties is as relevant as in the case of stackedDNAbases, non-relaxed
thick nanofilms of DNA bases, and A,B-DNA strands.

8.4. Electronic band structures

Fig. 8.3 shows a close-up of the band structures for the ACrs at the main gap regions. Guanine and cytosine have direct
band gaps, a B → B transition for the guanine crystal, and a Γ → Γ transition for cytosine. Adenine has its main band gap
fromamaximumat the valence band (very near to the Z point), to its conduction bandminimumat theΓ point (not shown in
Fig. 8.3), while thymine has its valence bandmaximum at the B point and conduction bandminimum in a point in reciprocal
space situated along theΓ –D direction (denoted here using the Greek letterα), both crystals being indirect band gapmateri-
als. Themain contributions for the uppermost valence bands for guanine, adenine and cytosine originate from N 2p orbitals,
while for thymine the electronic states at the top of the valence band are formed mainly from C 2p states. All nucleobases
have the bottom of the conduction band formed mainly from C 2p states, with small contributions from H 1s orbitals.

Table 3 presents the LDA band gaps for the nucleobase crystals, together with the results of three sets of experimental re-
sults. It is necessary to remember that, as Kohn–Sham eigenvalues do not give correct excitation energies [273,274], DFT ex-
change–correlation functionals predict band gaps quite different from experimental values. The LDA exchange–correlation
functional tends to underestimate the main gap of semiconductors and insulators by about 40%. However, some works sug-
gest that a rigid shift in the LDA conduction bands is just enough to provide a reasonable agreementwithmore sophisticated
approximations [273,275–277]. For this reason we believe that, despite the lack of accuracy of our band gap estimates, the
shape of the uppermost valence band and lowermost conduction band curves (and the effective masses calculated from
them) are meaningful. The ACrs ordered by increasing band gap, according with the LDA calculations, are G < A < T < C ,
ranging from 2.68 eV (guanine) to 3.30 eV (cytosine).
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Table 3
Anhydrous crystals of DNA nucleobases: LDA and experimental energy gaps
Eg with corresponding valence band → conduction band transition assigned.
In the experimental section, I (D) stands for indirect (direct) gap. Effective
masses of electrons and holes along directions parallel and perpendicular to
the stacking planes (in units of the free electron massm0) are also shown.

Eg Eg me mh

(LDA, eV) (Exp, eV) ∥ ⊥ ∥ ⊥

3.82–3.84a

G 2.68 (B → B) 2.6b 11.5 4.0 9.2 4.0
4.3–4.6c

3.85–3.92a

A 2.83 (≈ Z → Γ ) 4.7b >40 5.4 >40 3.8
4.5–4.6c

3.82–3.86a

C 3.30 (Γ → Γ ) 3.6b >20 5.8 12 3.5
4.4–4.7c

4.04–4.09a

T 3.22 (B → α) 5.2b 3.8 6.3 6.9 15
4.5–4.8c

a This work.
b Ref. [278].
c Ref. [244].

Fig. 8.4. (Color online) Top: Viewing stacked layers in the anhydrous crystals of DNA nucleobases: G (guanine), A (adenine), C (cytosine), and T (thymine).
Middle: close-up of theG, A, C , and T band structures at the corresponding valence bandmaxima along directions parallel and perpendicular to the stacking
planes. Bottom: G, A, C , and T valence (∆V ) and conduction (∆C) bandwidths. In gray (black), bandwidths along the parallel (perpendicular) direction. The
top two bars indicate∆V and the two bottom bars indicate∆C .

X-ray absorption and soft X-ray emission spectroscopy of the DNA nucleobases powders were performed by Mac-
Naughton et al. [278], being obtained aHOMO–LUMOenergy gap of 2.6 eV for guanine, 3.6 eV for cytosine, 4.7 eV for adenine,
and 5.2 eV for thymine, leading to aG < C < A < T ordering of increasing band gaps for the ACrs, which agreeswith the LDA
calculations only for the lowest gap guanine crystals. On the other hand, a survey of experimental measurements performed
by Silaghi et al. [244] for DNA nucleobase films points to an energy gap of guanine in the 4.31–4.59 eV range, cytosine in
the 4.40–4.70 eV range, adenine in the 4.45–4.63 eV range, and thymine in the 4.5–4.8 eV range. As these energy ranges are
overlapped, it is not possible to present a list of crystals ordered by band gaps. Moreover, the electronic structure of these
thin films (80–120 nm) must be affected by surface effects absent in bulk crystals.

Tight-binding transport models depend on the interaction of adjacent orbitals and the resulting band dispersion. In this
approach, the description of band transport along DNA nucleobase stackings must take into account the bandwidth of the
valence and conduction bands near the respective band extremes. Fig. 8.4 presents, at its bottom part, the valence (∆V )
and conduction (∆C) bandwidths, calculated for the uppermost and lowermost overlapping valence and conduction bands,
respectively. Nevertheless, an adequate description of the charge transport, even for organic crystals, can be also given
through the effective mass approximation [279]. Indeed, there is a relationship between effective mass (m) and bandwidth
(∆E): the larger the first, smaller the latter (the effective mass is inversely proportional to band curvature and, therefore, to
band dispersion).

The top part of Fig. 8.4 shows some views of themolecular layers in each ACr. Its middle part display another set of close-
ups of the ACrs electronic band structures near their valence band extremes for two selected directions in reciprocal space:
parallel (∥) and perpendicular (⊥) to the plane define by a nucleobase in an unit cell. The parallel directions were selected
to be along some specific hydrogen bonds in order to give some information on the transport of charge carriers across them.
These directions are shown in Fig. 8.5: N7-H...O6 for guanine (atomic numbering of [261]), N9-H...N3 for adenine (atomic
numbering of [259]), N4-H4...O2 for cytosine (atomic numbering of [257]), and N3-H...O1 for thymine (atomic numbering
of [256]). These directions were used to estimate effectivemasses for both electrons and holes. Starting from the conduction
band minimum along a direction parallel to the plan of each nucleobase, we have calculated the smallest electron effective
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Fig. 8.5. (Color online) ‘‘Parallel’’ directions along with the carrier effective masses were calculated in this work. They were chosen to be aligned with
selected hydrogen bonds.

mass for thymine (3.8m0, wherem0 is the free electron mass) and the largest for adenine (>40m0). All in all, it seems that
the hopping of electrons along hydrogen bonds is very small for anhydrous crystals of guanine, adenine and cytosine. In the
perpendicular direction (along theπ-stacking axis), however, all nucleobase crystals exhibit electron effectivemasses in the
4.0–6.3 m0 range, signaling the possibility of semiconducting electronic transport in stacked nucleobases (for comparison,
doped SrTiO3 can achieve electronic effective masses as high as 7.7 m0 [280]). Hole transport along the parallel direction
involves very large effectivemasses for guanine, adenine and cytosine,while thymine has the smallest holemass for hopping
across hydrogen bonds, 6.9 m0. For the perpendicular effective mass, this situation is reversed, with guanine, adenine and
cytosine exhibiting hole effective masses in the 3.5–4.0 m0 range, while thymine has a 15 m0 effective mass. In general,
one can presume from the results here presented that stacked nucleobases in anhydrous crystals (and possibly for linear
chains) behave like wide gap semiconductors for electrons moving along the stacking direction, while the hole transport is
somewhat limited in stackings involving thymine nucleobases.

Finally, it is possible to object that the use of static structures of anhydrous crystals to obtain the electronic band struc-
tures is inadequate, as it does not take into account thermal effects which are relevant, for example, for DNA strands.
Indeed, it was shown that DNA strands have electronic properties highly sensitive to DNA conformation and tempera-
ture [281]. It is more difficult, however, to include thermal effects directly into DFT calculations. Inelastic effects caused
by electron–phonon coupling cannot be computed, as DFT decouples the movements of electrons and atomic nuclei follow-
ing the Born–Oppenheimer approximation. Nuclear configuration effects, on the other hand, can be estimated through the
sampling and averaging of an appropriate set of conformations of the studied structure, and have a more relevant role on
the electronic properties of DNA base crystals. In order to make a grounded guess of the vibrational effects on the electronic
structure, we have performed DFT simulations on disturbed crystals, with atomic positions randomly changed along arbi-
trary directions by 0.3 Å in average. This displacement was chosen taking as reference published data for colossal thermal
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expansion behavior of Ag3[Co(CN)6] crystals, which exhibit a lattice parameter variation of about 0.3 Å in the temperature
range 20–500 K [282]. In comparison, thermal nuclearmotions in 10–15 base pair molecules at room temperature are larger
by about one order of magnitude. For all sets of crystals investigated, we noted that the shape of the valence and conduction
band curves do not change significantly, at least not to the point of invalidating our conclusions on the semiconducting char-
acter of the ACrs for low temperatures, as all effective masses smaller than 7m0 of Table 3 vary by less than 1.2m0. One can
contrast our results with those of Ortmann et al. [243], who investigated the charge transport in anhydrous guanine crystals
using theKubo formalismobtaining themobility of holes using data fromDFT calculations. They have shown that the polaron
concept is required to understand the temperature dependence of the hole transport in guanine systems, the hole transport
at room temperature having a small contribution from coherent transport and being very anisotropic. For temperatures be-
low about 70 K, the effective mass of hole polarons in guanine anhydrous crystals is practically constant and about 1.5 times
larger than the bare hole effectivemass. Beyond this limit, the hole polaronmass increases almost linearlywith temperature,
reaching about 10 times the bare hole mass at 300 K. In another more recent work, the same authors have endorsed the use
of DFT-LDA simulations to parametrize the charge transport in organic crystals for more sophisticated methods of approxi-
mation including temperature [283]. On the other hand, the band dispersion in highly ordered hydrated multilayer films of
guanine was measured recently using photoelectron spectroscopy [284], the results showing a small hole effective mass of
about 1.1 m0, suggesting the existence of band-like charge transport even at room temperature. All in all, we believe that
the effective masses we obtained are useful in the description of the low temperature charge transport (below 70 K, if we
followRef. [283]) in anhydrous DNA nucleobase crystals. Finally, besides thermal effectswe couldmention boundary effects,
crystal defects, impurities, etc., which can also affect the electronic properties of the crystals and are not addressed here.

8.5. Optical properties

The averaged experimental absorption spectra of the anhydrous nucleobase crystal powders are shown in Fig. 8.6. For
each nucleobase, six samples were prepared and the average spectrumwas obtained, together with the standard deviations
at selected photon energies, which were used to draw the error bars. It is easy to perceive that all ACrs present two broad
maxima in the energy range between about 4 and 6 eV, with the cytosine crystal exhibiting a small hump below 4 eV. As one
can see, the error bars are small in general, being significant only for energies larger than 6 eV, well above the onset of optical
absorption. In order to estimate the energy gaps fromabsorption experiments, onemust performa linear fitting of the square
(square root) of the absorption coefficient near the absorption onset for direct (indirect) band gap materials [285]. Here
we used the indications given by the LDA calculations, considering that guanine and cytosine have direct band gap, while
adenine and thymine have indirect band gaps. The values estimated from this interpolation (shown in Table 3) comprise
different, but in general small, energy ranges when one looks to the set of samples used in the measurements: 3.82–3.84 eV
for guanine, 3.85–3.92 eV for adenine, 3.82–3.86 eV for cytosine, and 4.04–4.09 eV for thymine (the difference between
the maximum and minimum gap for each energy range is smaller than 0.1 eV). So, the sequence of increasing gaps is
G ≈ C < A < T . Comparing this result with the order of gaps predicted by LDA computations, G < A < T < C , we
see that both data predict guanine with smallest band gap and adenine having a gap smaller than thymine, but the largest
LDAband gap occurs for cytosine instead of thymine. However, taking into account the limited description of band gaps using
pure DFT functionals, these differences were not surprising (one must note also that the found LDA gaps are always smaller
than the optical absorption estimates by 0.5–1 eV). Observe that the gap value found in [278] for guanine is slightly smaller
than the LDA prediction, and much smaller than the values found from optical absorption and the energy range proposed
here and in [244]. Contrasting the experimental ordering of gaps G < A < C < T obtained in [278] with ours, we see a good
agreement, except that the average band gap of guanine from our absorptionmeasurements is slightly smaller than adenine
(the difference being only 10 meV), which does not allow us to affirm conclusively that guanine has the smallest band gap.
The band gap of cytosine predicted here (average 3.84 eV) is not far from the 3.6 eV value found in [278], although the other
values are very different, reaching a difference of 1.1 eV between the gaps for thymine and 1.2 eV for guanine. We believe
that these differences are due to the difficulties inherent to the X-ray absorption–emission spectroscopy method employed
in [278].

Fig. 8.7 depicts the complex dielectric function for the ACrs for incident light with distinct polarizations, the real part (η1)
being calculated from the imaginary part (η2) via the Kramers–Kronig relationship [286]. The work of Lebègue et al. [287]
suggests that LDA dielectric functions, in comparison with more sophisticated methods, differ mainly by a scaling factor
plus some energy shift. This can be checked out from our calculated curves, which after some scaling and energy shifting,
compare reasonably well with the experimental data of [244]. For guanine, there is a very pronounced anisotropy for both
η1 and η2 along the polarization planes (010) (parallel to the plane of a guanine molecule), (102) (perpendicular), and (12̄8̄)
(which contains the N7-H...O6 hydrogen bond). For adenine, the dielectric function components for light polarized along the
parallel (010) and perpendicular (101̄) molecular planes are very anisotropic as well, with the perpendicular components
exhibiting very small variation as the energy increases, which is odd, as the expected result should be a dominance of the
perpendicular polarization in the optical absorption due to the transfer of electrons between neighbor π molecular orbitals.
This result is probably due to the inability of the DFT-LDA functional to describeπ stacking interactions. The cytosine crystal
dielectric function components, on the other hand, are practically the same for light polarized along the parallel (911),
containing the N4-H4...O2 hydrogen bond, and perpendicular (201̄) molecular planes. Finally, the thymine crystals show
a pronounced anisotropy for the dielectric function components when one compares the cases where the incident light is
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Fig. 8.6. Measured optical absorption spectra of the nucleobase anhydrous crystals (in arbitrary units): G (guanine), A (adenine), C (cytosine), and T
(thymine). Error bars are shown for the six samples used in the experiment. Each curve is formed from 600 experimental data points.

Fig. 8.7. Complex dielectric function, η = η1+ iη2 , of the anhydrous crystals of DNA bases. Solid lines: incident light with polarization plane perpendicular
to the molecular plane of a single nucleobase in each ACr unit cell; dotted lines: incident light with polarization plane parallel to the nucleobase plane.
Dashed lines correspond to light polarization along the 12̄8̄ plane for guanine (which contains the N7-H...O6 hydrogen bond) and along the 55̄2 plane for
thymine (containing the N3-H...O1 hydrogen bond).

polarized parallel (010) and perpendicular (101) to the molecular plane, and parallel to the (55̄2) plane, which contains the
N3-H...O1 hydrogen bond. The anisotropy of the optical properties of guanine, thymine and adenine (specially the latter)
can be useful for applications in the field of nonlinear optics, for example.

In summary, in this section we have performed DFT calculations to obtain optimized geometries for the anhydrous
crystals of the four DNA nucleobases, guanine (G), adenine (A), cytosine (C) and thymine (T ) using the local density
approximation (LDA) for the exchange–correlation functional, and have estimated the band gaps of these crystals from
optical absorptionmeasurements. The LDA optimized crystals have lattice parameters smaller than the experimental values,
with the smallest (b parameter, −1.7%) and largest (a parameter, ≈−17%, resulting from the LDA overestimation of the
interaction along a direction where van der Waals forces are prevalent) differences observed for the thymine crystal. The
distance between molecular planes d is 2.3% smaller than experiment for guanine, and 6.4% smaller for cytosine. The
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difference between experimental data and the optimized unit cell volumes increases in the order G < C < A < T . This same
ordering is followed by the formation energies of the crystals, suggesting that guanine is the most stable structure, while
thymine is the less stable one. Analysis of the electronic band structures of the ACrs revealed that guanine and cytosine are
direct band gap materials, while adenine and thymine have indirect band gaps. LDA values for the energy gaps are smaller
than the experimental values, as expected, and the gaps estimated from the optical absorption measurements presented
in this work are in general smaller than the experimental data available in the literature (except for guanine). The LDA
ordering of increasing band gaps is G < A < C < T , while the ordering obtained from the optical absorptionmeasurements
is G ≈ C < A < T . Band dispersions, which are crucial to model the electronic transport properties using the tight-binding
model, are relatedwith the effectivemasses, whichwere also calculated here. For electrons and holesmoving along selected
hydrogen bonds (parallel to themolecular plane of a given nucleobase), effectivemasses are in general large, exceptionmade
to thymine.When the sameelectronsmove along theπ-stacking axis, however, effectivemasses stay in the 4.0–6.3m0 range,
which suggests that stackings of nucleobases at low temperature behave like wide band gap semiconductors for electrons.
The transport of holes is also favored for nucleobase stackings without thymine. Finally, the complex dielectric function was
calculated for each ACr, and a very pronounced anisotropy was observed for polarized incident light in the cases of guanine,
thymine and for adenine (specially), but not for cytosine.

9. Prospecting future trends and concluding remarks

To conclude, we present in this section a survey of some relevant findings discussed in the recent literature, reporting
on either novel designs or new conceptual DNA’s approaches that will likely deserve closer attention in the years to come.
Major challenges to be overcome in order to improve the theoretical modeling of DNA electronic properties will also be
discussed.

9.1. Applications of DNA charge transport in nanobiotechnology and molecular electronics

DNA-binding proteins involved in genomemaintenance can be linked to long-range signaling across the genome, which
raises the possibility of charge transport processes being used not only to activate the genome to respond to stress, but also
to protect it through signaling among proteins [288]. Effective tight-binding models were applied to study theoretically the
effects of point mutations on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene [109]. It
was shown that, in contrast with noncancerous mutations, cancer related mutations produce significantly weaker changes
of transmission properties, which indicates that charge transport can affect the DNA-repairing capabilities and induce car-
cinogenesis. These results, however, must be further investigated because the electron–phonon coupling and the long-range
interactions effect were not taken into account. By the way, it has been also demonstrated a contractile DNA nanoswitch
which can be turned on (contracted) and off (extended) with a 40-fold conductivity difference between the two states [289].
The nanoswitch can be activated repeatedly, being suitable to develop prototypes for more sophisticated and complex
electronic DNA-based electronic nanodevices, such as DNA transistors, if one can figure out how to electronically gate the
nanoswitches. Contractile duplexes could also function as sensitive, chip-based electronic biosensors for the identification
of quadruplex-interactive compounds to inhibit the enzyme telomerase and repress some oncogenes. Medicinal use of DNA
and carbon nanotubes (CNTs) for an efficient and nontoxic transport through the cell membranes was also investigated, as
carbon nanotubes have large surface areas, unique surface properties and needle-like shapes, allowing for the delivery of
large amounts of therapeutical agents for gene therapy and imaging [290]. However, in vivo studies involving the use of
carbon nanotubes for gene delivery are just beginning, being necessary to investigate systematically the stability, blood cir-
culation and pharmacokinetics of DNA–CNT conjugates and complexes. The fabrication of nanodevices using a single-walled
carbon nanotube (SWCNT) passing through a barrier between two fluid reservoirs has allowed the translocation of small
single-stranded DNA oligomers through the SWCNT [291], opening new avenues for control of DNA translocation.

When a DNA electron is removed from DNA, a hole, mostly located at the nucleobases, migrates reversibly through
duplex DNA via a hopping mechanism for long distances until it is trapped in an irreversible chemical reaction (typically
at guanine sites) which damages the nucleobases and can lead to mutagenesis, carcinogenesis and aging. The efficiency of
hopping depends on the particular sequence of nucleobases and the nature of the damaging chemical reaction. Counterions
to the phosphate groups have an important role in helping the hopping mechanism and the eventual reaction with water
molecules. A complete description of DNAoxidation demandsmore studies on the structural, kinetic and dynamic properties
of DNA [292]. Damaged bases in DNA can be identified using DNA charge transport, based on a reduction in the number of
sites to search by a localization of protein in the vicinity of lesions [293]. Analysis of 162 disease-related genes from several
medical databases, with a total of almost 20,000 pathogenic mutations, revealed a significant difference in the electronic
properties of the population of observedmutations in comparisonwith the set of all possible mutations [294], implying that
the electronic properties of DNA have an important role in cellular processes, and leading to the possibility of using them to
predict, detect, and diagnose mutation sites. Experiments and theoretical simulations have demonstrated that the critical
first step in the oxidative mutation of adenine–thymine rich DNA regions, which are involved in the genomic instability
during the early stages of cancer development, is proton-coupled electron transfer occurring in thymine nucleobases [295].

Incorporating metals into DNA can result in new types of materials which could take advantage of the DNA programma-
bility and nanoscale rigidity. Metal ions can be added to natural DNA, full metal complexes can be incorporated into DNA
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strands, or metallated DNA can be formed after the placement of free ligands in the nucleic acid [296]. One can imagine,
for example, metal complexes with distinct geometries being used to build branching DNA junctions with distinct spatial
configurations that would be very difficult to achieve otherwise [297]. Metal complexes can also modulate the stability of
DNA, affecting its robustness for use in nanomaterials [298]. The electronic, optical and photochemical properties of DNA
doped withmetals can be relevant for materials science and biotechnology as well, and DNA can work as a scaffold to create
asymmetric structures with diverse transition metals being placed at specific sites, giving rise to 2D and 3D patterns [299].
Reversible and switchable DNA assemblies allow for the manipulation of metal–metal distances in a nanoscale structure, to
produce detection assays and catalysis [300]. Some issues, however, must be addressed, such as the development of robust
devices to measure directly charge transport or magnetic interactions in metal–DNA structures, and the incorporation of
multiple different metals. With respect to the first difficulty, a quantitative measurement of the charge transfer which oc-
curs when an organic molecule was excited by light was recently achieved by Fleisher et al. [301], and their technique could
be adapted for the characterization of charge transport in pure and metal doped DNA chains. Energy gap characterization
of single double-stranded DNA molecules complexed with metal ions [302] showed that the gaps in the I–V characteristics
are associated with the molecular HOMO–LUMO gap, while the difference between the gaps for systems with and without
the ions is actually due to the metal ion, which couple the energy levels of the DNA bases, and not to thermal or single
electron tunneling effects. A recent work [303] has shown that excitation can be coupled from the localized surface plas-
mon polaritons resonance modes of a silver nanoparticle excited through multiphoton absorption by a femtosecond laser
pulse to an attached DNA nanowire. The excitation can be transferred along the nanowire through several micrometers and
from a nanoparticle to another through the DNA nanowire, combining the advantages of both molecular assemblies and
plasmonics to establish a link between nanostructures, providing a communication channel between molecular devices.

Silicon chipswithDNAmodified electrodes (DMEs) employingDNA-mediated charge transport formultiplexed detection
of DNA and DNA-binding protein targets were demonstrated by Slinker et al. [304]. Four DNA sequences were differentiated
at the same time on a single DME chip, including one with a single base mismatch, emphasizing the high selectivity of these
detectors. Protein activity from the restriction enzymeAlu1was also investigated,with the chip exhibiting sequence-specific
recognition. Other researchers have employed a tetrahedral DNA nanostructure to study charge transport through-space
and through-duplex of small redox molecules bound to specific positions above the surface of a gold electrode [305]. The
charge transport measurements shed new light on DNA-basedmolecular electronics and on the design of high-performance
biosensor devices, suggesting that DNA nanostructures can be used for the rational design of switchable DNA nanodevices
for electronic, biosensor, and computational applications. Functionalization of DNA with surfactants allows the production
of good optical quality thin films from waste produced in food processing industries, with applications in electronics and
photonics, obtaining more efficient materials with higher chromophore concentration for organic light emitting diodes
(OLEDS) [306]. Electrical conductivity of DNA thin films can be tailored by doping and doped DNA can be transformed into
a solid electrolyte which could be used in smart windows, solar energy conversion and batteries. Pheeney et al. [307] have
shown that hemoglobin can be a robust and effective electron sink for electrocatalysis in DNA sensing on low-density DNA
films, enhancing its sensitivity to the point of being able to perform femtomole DNA sampling.

Negative differential resistance (NDR) is a theme of interest for the development ofmolecular electronics due to potential
applications in the development of logic devices and memory circuits. The charge transport through suspended DNA
junctions was investigated by using themechanically controllable break junction technique [308], with the current–voltage
(I–V ) characteristics in an aqueous solution revealing NDR and hysteresis. When the measurements were carried out in
a high-vacuum environment, the peak positions of NDR were shifted to lower voltage with a sharp amplitude decrease.
It is worth to note as well that simulations on the charge transfer between DNA and proteins in nucleosomes were
carried out using combined solid state physical and chemical methods for a polythymidine–poly(lysine–triglycine) and
a polythymidine–poly(arginine–triglycine) idealized system, revealing that the gap between the valence band of the
polythymidine chain and the conduction bands of themodel protein chains are very large to allow for a direct charge transfer
between them [309]. It was also shown that electron excess canmove through RNAπ-stacks over a significant distancewith
dual distance dependence, which could be useful to design fluorescent RNA probes and RNA-based devices [310].

9.2. Water and counterion effects on DNA charge transport

Experiments on DNA bundles manipulated with silicon-based actuated tweezers have shown that the electrical con-
duction in DNA is ruled mainly by humidity [311]. Adsorption of water on the DNA backbone explains the quasi-Ohmic
behavior and exponential dependence of conductivity with relative humidity observed in DNA strands. Ab initio density
functional theory and classical molecular dynamics studies were employed to analyze the electrical structure and transmis-
sion probability in four DNA sequences taking into account water and counterion interactions [312], being shown that their
conductance is primarily ruled by interstrand and interstrand coupling between low-energy guanine orbitals. When ade-
nine–thymine base pairs were inserted between the guanine–cytosine rich domains, the first acted as a tunneling barrier. A
hybrid method combining classical molecular dynamics, quantum chemical calculations and a tight-binding Hamiltonian,
taking into account the time fluctuating electronic structure along a molecular dynamics trajectory with solvent effects,
was also used to describe charge transport through DNA [313]. It supports the view that charge transport across solvated
DNA wires is dominated by conformational fluctuations, implying that transport approaches based on band-like coherent
transport or on static geometries, cannot give a good description of charge motion in these systems.
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The conductance of DNA duplexes in a water-Na+ solution for deformations along DNA acoustic modes was investigated
using classical molecular dynamics and the Kubo technique [314]. Each lowest-frequency acoustic mode influence the DNA
charge transmission in a quite different way, with the mode capable of enhancing the DNA duplex transmission being
determinedby the length andbase sequence of the biopolymers,while the ‘‘hydrationwater backbone’’ canhave anoticeable
effect on the charge transfer/transport properties of some DNA types. Leveritt et al. [315], have designed an electrostatic
model to investigate the effect of humidity on the ionic conductivity of DNA assemblies, treating each DNA molecule
independently and assuming that each one is surrounded by a layer of water where ions are confined. Their results indicate
that the dramatic increase in DNA conductance of six orders of magnitude with increasing humidity is due to the change in
ion binding energy induced by the electric field confinementwithin thewater layer, thus leading to a very high sensitivity to
the thickness of thewater layer. As amatter of fact, single-molecule sensing based on solvation effects surrounding a current-
carrying organic backbone molecule has been proposed based on a nonequilibrium Green’s function calculations [316].

Effects of water wetting on the transport properties of molecular nanojunctions made from organic molecules and
carbon nanotubes were investigated by Rungger et al. [317] using a combination of empirical-potential molecular dynamics
and quantum electronic-transport calculations within the density functional theory and Green’s function theory. Their
calculations showed that water effectively produces electrostatic gating to the molecular junction, with a gating potential
due to the time-averaged water dipole field. For DNA, quantum mechanical calculations revealed that water molecules in
the first hydration shell around guanine–cytosine radical anion pairs (RAPs) facilitate the proton-transfer reaction [318].
The water arrangement around an embedded GC RAP is different from that around an isolated GC RAP, which can result in a
very different solvent effect on the energetics of the proton transfer. Base stacking and hydration in these systems are much
more important than the effects of the sugar–phosphate backbone and counterions. Multiscale calculations, combining
quantum mechanics and molecular mechanics (QM/MM) [319], with the quantum calculations being performed using
density functional theory, have shown that the hole transfer across adenine bridges in double-strandedDNA is codetermined
by the large fluctuations of site energies induced by the solvent degrees of freedom, reducing drastically the barrier for the
hole transfer. An accurate description of solvent effects and a proper sampling of molecular configurations is required to
describe the gating of charge transfer in DNA. It was also proposed a DFT/classical molecular dynamics model to model DNA
charge conductivity including effects from temperature, hole-hopping charge transfer and time-dependent nonequilibrium
interaction of DNA with its molecular environment [320]. This approach predicted a significant hole-transfer slowdown
when one switches from dry to wet DNA with and without electric field bias and, in agreement with experiments, an
insulating behavior of guanine–cytosine oligomers depending on the experimental setup and on the number of base pairs.
Finally, Car–Parrinello molecular dynamics (CPMD) simulations were carried out to investigate the interactions between
nucleic acid bases and bulkwater [321], providing details on the average number, lifetimes andmobility of watermolecules,
as well as the orientation and 3D distribution of hydrogen bonds in the first hydration shell of adenine, guanine, cytosine
and thymine. Differences in hydration studied using CPMD and quantum chemistry suggest a significant effect of the second
hydration shell on the structure and properties of the first hydration shell for the solvated nucleobases.

9.3. Modeling DNA charge transport: advances and challenges

DNA structural disorder and dynamic fluctuations make themeasurement of the conductivity of DNA strands a daunting
task for experimentalists. In particular, dynamic fluctuations occurring on thepicosecond andnanosecond time scales are ex-
pected to have a strong effect on the ability of DNA to transport charge. Anymodel of charge transport in DNAmust consider
effects of static anddynamic disorder, as static disorder attenuates long-range charge transport, anddynamic disorder allows
the formation of transient pathways [322]. Aftermeasurements of quantumyields for charge transport across adenine chains
of increasing length [323], contributions of single- andmultistep channels to DNA charge transport were isolated, establish-
ing that coherent transport through DNA occurs mainly across 10 base pairs due to the delocalization of electronic states
over a full helix turn, showing that models of charge migration in DNA must take into account the contribution of coherent
transfer over long distances. Besides, biological polymers have a very complicate composition of their subunits, and can sup-
port long-living nonlinear excitations. Modulation instability can activate solitons in DNA, and recently a study has showed
that the nonlinear dynamics of charge transport in the DNA helix can be described using a modified discrete nonlinear
Schrödinger equation [324]. Even so, thermal fluctuations anddissipation effects on the solitonic patternsmust be addressed.

A computational search for DNAπ-stacked structureswith high electric conductancewas carried out by Berlin et al. [325]
using semiempirical calculations (INDO/S Hamiltonian). The identification of guanine–cytosine (G–C) and adenine–thymine
(A–T) neighboring configurations, that allow strong electronic coupling and molecular electric conductance much larger
than equivalent reference systems in the literature, provides guidance for the fabrication of DNA devices and DNA-based
elements for nanoscale molecular circuits. A newmodel to explain the role of electrons at the lowest unoccupied molecular
orbitals (LUMO) in the electrical conduction through the DNA molecule was proposed by Abdalla [326], with a good fitting
of calculated DC and AC conductivities and dielectric permittivity of a DNA molecule to experimental data. Its results were
presented as evidence that free carriers in the LUMO and HOMO are responsible to make the DNA molecule a conductor,
insulator or semiconductor.

While model Hamiltonians are a powerful tool to investigate DNA charge transport, oversimplified parameters are still
an issue to be addressed. Fragment orbital basis techniques can be useful to improve them, avoiding the need to adjust ex-
perimental parameters in approaches such as DFT, to estimate site energies and hopping terms [327]. Unfortunately, pure
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DFT functionals have limitations: they do not describe well excited states and dispersion forces such as van der Waals in-
teractions. However, DFT-based results can be used as a guide to predict trends in DNA conductivity. As an example, we
mention the electrical conductivity of dry and hydrated DNA duplexes between two Au electrodes investigated by Maeda
et al. [328] using the Green’s function method coupled with DFT computations. When explicit water molecules were in-
cluded in their modeling, the calculated electrical currents for two different duplexes were increased by about an order
of magnitude, in qualitative agreement with experimental data. The same approach was also employed to investigate the
electrical conducting properties of artificial DNA duplexes, which use artificial nucleobases based on adenine to prevent
oxidative damage [329]. The results describe well the origin of the experimentally observed high conductivity through ar-
tificial DNA duplexes, while the simulations allow the design of novel artificial DNA bases with low ionization energies to
build novel artificial DNA duplexes for potential use as highly conductive nanowires.

The bias-dependent transport properties of short poly(G)–poly(C) A-DNA strands coupled to Au electrodes were inves-
tigated using first-principles electronic transport methods and the nonequilibrium Green’s function approach with self-
interaction corrected DFT. As a result, a full self-consistent coherent I–V curve of various DNA fragments were obtained,
indicating that electron transport through DNA is due to a sequence-specific short-range tunneling across a few bases, in
combination with diffusive/inelastic mechanisms [330]. The zero-bias conductance of dry DNA was calculated using den-
sity functional theory and phenomenological Büttiker probes to account for decoherence effects [331]. The results suggest
that, while the phenomenological Büttiker probes are able to describe experiments qualitatively at low bias, amore accurate
treatment of vibronic coupling is necessary to explain experimental data at larger biases, which requires a better knowledge
of vibronic modes and coupling strengths for DNA strands.

A computational analysis on how the electronic properties of nucleobase stacks depend on the sequence and conforma-
tion was performed by Rooman andWintjens [332], by using the M06-2X hybrid exchange–correlation functional, showing
that the charge and spin density vary at each site of theDNAmolecule accordingwith the conformation. Thismeans that con-
formational variations occurring in biological systems due to the flexibility of the DNA molecule can affect these electronic
properties, asmany transcription factors alter the structure of DNAupon binding. On the other hand, recent developments in
Coupled-Cluster (CC) excited states theory have allowed the application of computationally expensivemethods to the study
of nucleobases and even their complexes, with encouraging results [333–336]. These developments suggest the feasibility of
extending these types of calculations to simulate vibronic spectra, model environmental effects and electron transfer. They
also can be useful to find out the mechanism behind the relaxation dynamics of excited states: if it is ruled by intra-strand
or inter-strand processes. CC theory can also provide accurate values for site energies and electronic couplings for charge
transport models, providing a benchmark parametrization and allowing the comparison of the charge transport probability
between stacked andWatson–Crick pairs. The implementation of approximate CCmethods, however, is necessary to inves-
tigate larger systems, and a comparison between them can be very useful to understand the role of different contributions
included or neglected across different approximations.

A periodicmodeling of DNA double helices in nucleosomes at different temperatureswas carried out by Bende et al. [337]
using the Hartree–Fock crystal orbitalmethod, in order to obtain the electronic band structures and evaluate holemobilities.
The results for poly(G–G) structures were shown to be in good agreement with equivalent tight-binding calculations and
the method can also be useful to describe the charge transport in DNA of 34 nm (more than 100 pairs) observed by Barton
et al. [338], which have proposed an explanation based on a charge transport coherent mechanism (implying the existence
of energy bands). A model for hole migration in short DNA hairpins, based on the numerical solution of the Liouville
equation with the Hamiltonian including some molecular vibration modes explicitly, was recently formulated and applied
to poly(A)–poly(T) with less than seven base pairs [339]. The results suggest that superexchange can be responsible for the
hole transfer from donor to acceptor in poly(A)–poly(T) hairpins with one or two base pairs, while for longer hairpins a high
degree of delocalization of the positive charge along the entire system was observed. However, partial localization present
in the latter mechanism indicates that charge transfer in short DNA hairpins proceeds through an intermediate mechanism
distinct from both superexchange and hopping.

Adsorption of DNA nucleosides on metallic surfaces, on the other hand, is valuable to understand the wrapping of ad-
sorbed DNA in vacuum and in solution, crucial for the design of DNA-based nanodevices. Classical molecular dynamics was
used as a tool to understand the self-assembly mechanism of DNA nucleobases on the Au(111) surface, with optimized ge-
ometries and electrostatic point charges being calculated using the hybrid B3LYP exchange–correlation functional [340].
The results provided detailed useful information to improve the stability and activity of nucleotide captured layers. After-
wards, the structural and electronic properties of DNA nucleosides adsorbed on Au(100) and Cu(111) were investigated
[341,342], the latter using DFT calculations including van der Waals interactions through the LMKLL exchange–correlation
functional, which allows for the study of long-range interactions in a rigorous manner [343]. While the standard PBE ex-
change–correlation functional underestimates the binding energy to about 30% of LMKLL, it has been shown that van der
Waals interactions compete with the formation of specific bonds, and favor a parallel orientation of the DNA bases with
respect to the surface, as well as promoting the shortening of the molecule-surface distance. Significant differences in the
electronic density of states can also be noted if one compares the van der Waals-corrected functional with the pure PBE
functional results, affecting the molecule-surface charge transfer. Hence, it is necessary to take into account van der Waals
effects in DFT calculations if one wants to obtain a correct description of DNA nucleosides adsorbed in metallic surfaces.

A phenomenological statistical model based on a tight-binding description of DNA was developed to understand
the influence of decoherence and bonding on the linear conductance of single double-stranded DNA molecules with
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tight-binding parameters obtained from DFT computations, the results exhibiting a good fit to experimental data [137]. The
properties of static and dynamic polarons were investigated using a modified tight-binding Su–Schrieffer–Heeger (SSH)
model, with the dynamics being obtained for different order calculations [344]. These theoretical calculations revealed
that a polaron can tunnel through a potential barrier of at most 3 bases, which was also observed in experiments. The
effect of phonons and backbone disorder on electronic transport in DNA molecules was investigated using a two-channel
tight-binding model and transfer matrix to obtain the localization length of a charge carrier within the molecule [345]. It
was shown that above (below) a threshold frequency, phonons can improve (prevent) the electron transport in DNA with
backbone disorder. In order to improve the tight-binding approach to simulate charge transport in DNA strands, an advanced
tight-bindingmodel was proposed [346], which includes hopping integrals of the next-nearest-neighbor (nnn) nucleobases,
and takes into account how the curved helical structure affects the on-site energies. The calculated transmission and
current–voltage characteristics, as a function of the electron energy and source–drain voltage, with a variation of the contact
coupling between the leads and the DNA’s molecule and tilt angle were obtained, and the results reveal that the electron
transmission and current flow are enhanced by including nnn effects, while increasing the helical tilting angle decreases
the electron current across the DNA strand. Nevertheless, the development of new methods to address charge transport in
complex molecules demands more sophisticated approaches, including combining molecular dynamics simulations with
electronic structure calculations to estimate the parameters to be used in effectivemodel Hamiltonians capable to deal with
distinct charge transport scenarios in DNA and similar systems. This approach has the advantage to allow the development
of a controlled coarse-graining of the electronic structure and, consequently, a tuning of the degree of complexity of the
Hamiltonians for transport modeling. Besides, it also allows the study of other polymers and organic crystals. The reliability
of quantum simulations using classical trajectories and injected charge effects, however, must be addressed as well [346].

9.4. Summary

In the last few years, many promising developments have occurred in the field of DNA charge transport toward the
development of DNA-based nanostructures and nanodevices. In order to account to some of these achievements, we have
provided here a review text on the state of the art of the DNA’s unique physical properties. As the field of nanotechnology is
nowadays one of the most important area of research, DNA-mediated self-assembly has the potential to profoundly impact
this field, since its ability to choose the sequence of nucleotides, and hence provide addressability during the self-assembly
processes, makes DNA an ideal molecule for nanobiostructured devices.

The possibility of developing new sophisticated nanodevices integrating man-made nanostructures with biomolecules
such as the nucleic acid analogs [347], as well as the integration of three-dimensional DNA arrays, nanoparticles and nano-
electronic components [348]with someprecision, is seeking for new theoretical analysis of the emerging physical properties
of these complex structures, similar to those discussed in this review article. By the way, the direct electrical interfacing at
the biomolecular level discussed here surely opens the possibility of monitoring and controlling critical biological functions
and processes in unprecedented ways, giving rise to a vast array of possibilities such as medical monitoring devices, drug
delivery systems, and patient monitoring systems, to cite just a few.

Among itsmain features, we have discussed several important topics relatedwith theDNA’smolecule, including the elec-
tronic density of state, energy profiles, thermodynamic properties, localization, scale laws, fractal and multifractal analysis
and anhydrous crystals. Some related emerging topics, that should deserve attention in the years to come, are highlighted
above in this section, keeping in mind that, since this subject is rapidly changing, a good comprehension of the concepts
developed so far should be worthwhile to open up new avenues for technological innovations. This includes experimental
techniques taking into account that, since experimental reality is approaching theoretical models and assumptions, detailed
analysis and precise predictions are being made possible nowadays.
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