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Abstract

We investigate the transmission of electromagnetic plane waves through 1D binary dielectric multilayered structures that exhibit

aperiodic incommensurated sequences of refractive indices. The aperiodicity is introduced by considering the sequence of refractive

indices to follow a sinusoidal function whose phase f varies as a power-law of the layer index, f/ in. For n> 1, the resulting

sequence is effectively uncorrelated leading to the Anderson localization of most of the electromagnetic modes, except at the Bragg

resonances. The crossover from a uniform structure at n ¼ 0 to a quasi-periodic structure at n ¼ 1 is signaled by a minimum at the

spectrally averaged transmission. We perform a spectral analysis of the refractive index sequence to show its close connection to the

main features exhibited by the averaged optical transmittance. Our results suggest that aperiodically modulated dielectric structures

can potentially be used in the development of wide-band filters.

# 2008 Elsevier B.V. All rights reserved.

PACS : 78.67.Pt; 42.25.Dd; 78.20.Bh

Keywords: Multilayered structures; Transmission spectrum; Aperiodic sequences; Anderson localization

1. Introduction

The pioneer Anderson’s theory concerning the

localization of non-interacting electrons in disordered

systems [1] led to a deeper understanding of several

important condensed matter phenomena. According to

the Anderson theory, the interference between multiply

scattered Schroedinger waves leads to exponentially

localized electron eigenfunctions in one-dimensional

disordered systems. Along the last two decades, such

exponential localization has been shown to be violated in

a series of model systems. The random-dimer model

[2,3], which consists of a random binary chain with one of

the species always appearing in pairs, has a resonant

mode with no back-scattering due to dimers that remain

extended. Models that include long-range correlated

disorders have also been shown to display a band of

extended states for strongly enough correlations with can

sustain coherent Bloch oscillation in the presence of a

static electric field [4–6]. Another class of 1D models that

can exhibit an Anderson-like localization-delocalization

transition, involves non-random deterministic potentials

which are incommensurate with the underlying lattice

[7]. This class of models depicts features that are in

between those of the Anderson model and the periodic

Bloch model. The localized or extended nature of the

energy eigenstates presented by this class of models has

been extensively investigated in the physics literature

[8,9] and has been related to the general characteristics of

the aperiodic on-site energy distribution.
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As a purely interference phenomenon, Anderson

localization is also observed to occur with vibrational

[10–14], magnetic [15–19] and electromagnetic [20–

23] waves. In fact, it has been observed in random

dielectric multilayer system, where the localized modes

decay exponentially and, as a consequence, the

ensemble average of the transmission logarithm over

many realizations of the disorder usually decays

linearly with the sample thickness L.

As it occurs for the electron localization problem,

violations of the exponential localization of electro-

magnet waves propagating in random media have been

reported in several physical situations. In one-dimen-

sional random n-mer dielectric systems, where seg-

ments with n atoms are randomly inserted in a host

chain, a localization–delocalization transition of elec-

tromagnetic modes takes place at some resonance

frequencies due the positional correlations in the

structure [24]. Microwave-guides with spatially corre-

lated random scatters have also been shown to support

transmitting bands due to non-localized modes [25].

Metamaterials have also been extensively studied as an

active component in random dielectric multilayered

systems [26–28]. This kind of structure exhibits scale

invariant bandgaps [26]. For a 1D disordered stacks of

alternating right- and left-handed layers, the introduc-

tion of metamaterials substantially suppresses Ander-

son localization [27]. Structures following quasi-

periodic sequences can present different kinds of

bandgaps as non-Bragg gaps for Thue-Morse multilayer

[29] and self-similar energy spectrum in Fibonacci-like

structures [30–32]. Another mechanism for the emer-

gence of non-exponentially localized states in 1D

random systems is through the hybridization of spatially

separated degenerate modes [33]. Recently, the exis-

tence of these so-called necklace states has been

reported by transmission measurements in random

dielectric multilayers [34,35]. Necklace states are in the

origin of well-defined oscillations on the fluctuations of

the transmittance in one-dimensional random photonic

system with resonant layers [36].

In this work, we investigate the transmission

properties of electromagnetic waves propagating

through 1D binary dielectric multilayered structures

that follow an aperiodic and incommensurate modula-

tion over the refractive index sequence. In order to

produce an aperiodic multilayered structure, the

formalism used in Ref. [7] was considered. It consists

in using a sinusoidal modulation of the refractive index

sequence whose phase f varies as a power-law, f/ in,

where i is the layer index. The exponent n controls the

degree of aperiodicity in the structure. Using a transfer

matrix formalism, we compute the transmission

spectrum of electromagnetic waves with frequency v

propagating along the stratified dielectric media. We

will report a non-trivial transmission spectrum that

strongly depends on the aperiodicity degree. In general,

the spectral transmission, averaged over the frequency

band, shows a maximum at n ¼ 1:0 and a local

minimum between n ¼ 0:5 and 1.0. By employing a

Fourier analysis of the refractive index distribution, we

will associate the main features of the spectrally

averaged transmission with the correlations present in

the underlying sequence of dielectric layers.

2. Transfer matrix formalism

The transfer matrix formalism is well suited to

compute the transmission spectrum of electromagnetic

waves in stratified dielectric media. We are going to

describe the main lines of this formalism to the

particular case of normally incident plane waves of

frequency v. The stacking direction is along the z axis

and the electric field linearly polarized
~EðzÞ ¼ EðzÞe�ikzx̂, where k is the wavenumber. The

relation between the amplitudes of the electric and

magnetic fields at the interface located at z1 and the

fields at the interface at z2 ¼ z1 þ d, where d is the

thickness of the dielectric slab, can be expressed in

transfer matrix form as

E1

H1

� �
¼

cos d iZsin d
i

Z
sin d cos d

 !
E2

H2

� �
(1)

where the phase change d ¼ vnd=c, n is the refractive

index of the medium and Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðm=eÞ

p
is the layer

impedance, with e and m are the dielectric constant

and magnetic permeability, respectively. The boundary

conditions across an interface require the continuity of

the parallel components of the electric and magnetic

fields. The generalization of the above procedure for a

stratified medium consisting of a sequence of N dielec-

tric layers is straightforward. The fields at the first and

last interfaces can be related through a product of

individual transfer matrices as:

E0

H0

� �
¼ M1M2 . . . MN

EN

HN

� �
¼ M

EN

HN

� �
(2)

where Mi is the transfer matrix of the ith layer, E0 and

H0 are the electric and magnetic field amplitudes at the

first interface, and EN and HN are the field amplitudes at

the last interface. The complex transmission coefficient

of such stratified medium can be obtained by assuming

that the incident beam is coming from the left ant that
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one has just the outgoing transmitted wave at the right of

the multilayer structure. It can be expressed as

tðvÞ ¼ 2=Z i

ðm11 þ m12=ZoÞ=Z i þ ðm21 þ m22=ZoÞ
(3)

where mi j’s represents the elements of the total transfer

matrix M. Z i and Zo are related to the impedances of the

input and output media. The complex transmission

coefficient brings information regarding both the phase

and amplitude of the transmitted wave. The phase is

related to dispersion properties such as the group velo-

city. In what follows, we will be particularly interested

in analyzing the ratio between the intensities of the

outgoing and incoming waves, which is given by the

transmission TðvÞ ¼ ðZ i=ZoÞjtðvÞj2.

3. Model and results

We will consider multilayer structures composed of

two kinds of non-absorbing dispersionless dielectric

layers with thicknesses taken in such a way that

nAdA ¼ nBdB. In order to produce an aperiodic multi-

layered structure, we closely followed the procedure

described in ref. [7]. The sequence of refractive indices

is taken to obey the aperiodic rule:

V j ¼ cos ðap jnÞ! n j ¼
nA if V j � 0

nB if V j > 0

�
(4)

The above rule actually uses a sinusoidal function whose

phase f varies as a power-law, f/ jn, where j labels the

layers of the stratified dielectric structure. The exponent n

controls the degree of aperiodicity in the structure. The

resulting dielectric structure is surrounded by vacuum.

For n ¼ 1 and rational a one has a purely periodic

refractive index sequence and all electromagnetic modes

shall become extended. For n ¼ 1 and irrational a the

sequence becomes quasi-periodic (incommensurate) and

the spectrum of propagating modes becomes fractal

[30,31]. For n< 1 the sequence is aperiodic with the

typical wavelength of the refractive index modulation

increasing as a function of the layer index. In this regime,

the spectrum exhibits localized and delocalized modes.

In the opposite regime of n> 1, the modulation wave-

length decreases with the layer index and most states

become localized except at specific resonances, charac-

terizing a pseudo-random regime.

In our calculations we used a ¼ ð
ffiffiffi
5
p
� 1Þ=2 (the

golden mean), nA ¼ 1:5 and nB ¼ 2:5. Fig. 1 shows the
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Fig. 1. Transmission spectra of multilayered structures with different values of n and N ¼ 5� 103 layers as a function of d ¼ vnd=c

(nd ¼ nAdA ¼ nBdB). For n> 1, the structure is pseudo-random and the spectrum has narrow transmission peaks in the vicinity of the Bragg

resonances. For n< 1, the transmission can be widely suppressed as n increases. In the periodic incommensurate case (n ¼ 1) the spectrum presents a

self-similar structure of gaps typical of Fibonacci dielectric sequences.
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transmission spectra of multilayered structures with

different n values and N ¼ 5� 103. As we used layers

with the same optical length, the mode frequency is

proportional to the phase change d within each layer. For

n ¼ 0:5, the spectrum is dense with a large number of

transmissing frequencies. This feature is due to the fact

that the number of interfaces between distinct dielectric

slabs is small in this regime. For n ¼ 1:0, well-defined

bandgaps are present that follow a self-similar pattern.

This spectrum is typical of quasi-periodic structures

with incommensurate sequences. For n ¼ 1:5, the

sequence presents a pseudo-random character and most

of the modes become localized, except in the vicinity of

the Bragg resonances. An interesting aspect is observed

when we increase n from n ¼ 0 (uniform sequence) to

n ¼ 1 (quasi-periodic sequence). The number of

transmitting modes changes non-monotonically in this

region. This feature is represented by the case of n ¼
0:7 which exhibits just very few transmitting modes.

The above non-monotonic behavior of the transmis-

sion spectrum is described more quantitatively in Fig. 2,

which shows the spectrally averaged transmission

(hTid ¼ ð1=pÞ
R p

0
TðdÞdd) as a function of sample

thickness N for different values of n. The spectrally

averaged transmission typically decreases as the

number of layers increases. However, the size

dependence is rather weak for the quasi-periodic case

of n ¼ 1, specially in the regime of large N. For n> 1,

the decrease in the average transmission with the system

size becomes faster, a feature associated with the

pseudo-random character of the resulting sequence. The

average transmission becomes readily n-independent

when n further deviates from unit. On the other hand, in

the regime of n< 1, the size dependence of the

spectrally averaged transmission initially becomes

stronger as n increases, but reverses this trend as the

quasi-periodic regime is approached.

A complimentary analysis of the influence of the

aperiodicity exponent n on the spectrally averaged

transmission can be performed by plotting it as a
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Fig. 2. Spectrally averaged transmission as a function of the number

of layers N for different values of n. (a) n � 1:0; (b) n� 1:0. For the

periodic incommensurate case n ¼ 1, the transmission displays a very

weak size dependence. Notice that for smaller values of n (roughly in

the range 0:6< n< 0:8), the spectral average transmission of thick

structures can become as small as that presented by pseudo-random

structures with n> 1.

Fig. 3. Spectrally averaged transmission as a function of n for a fixed

sample thickness N ¼ 104. The spectrally averaged transmission

shows a local maximum at periodic incommensurate case n ¼ 1:0

and a local minimum in the regime of n< 1. The plateau reached for

n> 1 is a characteristic of the pseudo-random regime.
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function of n for a fixed sample thickness, as shown in

Fig. 3 where we considered N ¼ 104 layers. The

averaged transmission depicts a peak at n ¼ 1 with

strong fluctuations in the vicinity of this quasi-

periodicity condition. For large values of n, the

transmission is small, presenting weak fluctuations

around a constant value. In the weakly aperiodic regime,

it displays a well-defined minimum, signaling the

crossover from the behavior of a uniform and a quasi-

periodic structure.

The overall dependence of the averaged transmission

on the aperiodicity exponent n can be directly correlated

to the spectral decomposition of the underlying

sequence of layers. In Fig. 4, we plot typical sequences

of refractive indices together with their Fourier spectral

densities. Notice that, for small n the Fourier spectrum

displays a narrow peak at small frequencies, which

reflects the long average wavelength of the refractive

indices modulation. This peak becomes slightly broader

as the number of layer interfaces increases. In the

incommensurate case n ¼ 1, the spectral density of the

sequence assumes a self-similar pattern of delta-like

peaks with a predominant frequency equals to f ¼ a=2,

typical of a quasi-periodic Fibonacci sequence. In the

regime of n> 1, the refractive index sequence

resembles a fairly uncorrelated white-noise and the

Fourier spectral density has no typical frequency.
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Fig. 4. Left panel: Typical sequences of refractive indices generated by the aperiodic modulated function. Right panel: the corresponding Fourier

spectral densities of each refractive index sequence. For small values of n, the spectral density displays a narrow peak around the average frequency

of the sequence modulation. At n ¼ 1 the structure follows a Fibonacci sequence which has a self-similar spectral density. For n ¼ 1:5 the sequence

is pseudo-random with a white-noise spectrum.

Fig. 5. Integrated Fourier spectrum (IFS) as a function of the aper-

iodicity exponent n. The pronounced minimum at n ¼ 1 signals the

strong correlations presented by the underlying Fibonacci sequence of

layers. The plateau for n> 1 reflects the uncorrelated nature of the

dielectric layers sequence in this regime. The maximum at n< 1 is a

consequence of opposite effects played by backscattering at interfaces

and the emergence of resonant modes (see text).
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The degree of correlation in the refractive index

sequence can be quantified by computing the Integrated

Fourier Spectrum (IFS). A noisy-like sequence shall

have a large IFS while more regular structures will

display a narrower Fourier spectrum and consequently a

smaller IFS. The IFS of the refractive index sequences

as a function of the aperiodic exponent n is reported in

Fig. 5. It exhibits a plateau at large values of n pointing

the irrelevance of the actual value of the aperiodicity

exponent in the strongly pseudo-random regime. The

deep minimum at n ¼ 1 is associated with the quasi-

periodic structure of the Fibonacci sequence for this

particular case. In the weakly aperiodic regime, the IFS

passes through a maximum as a result of the opposite

roles played by the own inclusion of interfaces, which

produces backscattering, and the approach to quasi-

periodicity, which promotes the emergence of resonant

modes. Notice that the overall behavior of the spectrally

averaged transmission, presented in Fig. 3, indeed

captures the essential features displayed by the IFS of

the underlying structure. A strongly correlated sequence

displays a narrow Fourier spectrum, thus leading to a

small IFS and to a large averaged transmission.

4. Summary and conclusions

In this work, we investigated the transmission

properties of 1D binary dielectric multilayered

structures presenting an aperiodic modulation over

the refractive index sequence. The aperiodicity degree

was governed by a power-law exponent n which

controls the phase of a sinusoidal modulation. We

considered the particular case for which the periodic

case n ¼ 1 corresponds to an incommensurate structure

that resembles a Fibonacci sequence of refractive

indices. Using a transfer matrix formalism, we

computed the transmission spectrum along such

stratified dielectric media. For n> 1, the resulting

sequence becomes pseudo-random. In this regime, the

Anderson localization of the electromagnetic modes

leads to a wide gap in the transmission spectrum with

narrow transmission bands centered at the Bragg

resonances. In the regime of n< 1, we reported a non-

monotonic dependence of the spectrally averaged

transmission on the aperiodicity exponent a. Such

unconventional behavior was associated with two

opposite effects that take place in the presently

investigated aperiodic structure. One effect is related

to the backscattering on the interfaces between distinct

dielectric slabs. This phenomenon leads to a reduction

in the transmission when the number of interfaces starts

to increase. However, when the number of interfaces

becomes large enough, the quasi-periodic condition is

approached which stabilizes resonant transmitting

modes. As a consequence, the averaged transmission

passes through a minimum which is smaller than the

transmission in the strongly pseudo-random regime. A

Fourier analysis showed that the trends presented by the

transmission spectrum are directly associated with the

correlations exhibited by the own refractive index

sequence. Our results suggest that aperiodically

modulated dielectric structures can be explored in

the development of wide-band filters which can display

an spectrally averaged transmission even smaller than

the one presented by random structures.
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