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In this work we study an one-dimensional Anderson model with long-range correlated off-diagonal
disorder. We numerically demonstrate the presence of extended states and an anomalous optical
absorption spectrum for high degrees of correlation. We also show that the electric field biased electronic
wave packet dynamics shows Bloch-like oscillations.
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1. Introduction

Electronic transport in non-periodic lattices is a very relevant
issue which has attracted the scientific interest during several
decades. The scaling theory of Anderson localization predicts the
absence of extended eigenstates in low-dimensional systems for
any degree of uncorrelated disorder [1–3]. Therefore, electronic
wave packets localize in a finite region around any given initial
position. However, it has been shown that low-dimensional dis-
ordered systems can support extended states or a localization–
delocalization transition in the presence of short or long-range
correlations in the disorder distribution [4–17]. The absence of
Anderson localization in the presence of spatial short-range cor-
relations in disorder was theoretically pointed out by Flores [4]
and Dunlap et al. [5] at the end of eighties and the experimen-
tal confirmation was obtained by Bellani and co-workers [12] in
a semiconductor superlattice with intentional correlated disorder.
It has been reported [7,10,11,14] that systems with long-range
correlated diagonal disorder display an Anderson metal-insulator
transition with mobility edges separating localized and extended
states for sufficiently strong correlations. Furthermore, the one-
dimensional (1D) model with long-range off-diagonal disorder was
investigated in Ref. [16]. It was demonstrated that a localization–
delocalization transition occurs similar to that in 1D model with
correlated diagonal disorder. The effect of long-range correlated
scatters on the transport properties of microwave guides was ex-
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perimentally studied and corroborated the predicted presence of
mobility edges [15]. Furthermore, the theoretical prediction that is
possible to see Anderson localization in a random multilayered fil-
ter [18] opened a wide field to investigate the effects of correlated
disorder in optical systems. Random dielectric multilayers can be
mapped on the problem of one electron in a random media with
close connections with the random dimers and off-diagonal disor-
der versions of the Anderson model [19].

A key problem in condensed matter physics is to understand
the electronic transport when disorder and electric field effects are
simultaneously present. The interplay between disorder and dy-
namical localization due to an electric field was recently studied
in Refs. [20,21]. It was numerically shown that coherent Bloch os-
cillations can appear whenever the disorder distribution displays
appropriated long-range correlations in both one- [20] and two-
dimensional [21] systems. This finding opens the possibility to
perform experiments on coherent dc charge transport for measur-
ing the bandwidth of the delocalized phase in disordered systems
with long-range correlated randomness. Moreover, it is well known
that optical spectroscopy usually fails in detecting localization–
delocalization transitions. However, in Ref. [22] it was numerically
reported an anomalous behavior of the absorption spectrum in
an 1D lattice with long-range correlated diagonal disorder. The
double-peak absorption spectrum found is the unique spectro-
scopic tool to monitor the Anderson transition.

In this Letter we will contribute to advance the understanding
of electronic transport in low-dimensional systems with correlated
disorder distribution. We will study an 1D Anderson model with
long-range correlated off-diagonal disorder, generated by an 1D
discrete Fourier method. The participation number and its scaling
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behavior will be obtained through direct diagonalization. The scal-
ing analysis of the mean participation number around the band
center will be used to identify the presence of extended states
for high degrees of correlation and to explore the possible depen-
dence of the transition point on the strength of disorder. We will
also numerically investigate the signature of the delocalization–
localization transition on the optical absorption spectrum. In ad-
dition we will consider the electric field biased dynamics of an
initially localized wave packet by numerically solving the 1D time-
dependent Schrödinger equation. Associated with extended states
for high degrees of correlation, we will show that sustainable
Bloch-like oscillations emerge with a dominant frequency given by
the semi-classical prediction.

2. Model and formalism

We consider a tight-binding Hamiltonian with long-range cor-
related off-diagonal disorder under an external dc electric field on
a regular 1D open lattice of spacing a [16]

H =
N∑

n=1

(−eFan)|n〉〈n| +
N−1∑
n=1

Jn,n+1|n〉〈n + 1|, (1)

where |n〉 is a Wannier state localized at site n with zero site en-
ergy, F is an external uniform electric field, and N is even. The in-
tersite coupling is restricted to nearest-neighbors and assumed to
be nonuniform over the entire lattice with Jn,n+1 = Jn . The source
of disorder is the stochastic fluctuations of intersite coupling Jn ,
which we are going to consider as being long-range correlated.
One of the simplest ways to numerically generate a long-range
correlated sequence of on-site potentials Jn is to write its Fourier
decomposition as follows [24]

Jn = Cα(N)

N/2∑
k=1

1

kα/2
cos

(
2πnk

N
+ φk

)
. (2)

Here, φk are N/2 independent random phases uniformly dis-
tributed within the interval [0,2π ], and Cα is a normalization
constant. We will displace the hopping sequence to have 〈 Jn〉 =
J0 = 5 and choose Cα to keep the variance size independent
(
√

〈 J 2
n〉 − 〈 Jn〉2 = �). The long-range nature of the potential corre-

lations results from the power-law dependence of the amplitudes
on the wave-vector characterizing each Fourier component. Sev-
eral stochastic processes in nature are known to generate long-
range correlated random sequences which have no characteris-
tic scale as, for example, in the nucleotide sequence of DNA
molecules [25]. The relevance of the underlying long-range cor-
relations for the electronic transport in DNA has been recently
discussed in Ref. [26]. Furthermore, interface roughness appear-
ing during growth often displays height–height correlations with
power-law spectra [27]; thus, the subsequent random potential
arising from the rough interface would be long-range correlated.
Recently, transport properties of systems with long-range corre-
lated disorder was explored, both theoretically and experimentally,
in the design of devices for filtering of electrical and optical sig-
nals [28].

2.1. Magnitudes of interest

Initially we will consider the model in the absence of an
electric field (F = 0). In order to study the localization proper-
ties we compute the static participation ratio defined by P (E) =∑N

n=1 ψ2
n (E)/

∑N
n=1 ψ4

n (E). Here ψn(E) are the Wannier amplitude
associated with an eigen-energy E , (|φ(E)〉 = ∑N

n=1 ψn(E)|n〉) in
a chain of N sites. The eigenmodes are obtained by direct diag-
onalization of the Hamiltonian H . P (E) diverges proportional to

the number of sites for extended states, but remains finite for ex-
ponentially localized ones. We average P (E) in a small window
around E = 0:

〈ξ〉 =
[

�E/2∑
E=−�E/2

P (E)

]/
NE . (3)

We use �E ≈ 1.0 and a large number of samples such that the
number of eigenmodes in each window (NE ) is close to 106 in
order to obtain a good statistical accuracy. The sun avoids the band
center (−0.1 < E < 0.1). Here, we will be particularly interested in
computing the fluctuation of the participation number defined by

�ξ =
√〈

ξ2
〉 − 〈ξ〉2, (4)

where 〈ξ2〉 is the squared participation number averaged in the
same energy window as in Eq. (3). The relative fluctuation of the
participation number is given by

η = �ξ/〈ξ〉. (5)

Within the framework of random and non-random long-range hop-
ping models, it was demonstrated rigorously that the distribu-
tion function of the participation function is scale invariant at
the Anderson transition [29]. Such scale invariance has been used
to monitor the critical point of long-range hopping models [30]
and shall also holds for general models exhibiting a localization–
delocalization transition [31–33]. For extended states, the rela-
tive fluctuation η(E) vanishes continuously with increasing system
sizes since the participation function ξ(E) diverges linearly while
the fluctuation �ξ(E) has a weaker size dependence resulting from
self-averaging. In the opposite regime of exponentially localized
states, the relative fluctuation grows with increasing system size
converging to a finite value. The relative fluctuation thus converges
to a step function as N → ∞, with a discontinuity at the mobility
edge. Therefore, when plotting the relative fluctuation as a func-
tion of α, the curves obtained from different chain sizes shall cross
roughly at a single point, identifying the localization–delocalization
transition. In addition we will study the absorption spectrum de-
fined as

A(E) = 1

N

∑
β

δ(E − Eβ)Fβ, (6)

where Fβ is the oscillator strength associated with the eigenvalue
β , namely Fβ = [∑n ψn(Eβ)]2. When Jn > 0 and disorder is uncor-
related, the eigenstates with higher oscillator strength are those at
the top of the band.

2.2. Electric field effects

In terms of the Wannier amplitudes ψn(t) = 〈n|Ψ (t)〉, the
Schrödinger equation reads [20]

iψ̇n = −Fnψn + Jn+1ψn+1 + Jnψn−1 (7)

where we introduced the dimensionless parameter F = eFa/ J0,
and time is expressed in units of h̄/ J0. After the introduction of
the disorder in the off-diagonal terms, we solve numerically Eq. (7)
to study the time evolution of an initially Gaussian wave packet of
width σ centered at site n0

ψn(t = 0) = Z(σ )exp

[
− (n − n0)

2

4σ 2

]
(8)

where Z(σ ) is a normalization constant. Once Eq. (7) is solved
for the initial condition (8), we compute the mean position of the
wave packet (centroid)
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x(t) =
∑

n

(n − n0)
∣∣ψn(t)

∣∣2
. (9)

3. Results

3.1. Localization and absorption spectrum at zero bias

We start analyzing the results for the participation number and
its fluctuations. We have considered � = 1 in Fig. 1. In Fig. 1(a)
we plot the mean participation number 〈ξ〉 versus N for α = 1.1
up to 2. We observe clearly that 〈ξ〉 increases when α is in-
creased. This feature agrees with the expected result concerning
the emergence of extended states in long-range correlated disor-
dered chains. For α > 2 the participation number diverges linearly
with the system size, indicating extended states. This result sup-
ports previous findings shown in Ref. [16]. However, it is inter-
esting to note that for 1 < α < 2 the participation number also
increase as the system size is increased. It was numerically pro-
posed that this regime does not support true extended states [16].
However, the Lyapunov exponent derived from the transfer matrix
formalism is vanishingly small in this intermediate regime [23].
The fluctuations of the participation number can be used as a pre-
cise tool to monitor the Anderson localization transitions [30–33].
In Fig. 1(c) we plot the relative fluctuation of the participation
number �ξ versus the degree of correlation α for N = 500 up
to 8000 sites. We observe that the curves obtained from different
chain sizes cross roughly at a single point identifying the critical
spectral exponent around α = 2. A small dispersion at the crossing
point is usually due to small corrections to scaling that are present
in numerical calculations on finite systems. Before concluding the
localization study, some words concerning the critical value αc = 2.
In Ref. [14], it was numerically shown that in 1D electronic system
with long-range correlated diagonal disorder, the critical spectral
exponent αc is rather independent on the magnitude of disorder
�. In Fig. 2(a)–(b) we show the scaling behavior of the relative
fluctuation on the participation number for � = 0.5 and � = 0.75.
We can see that the critical spectral exponent is also universal,
does not depending on the magnitude of the off-diagonal disorder.

Now we focus our attention to the absorption spectrum A(E)

for the present 1D model with off-diagonal correlated disorder. To
solve numerically Eq. (6) we used N = 1000 sites, � = 1 and 104

realizations of disorder for each value of α. Fig. 3 shows the out-
put of these calculations. We observe that for α < 1 the absorption
spectrum displays a single and asymmetric peak slightly above the
higher band edge E = 10 of the periodic lattice (σ = 0), i.e., only
the highest states of the band contribute to the absorption spec-
trum. Therefore, we have the same trend observed in 1D systems
with uncorrelated diagonal disorder. For 1 < α < 2 we observe
an increase of the absorption bandwidth. Thus, models with weak
long-range correlations in off-diagonal disorder have a stronger lo-
calization at the band edges as compared to the uncorrelated case,
as it also occurs in the case of diagonal weakly correlated disor-
der [22]. However, for α > 2 the absorption spectrum displays a
well-defined doublet. One of the doublet components (at high en-
ergy) is located at the top of the band as usual, whereas the other
one (at lower energy) lies deep inside the band. In contrast to the
case of α < 2, the broadening of the peaks drops down on in-
creasing α and then saturates. To explain the origin of such double
peak structure, we will follow Ref. [22] and present a simplified
model that contains the basic ingredients needed to obtain the
absorption spectrum. The heuristic calculation is started by con-
sidering the off-diagonal disorder given by Eq. (2). It is a sum of
spatial harmonics. The amplitude of each term, Cαk−α/2, decreases
upon increasing the number k. For sufficient large α, the first term
in the series (2) will be dominant. Therefore, the hopping distri-
bution for a given realization represents a harmonic function of

Fig. 1. (a) Mean participation number 〈ξ〉 versus N for α = 1.1 up to 2. We clearly
observe that for α > 2 the participation number diverges linearly with the sys-
tem size indicating extended states. (b) The relative fluctuation of the participation
number �ξ versus the spectral exponent α for N = 500 up to 8000 sites. Curves
obtained from different chain sizes crosses roughly at a single point α = 2. A small
spread of the crossing point is usually due to small corrections to scaling that are
present in numerical calculations on finite systems (see inset).

Fig. 2. Relative fluctuation of the participation number, averaged over an energy
window −1 < E < 1, versus α for � = 0.5 and 0.75. Similarly to models with
long-range correlated diagonal disorder [14], the model with off-diagonal correlated
disorder also displays a critical point (αc ) that does not depend on the magnitude
of disorder �.

period N , perturbed by a colored harmonic noise. To further sim-
plify the model, we can divide the 1D lattice in two chains with
Jn ≈ J0 + J∗ for n < N/2 and Jn ≈ J0 − J∗ for n > N/2 where
J∗ = (2/π)Cα is the average value of the effective harmonic hop-
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Fig. 3. Absorption spectrum A(E) versus energy and α. Numerical calculations of
Eq. (6) were done using N = 1000 sites, � = 1 and 104 realizations of the disorder
for each value of α. We observe that for α < 1 the absorption spectrum displays
a single and asymmetric peak slightly above the higher band edge E = 10 of the
periodic lattice (σ = 0), i.e., only the highest states of the band contribute to the
absorption spectrum. For 1 < α < 2 we observe an increase of the absorption band-
width. For α > 2 the absorption spectrum displays a well-defined doublet.

Fig. 4. The 1D model with strong long-range correlated off-diagonal disorder can be
mapped into a chain with Jn ≈ J0 + J∗ for n < N/2 and Jn ≈ J0 − J∗ for n > N/2
where J∗ = (2/π)Cα is the average value of the effective harmonic hopping dis-
tribution on the left half [Eq. (2)]. The band of allowed energies of each sublattice
is showed, ranging from −2( J0 + J∗) to +2( J0 + J∗) and from −2( J0 − J∗) to
+2( J0 − J∗) at the left and right sublattices, respectively. For this effective band
distribution we expect an absorption spectrum with two peaks caused by the tran-
sitions from the ground state to the uppermost state of each subband. For � = 1
their locations are 2( J0 + J∗) ≈ 12.0(1) and 2( J0 − J∗) ≈ 8.0(1), in good agreement
with Fig. 3.

ping distribution on the left half. Therefore, we map the original
lattice onto two uniform sublattices, coupled to each other through
the hopping between sites N/2 and N/2 + 1. The allowed ener-
gies of each sublattice form a band, ranging from −2( J0 + J∗)
to +2( J0 + J∗) and from −2( J0 − J∗) to +2( J0 − J∗) for the
left and right sublattices, respectively (see Fig. 4). The absorption
spectrum of such a system is expected to have two peaks caused
by the transitions from the ground state to the top state of each
subband. For � = 1 their locations are 2( J0 + J∗) ≈ 12.0(1) and
+2( J0 − J∗) ≈ 8.0(1). We stress that these values are in good
agreement with the numerical calculations presented in Fig. 3.

3.2. Electric field effects

Finally, we study the time evolution of an initially localized
wave packet subjected to a uniform electric field. It is well known
that in disorder-free systems, a uniform electric field causes the
dynamic localization of the electron and gives rise to an oscillatory
motion of the wave packet, the so-called Bloch oscillations [20].
The size of the segment over which the electron oscillates and the
period of the oscillations are estimated from semi-classical argu-
ments to be L F = W /F and τB = 2π/F , respectively, where W is
the width of the Bloch band in units of the coupling integral J0.
First, we compute the centroid x(t) in a chain with weak long-
range correlated off-diagonal disordered (α < 2) of size N = 1000
with F = 1.0. As deduced from the upper panel of Fig. 5(a)–(b),
there is no signature of Bloch oscillations in this case. Regular
oscillations, which are present immediately after the initial wave
packet is released, are quickly damped (not shown). The subse-

Fig. 5. Centroid x(t) and its Fourier spectrum (upper and lower panels respectively)
computed using a chain with N = 1000 sites, electric field F = 1.0 and several de-
grees of correlations α = 0,1,2.5 and 3. We observe that the oscillations have no
predominant frequency for α < 2. However, in the regime of α > 2, a coherent
oscillatory motion of the centroid sets up, with a well-defined peak at the Bloch
frequency.

quent motion of the centroid resembles a stochastic motion around
some mean position. The Fourier spectrum x(ω) of the centroid,
plotted in the lower panel of Fig. 5(a)–(b), confirms this observa-
tion. The absence of a single peak in the Fourier spectrum x(ω)

suggests that for α < 2 the system shows a behavior similar to
the standard Anderson model, with no signatures of Bloch oscilla-
tions. In the strong correlated case (α > 2), the centroid reveals an
oscillatory amplitude-modulated pattern, as shown in Fig. 5 (up-
per and lower panels c and d). Its Fourier transform x(ω) shows a
well-defined narrow peak around ω = F , as predicted by the semi-
classical approximation [20].

4. Summary

In this Letter we study some aspects of localization, absorp-
tion spectrum and the biased electric field dynamics in an 1D
Anderson model with long-range correlated off-diagonal disorder.
The participation number and its scaling behavior were obtained
through direct diagonalization. The scaling analysis of the relative
fluctuations on the mean participation number around the band
center indicates the presence of extended states for high degree
of correlation and reveals that the critical spectral exponent does
not depend of the disorder strength. We also numerically demon-
strated that the delocalization–localization transition reveals itself
in the optical absorption spectrum. The emergence of delocalized
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states is signaled by the development of a well-defined doublet.
One of the doublet components is located at the top of the band
as usual, whereas the other one lies deep inside the band. By us-
ing a heuristic model we explain in detail the origin of the double
peak absorption spectrum. In addition, the numerical calculations
of the electric field biased dynamics of an initially localized wave
packet have shown that, associated with extended states, sustain-
able Bloch-like oscillations sets up with the frequency obeying a
semi-classical prediction.
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