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We study the effects of a Hubbard-like interaction on the dynamics of two electrons restricted to move
in a linear chain. Our calculations suggest that the presence of bounded two-electron states in the initial
Gaussian wave-packet plays significative roles on both unbiased and the electric-field biased wave-packet
dynamics.
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Advancing the understanding of the transport properties of in-
teracting electrons in low dimensional systems usually consists of
a step ahead in condensed matter theory. Usually, the presence
of a Coulomb repulsion term (U ∝ e2/r) challenges the theoretical
treatment of the many body Hamiltonians. However, the compet-
itive electric forces and the presence of mobile charge carriers
promote the damping of electric fields, also called screening. The
resulting electronic interaction, called screened Coulomb potential,
is exponentially damped. Therefore, from the quantum mechanics
point of view an extremely short-ranged repulsive Coulomb inter-
action i.e., an effective on-site Coulomb repulsion U can be used to
simulate the electron–electron interaction. The Hubbard model is
the most used Hamiltonian model describing systems of itinerant
electrons within the on-site electron–electron interaction frame-
work. From the analytical point of view in the absence of on site
disorder, the most remarkable development was introduced about
60th years through the exact solution of a one-dimensional (1D)
model of interacting spinless bosons by Lieb [1]. By using a Bethe
ansatz formalism, a complete solution in the absence of disorder
was provided as a function of the interaction strength. For the infi-
nite Coulomb interaction limit, the Lieb–Liniger model [1] showed
that strongly interacting bosons effectively behave like noninter-
acting fermions, i.e. the well-known model of impenetrable bosons
discussed by Girardeau [2]. Following the Bethe ansatz framework
introduced in [1], the problem of N interacting fermions without
disorder moving in 1D was solved by Lieb and other authors [3].
Furthermore, it was shown that Hubbard systems can display a
correlation-driven transition, called Mott-transition, from a para-
magnetic metal to a paramagnetic insulator [4–13]. Studies of the
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Hubbard model reveal a wealthy of new phenomena in low di-
mensional electronic systems. One of the most famous applica-
tions, pointed by Anderson, consists of the understanding of the
mechanisms underlying the high-Tc superconductivity observed in
CuO2 compounds [11–13]. Even within the on-site Coulomb inter-
action formalism, the analytical or numerical study of many body
systems represents a hard task due to the fact that the number
of electronic configurations grows exponentially with the system
size.

More recently, the competitive role between dynamical local-
ization and electron–electron interaction was reported [14–18]. It
was shown that the N-particle problem is identical to that of a
single particle moving in an N-dimensional lattice, with defect
surfaces dividing the space in symmetric domains. It has been
shown that in the limit of weak hopping integral, the electron–
electron interaction induces an additional oscillation of the eigen-
states drift velocity. The period of this oscillation was found to
be determined solely by the range and strength of the electron–
electron interaction [14]. Furthermore, the two-electron problem
on a one-dimensional lattice subject to a static electric field was
revisited in Ref. [17]. It was numerically demonstrated the exis-
tence of a frequency doubling of the Bloch oscillations as a func-
tion of the two-electrons interaction. As the interaction is turned
on, the emergence of bounded states correlates the two electrons
dynamics. In a intermediate range of interaction strengths, the
initial state is mostly superposed to bound states and, therefore,
the double occupancy remains close to unity. This means that the
electrons behave as a single particle executing coherent hoppings.
The coupled electrons effectively behave as a single particle with
charge 2e, thus explaining the frequency doubling of the Bloch os-
cillations. The frequency doubling phenomenon for intermediate
electron–electron couplings was also obtained in 1D chains with
a long-range correlated on-site disorder distribution [18].
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In this work, we report further progress along the above lines.
Our main aim is to focus on the influence of the on-site Coulomb
interaction and of a static electric field in the dynamics of two-
electrons restricted to move in a low dimensional lattice. The fre-
quency doubling phenomenon previously reported in Refs. [17,18]
as a consequence of bounded states present in the two-electron
spectrum will be discussed in detail, pointing out the role of those
states plays in the electronic biased transport. To this end, we use
numerical methods to solve the Schrödinger equation and follow
the wave-packet dynamics of two electrons in a 1D pure chain.
Starting from an initial Gaussian wave-packet in the absence of an
electric field, we show a non-usual dynamics associated with the
two-electrons wave packet. The wave-packet width grows ballisti-
cally even in the regime of strong Coulomb interaction. However,
for U > 0, the participation number shows a slower spread. Our
calculations suggest that this unusual behavior is related to the
presence of bound states in the initial Gaussian wave-packet. In
addition, the electric-field biased wave-packet dynamics was revis-
ited. We numerically show that the spatial extension of the Bloch
oscillations depends non-monotonically on the electron–electron
coupling and that the contribution of bounded states to the wave-
packet dynamics is strongly dependent of the overall wave-vector
of the initial wave-packet.

1. Model and formalism

The tight-binding Hamiltonian for two interacting electrons in
the presence of a static uniform electric field F is given by [14–21]

H =
∑

n

∑
s

W
(
c†

n+1,scn,s + c†
n,scn+1,s

)

+
∑

n

∑
s

[εn + eFan]c†
n,scn,s +

∑
n

Uc†
n,↑cn,↑c†

n,↓cn,↓ (1)

where cn,s and c†
n,s are the annihilation and creation operators

for the electron at site n with spin s, n is the position op-
erator, W is the hopping amplitude, U is the on-site Hubbard
electron–electron interaction and e is the electron charge. Here
we are considering the external electric field applied parallel to
the chain length. In order to follow the time evolution of wave-
packets, we solve the time dependent Schrödinger equation by ex-
panding the wave-function in the Wannier representation |Φ(t)〉 =∑

n,m fn,m(t)|ns1,ms2〉 where the ket |ns1,ms2〉 represents a state
with one electron with spin s1 at site n and the other electron
with spin s2 at site m. In order to allow for double occupancy
of the on-site orbital, we will consider in the following that the
electrons are in distinct spin states (singlet state). Once the initial
state is prepared as a direct product of states, the electrons will al-
ways be distinguishable by their spins since the Hamiltonian does
not involve spin exchange interactions. The time evolution of the
wave-function in the Wannier representation becomes

i
dfn,m(t)

dt
= fn+1,m(t) + fn−1,m(t) + fn,m+1(t) + fn,m−1(t)

+ [
F (n + m) + δn,mU

]
fn,m(t), (2)

where we used units of h̄ = W = e = a = 1. The on-site ener-
gies εn were taken as the reference energy (εn = 0) without any
loss of generality. The above set of equations were solved numer-
ically by using a recursive high-order method based on the Tay-
lor expansion of the evolution operator [V (�t) = exp (−iH�t) =
1 + ∑no

l=1(−iH�t)l/(l!)] where H is the Hamiltonian. The wave-
function at time �t is given by |Φ(�t)〉 = V (�t)|Φ(t = 0)〉. The
following results were taken by using �t = 0.05 and the sum was
truncated at no = 20. This cutoff was sufficient to keep the wave-
function norm conservation along the entire time interval consid-
ered.

Fig. 1. The time dependent spatial extension ξ versus time t . Calculations were done
using N = 1500, U = 0 up to 12, σ = 1 and d0 = 0. After an initial transient, ξ

diverges linearly ξ ∝ t even in the regime of strong interaction. In the transient
period (inset), the spatial extension depicts a small decrease due to the electron–
electron coupling.

2. Results

2.1. Unbiased dynamics (F = 0)

We firstly investigate the two-electrons wave-packet dynamics
in the absence of an electric field (F = 0). Specifically, we fol-
lowed the time-evolution of an initially Gaussian wave-packet with
width σ :

〈
ns1,ms2

∣∣Φ(t = 0)
〉 = 1

A(σ )
exp

[−(
n − n0)2

/4σ 2]

×exp
[−(

m − m0)2
/4σ 2] (3)

and computed the participation function P (t) and the spacial ex-
tension ξ(t) defined as [17]

P (t) = 1∑
n,m | fn,m(t)|4 , (4)

and

ξ(t) =
∑
n,m

√[(
n − 〈n〉(t))2 + (

m − 〈m〉(t))2]∣∣ fn,m(t)
∣∣2

, (5)

where 〈n〉(t) and 〈m〉(t) are the average position of each electron
at time t . The initial position of the electrons (n0,m0) will be con-
sidered to be (N/2 − d0, N/2 + d0). The participation function P (t)
varies from 1, corresponding to states with each electron fully lo-
calized in a given pair of sites (n,m), to N2 when both electrons
are uniformly distributed along the chain [17]. This function gives
information about the product of the number of sites that are vis-
ited by each electron during the time evolution of the wave-packet
over the underlying lattice. The spacial extension ξ(t) measures the
wave-function width on the n ×m plane. In Fig. 1, we show results
for the spatial extension ξ versus time t using a chain with N =
1500 sites, U = 0 up to 12 and d0 = 0. After the initial transient, ξ

diverges linearly ξ ∝ t even for strongly interacting electrons, thus
indicating a ballistic spread of the two-electrons wave-packet. One
also notices a dip in the spatial extension in the short time re-
gion for the case of interacting electrons. Such decreasing induced
by the electron–electron interaction is related to the presence of
bounded eigenstates in the initial wave-packet. Fig. 2(a) shows the
participation number P (t) versus time t computed using the same
parameters as in Fig. 1. In the absence of electron–electron interac-
tion (U = 0), the participation number grows as P (t) ∝ t2, signal-
ing that the electrons spread uniformly and independently over the
chain, in agreement with the time dependent behavior of the elec-
tronic participation number in 1D crystal lattices. However, when
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Fig. 2. (a) Participation number P (t) versus time t computed using N = 1500, U = 0
up to 12 and d0 = 0. In the absence of interaction (U = 0) the participation number
displays a ballistic growth (P (t) ∝ t2). With the electron–electron coupling turned
on, a crossover to an unusual dynamical behavior is observed (P (t) ∝ t). (b–c) The
two-electron wave function after a long evolution time. Here, we used N = 200,
d0 = 0, (b) U = 0 and (c) U = 4. In the absence of electron–electron coupling, both
electrons spread ballistically filling the n×m plane. For U > 0, the electrons become
correlated due to the emergence of bounded states and, thus, the wave-packet con-
centrates along the diagonal n = m.

the electron–electron coupling is turned on, we obtain a slower
divergence of the participation number, in the form (P (t) ∝ t). In
Fig. 2(b–c) we illustrate more clearly the time-evolution of both
electrons through the lattice. These calculations were performed
using N = 200, d0 = 0, (b) U = 0 and (c) U = 4. In the absence of
electron–electron interaction both electrons spread ballistically and
independently, with the two-particles wave-packet filling isotropi-
cally the n×m plane. For U > 0, due to the appearance of bounded
states within the energy band, the electrons spread become corre-
lated and the wave packet concentrates around the n = m region.
These features also leave signatures in the one-electron wave-
function | fn|2 = ∑

m | fn,m|2 (see Fig. 3). This figure shows snap-
shots of the wave-packet starting from the initial transient regime

(t = 5) until longer time evolution periods (t = 20, 40, 100) for
U = 0, 4, and 12. In the absence of electron–electron interaction,
the wave-packet spreads ballistically displaying a single peak struc-
ture. In the presence of electron–electron interaction, the wave-
packet develops two main structures. One of then is concentrated
at the electron initial position. The other component has a strong
amplitude at the wave front that resembles the wave packet spread
of a single non-interacting electron initially localized at the chain
center [20,21]. Both structures evolve ballistically.

2.2. Biased dynamics (F �= 0)

Now, we consider the wave-packet dynamics of both electrons
subjected to a uniform electric field (F �= 0). It is well known
that in disorder-free systems, a uniform electric field causes the
dynamic localization of the one-electron and gives rise to an os-
cillatory motion of the wave-packet, the so-called Bloch oscilla-
tions [17,22]. Once Eq. (2) is solved for the initial condition (3),
we compute the mean position of a given electron 〈n〉(t)

〈n〉(t) =
∑
n,m

n
∣∣ fn,m(t)

∣∣2
. (6)

In Ref. [17] it was shown that the centroid of the two-electron
wave-packet displays an oscillatory pattern with a predominant
frequency close to ω = 2F . This phenomenon was related to the
emergence of bounded states with the electrons oscillating coher-
ently with an effective charge 2e [17]. For much stronger inter-
actions, the ω = F frequency is re-amplified. Here we analyse in
detail the effect of Hubbard interaction on this unusual Bloch os-
cillation. We will explore the role played by bounded states on
the amplitude of the wave-packet oscillation and also on the in-
tensity of the doubled frequency mode. We numerically determine
in Fig. 4 the average displacement of one electron from its average
position as a function of the Hubbard coupling. Firstly, we analyzed
the particular case on which both electrons are initially fully local-
ized (σ = 0). In this case, no Bloch oscillation is observed for non-
interacting electrons. As the interaction is turned on, the oscillation
amplitude depicts a maximum at a finite interaction strength (of
the order of U = 4), with the oscillation amplitude vanishing in
the regime of strong couplings. Whenever the initial wave-packet
has a finite width σ , a quite distinct picture emerges. At U = 0, the
centroid oscillates with a relatively large amplitude. The oscillation
amplitude initially decreases when increasing U , but slowly return
to increase in the regime of strong couplings. Also, the asymptotic
amplitude increases with the width of the initial wave-packet. All
these features can be qualitatively understood by stressing that the
initial wave-packet can be splited in two components composed
of bounded and unbounded states. The band of bounded states is
centered around E = 0, while the band of bounded states ranges
from U < E <

√
16 + U 2 [14]. The Bloch oscillation due to the un-

bounded component has a larger amplitude than that due to the
bounded states, according to the semi classical argument that pre-
dicts the oscillation amplitude to be directly proportional to the
bandwidth and inversely proportional to the effective charge. Also,
the relative role of these two components depends on the width
of the initial wave-packet, with a larger contribution of unbounded
states being present at larger values of σ . Further, the initial Gaus-
sian wave-packet (Eq. (3)) has a spectral density centered at E = 0.
As the coupling strength starts to increase, there is an increasing
role played by the bounded component, which leads to the de-
crease of the oscillation amplitude. At very large couplings, the
re-amplification of the ω = F oscillation mode as well as of the
oscillation amplitude are related to the large displacement of the
band of bounded states from the spectral distribution of the initial
wave-packet.
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Fig. 3. The one-electron wave-function | fn|2 = ∑
m | fn,m|2 for times t = 5, 20, 40, 100, N = 1500 sites, σ = 1 and U = 0, 4, 10. In the absence of electron–electron interaction,

the wave-packet spreads ballistically displaying a single peak structure. Two main structures develops in the presence of electron–electron interaction. One of them is
concentrated at the electron initial position while the other has a strong amplitude at the wave front. Both structures evolve ballistically.

Fig. 4. The amplitude of the Bloch oscillation L F versus the strength of the Hubbard
interaction U for several initial wave-packet widths σ = 0, 1, 2, 3 and F = 0.5.
For σ = 0, L F vanishes for non-interacting electrons. As the interaction is turned
on, the oscillation amplitude depicts a maximum at a finite interaction strength
(of the order of U = 2), with the oscillation amplitude vanishing in the regime of
strong couplings. For a finite width σ , the centroid oscillates with a relatively large
amplitude at U = 0. The oscillation amplitude initially decreases when increasing U ,
but slowly returns to increase in the regime of strong coupling (inset).

Before concluding, we provide additional evidence of the influ-
ence of bounded states in the frequency doubling phenomenology.
We consider now the time-evolution of an initially Gaussian wave-
packet with a finite initial velocity given by

〈
ns1,ms2

∣∣Φ(t = 0)
〉 = 1

A(σ )
exp i

[
k(n + m)

]

×exp
[−(

n − n0)2
/4σ 2]

×exp
[−(

m − m0)2
/4σ 2] (7)

where i is the imaginary unit. The phase factor exp [ik(n + m)] gov-
erns the initial velocity of the wave-packet (in the particular case
of identical velocities of both electrons). It also can be used to dis-
place the spectral density of the wave-packet away from the band
center. In Fig. 5, we compute the mean position 〈n〉(t) versus time
t using a chain with N = 100 sites, d0 = 0 (initially close electrons),

Fig. 5. Data for the mean position 〈n(t)〉 versus time t using a chain with N = 100
sites, d0 = 0 (initially close electrons), F = 0.5, U = 8, σ = 1 and (a) k = 0.5 and (b)
k = 3. For small k, the re-amplification of the mode with frequency ω = F is seen
in this strong coupling regime. For k = 3 the frequency doubling persists.

F = 0.5, U = 8, (a) k = 0.5 and (b) k = 3. For small k, we re-
cover the previous result showed above, the re-amplification of the
mode with frequency ω = F . This is in agreement with the general
scenario described above because the band of bounded states is
far from the band center around which the wave-packet spectral
density is just slightly displaced. However, for k = 3 we obtain an
oscillatory pattern with a predominant frequency close to ω = 2F .
It is important to stress that, in this case of large k, the frequency
doubling persists even in the strong interaction regime for which
this phenomenon is suppressed at low k. In fact, the initial state
defined in Eq. (7) for k = 3 has a spectral decomposition which
is quite displaced from the band center and exhibits a significant
superposition with the band of bounded states. This feature pro-
motes the emergence of coherent hoppings and the consequent
frequency doubling of the Bloch oscillations.

3. Summary and conclusions

In summary, we studied the one-dimensional dynamics of two
interacting electrons with opposite spins under the influence of a
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static uniform electrical field F . Starting from an initial Gaussian
wave-packet and keeping the electric field turned off, we showed
a non-trivial dynamics of two-electrons wave-packet width and
participation number. The time-evolution of wave-packet width
is always ballistic, irrespective to the strength of the electron–
electron interaction. However, the dynamics of the participation
number of the two-electrons wave-packet displays a crossover
from a ballistic-like growth (P (t) ∝ t2) for non-interacting elec-
trons to a diffusive-like growth (P (t) ∝ t) whenever the electron–
electron coupling is turned on. Such crossover is related to the
emergence of two-electrons bounded states that correlates the dy-
namics of the electronic wave-packet. The presence of an electron–
electron coupling also imprints its signature in the one-electron
wave-packet. In the regime of non-interacting electrons, an initially
Gaussian one-electron wave-packet evolves ballistically displaying
a single peak structure. The presence of an electron–electron cou-
pling is reflected by the development of a doubled structure with
the electronic density concentrated at the initial position as well
as at the wave fronts.

In addition, the electric-field biased wave-packet dynamics was
revisited. We numerically showed that the length of the segment
over which the centroid of the electron wave-packet oscillates
displays distinct features for delta-like and Gaussian initial wave-
packets. In the case of delta-like initial wave-packets, the oscilla-
tion amplitude exhibits a maximum at a finite interaction strength
and vanishes in both limits of U → 0 and U → ∞. The vanishing
of the oscillation amplitude in these limits is in agreement with
previous results that showed no Bloch oscillation for delta-like
wave-packets of non-interacting electrons [20,21]. On the other
hand, a reversed trend is found for initially Gaussian wave-packets.
A finite oscillation amplitude in the regimes of weak and strong
interaction is typical of non-interacting electrons with an initial
Gaussian wave-packet distribution. The oscillation amplitude dis-
plays a minimum at a finite interaction strength where the band
of bounded two-electron states plays a significant role in the wave-
packet dynamics. Such reduced oscillation amplitude is related to
the reduced width of the bounded states band and to the corre-
lated dynamics of the two-electrons. In the intermediate coupling
strength regime, the predominant role played by bounded states
in the Bloch oscillations is supported by the emergence of a fre-
quency doubled component in the spectral decomposition of the
wave-packet centroid. We further showed that a re-amplification
of the doubled frequency mode can be achieved in the regime of
strong couplings by tuning the overall wave-vector of the initial

two-electrons wave-packet in order to promote a stronger super-
position between the wave-packet spectral distribution and the
band of bounded states. The above features reveal that even a
short-ranged electron–electron interaction has a strong influence
on the field driven Bloch oscillations. It would be much valuable
to extend the present analysis to the case of interacting many
electron systems. We hope the present work can stimulate future
developments along this line.
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