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In this work we investigate the one-electron wave-packet dynamics in finite closed chains with relax-
ational nonlinearity. We found that, besides exhibiting the well-known self-trapping regime at strong
coupling, the non-instantaneous character of the nonlinearity favors the self-focusing of the wave-packet
at intermediate coupling strengths.
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1. Introduction

In transport phenomena, an important problem is the role of
electron–phonon interactions in electronic transport, usually ana-
lyzed with the help of the discrete nonlinear Schrödinger equation
(DNLSE) [1–5]. The interactions of the lattice on moving elec-
trons is the responsible for the self-trapping [3] phenomena, which
occurs when the probability of finding the particle at the ini-
tial site remains finite. Self-trapping takes place when the non-
linearity parameter is much larger than the bandwidth and, for
low-dimensional systems, the effect of nonlinearity is prepon-
derant over disorder [6–10]. By considering a discrete nonlinear
Schrödinger and quartic Klein–Gordon equations with disorder, the
spreading of an initially localized wave packet was studied in de-
tail [6]. It was proved that the second moment and the participa-
tion number of a wave packet do not diverge simultaneously [6].
In Ref. [7], by considering the discrete nonlinear Schrödinger, it
was numerically demonstrated that the Anderson localization is
destroyed and a sub diffusive dynamics takes place above a certain
critical nonlinearity strength. Moreover, analytical and numerical
calculations for a reduced Fermi–Pasta–Ulam chain demonstrated
that energy localization does not require more than one conserved
quantity [9].

From the experimental point of view, the interplay between
disorder and nonlinearity was investigated in Ref. [10]. The evo-
lution of linear and nonlinear waves in coupled optical waveguides
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patterned on an AlGaAs substrate were directly measured. Nonlin-
ear perturbations enhance localization of linear waves while in-
duce delocalization of the nonlinear ones [10]. The nonlinearity
and the self-trapping phenomena are important in several other
systems. For example, Ref. [11] reported the first experimental ob-
servation of nonlinear self-trapping of Bose-condensed atoms in
a one-dimensional waveguide with a superimposed deep periodic
potential. By controlling the degree of nonlinearity the system’s
state changes from a diffusive regime, characterized by an expan-
sion of the condensate, to the self-trapping regime, where the ini-
tial expansion stops and the width remains finite. The self-trapping
dynamics was compared with numerical solutions of the nonlin-
ear Gross–Pitaevskii equation [11]. In Ref. [12] the self-trapping
phenomenon of Bose–Einstein condensates (BEC) in optical lattices
was studied by numerically solving the Gross–Pitaevskii equation,
showing a good agreement with the experimentally observed self-
trapping phenomenon [11]. In addition, it was shown that the
self-trapping in optical lattices is only temporary and that it has
a finite lifetime [12].

The existence of self-trapping, stable, moving solitons and
breathers of Fermi wave packets in optical lattices along the (BEC)–
Bardeen–Cooper–Schrieffer (BCS) crossover was recently predicted,
both analytically and numerically [13]. The stable moving soliton
and breather solutions of Fermi wave packets exist along the BEC–
BCS crossover for low-dimensional systems. However, for three-
dimensional geometries, the stable moving soliton and breather
solutions can exist only in the BCS state [13]. Another interesting
problem is the self-focusing [14,15]. In this case, the wave func-
tion initially spreads over the lattice but ultimately concentrates
in a finite region. Recently, it was demonstrated the explicit forms
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for the rational self-focusing solutions in the discrete nonlinear
Schrödinger equation [14]. The study of rational self-focusing solu-
tions are of fundamental importance to understand the emergence
of rogue waves in the ocean, as well as it can bring new insights
that may be used to create and control useful rogue waves in op-
tical fibers [15].

Usually, the nonlinearity that results from an electron–phonon
coupling is obtained after considering the adiabatic approxima-
tion [16,17]. Within this approach, the nonlinear term couples in-
stantaneously the wave-function with the local electronic density.
Non-adiabatic nonlinear models have been studied in a series of
works [18–20]. It has been shown that new phenomena arises as-
sociated with the relaxation of the nonlinearity, such as the emer-
gence of a stationary self-trapping regime and the coexistence of
stationary and dynamical transitions for certain degrees of non-
linearity and relaxation time in dimer-like systems. Recently, the
influence of the nonlinear response time on the electronic trans-
port in linear chains was investigated [21]. In the proposed model,
a delayed nonlinear term couples the electronic wave-function at
time t with the electron density at time t − τ . While a long re-
sponse time naturally reduces the tendency of self-trapping, it was
shown that a short response time counter-intuitively reduces the
critical nonlinear strength above which self-trapping takes place.
A dynamical transition was also reported on which the wave-fronts
start to widen after an initial regime of soliton-like propagation.

Here, we further investigate the influence of the non-instant-
aneous character of the nonlinear coupling on the electronic trans-
port along linear chains. By considering that the nonlinear coupling
obeys a Debye-like relaxation law, as introduced in Ref. [18], we
will solve the time-dependent nonlinear Schrödinger equation to
follow the time-evolution of an initially localized wave packet in
finite chains with periodic boundary conditions. We will show that
the Debye relaxation nature of the nonlinearity is responsible for
the emergence of new phenomena such as the significant reduc-
tion of the asymptotically delocalized regime and a complex wave
packet self-focusing regime.

The Letter is organized as follows. Section 2 presents our model
and formalism. Section 3 presents the numerical results and dis-
cussions and Section 4 concludes.

2. Model and formalism

Let us consider a delayed DNLSE

i
dcn(t)

dt
= V

(
cn+1(t) + cn−1(t)

) + Xncn(t),

dXn(t)

dt
= 1

τ

(−Xn(t) − χ
∣∣cn(t)

∣∣2)
, n = 1, . . . , N. (1)

Here N is the size of the linear chain and we consider periodic
boundary conditions. cn(t) denotes the time dependent wavefunc-
tion amplitude at site n (|ψ〉 = ∑N

n=1 cn|n〉). The second equation
describes the dynamics of the lattice vibrations. The nonlinear
parameter χ is proportional to the local electron–phonon cou-
pling under an adiabatic approximation [22], which occurs when
Xn(t) = −χ |cn(t)|2 and/or τ = 0. The delayed DNLSE model used
here (Eq. (1)) was derived following the assumptions put forward
in Ref. [18]. The model starts by considering a set of 2N coupled
equations. Half of them corresponds to the wave packet dynam-
ics of the moving quantum particle. The other half corresponds
to the motion equation of Einstein-like site oscillators. Xn is the
displacement of the oscillator at site n, which has a typical fre-
quency ω and is damped at a rate α. By assuming the oscillators
to reach their equilibrium position much faster than the typical
time scale for the quantum particle evolution, the time derivative
of Xn can be disregarded, thus resulting in the well-known adia-
batic DNLSE with a nonlinear contribution to the on-site energy

given by −χ |cn(t)|2 [18]. In the strong damping regime the set
of coupled equations reduces to the delayed DNLSE (Eq. (1)) with
τ = ω2/α. The non-adiabatic character is incorporating by explic-
itly solving the relaxation equation considering a finite response
time τ �= 0.

In what follows, we consider the hopping integral between
nearest-neighbor sites V = 1 and the on-site energy is assumed
zero. To analyze the wave propagation, we solve (1) using the
eighth-order Runge–Kutta method to obtain the temporal evolu-
tion of an initially localized wave packet:{

n = 1 → cn(0) = 1,

n �= 1 → cn(0) = 0.
(2)

In order to follow the time evolution of the wave packet, we will
compute some representative dynamical quantities that bring in-
formation regarding the extension of the wave packet and it’s
actual location. One of these quantities is the return probability,
defined as [23–27]

R(t) ≡ ∣∣c1(t)
∣∣2

. (3)

Usually, the electron escapes from its initial position when the am-
plitude c1(t), and consequently the return probability, vanishes as t
evolves. Conversely, the amplitude remains finite for a wave packet
localized around its initial position. However, the return probability
does bring enough information about the wave packet distribution
along the system. In addition, we rely on the participation function
to analyze the wave packet extension

P (t) = 1∑N
n=1 |cn(t)|4

. (4)

The participation function P (t) varies from 1 to N [23–30]. This
function gives information about the number of sites that are vis-
ited during the time evolution of the wave packet over the under-
lying lattice.

We also computed a third quantity in order to explore the pos-
sibility of the wave packet to become localized in the opposite side
of the closed chain. The occupancy probability of the opposite site
O (t), calculated at the (1 + N/2)-th site is given by:

O (t) = ∣∣c1+N/2(t)
∣∣2

. (5)

In the following results, we will show that there are particular
cases on which the wave packet focus in the opposite side of the
chain after spreading over the lattice.

3. Results and discussion

In order to obtain the quantities R(t), O (t) and P (t), a eighth-
order Runge–Kutta method with δt = 0.005 is employed to inte-
grate the delayed DNLSE. The norm conservation was checked at
every time step to ensure the numerical convergence.

In Fig. 1, we show the return probability and the participation
number versus χ at t → ∞ in the case of instantaneous nonlinear
response (adiabatic regime) for two values of N . The data show
the usual behavior exhibited by the DNLSE [2,3]. For χ > 3.5 the
return probability R(t) is finite and P (t)/N vanishes, suggesting a
localized state near the site initially occupied by the wave packet.
This is the self-trapping behavior with the electron remaining lo-
calized due the electron–phonon interaction. For χ < 3.5 the re-
turn probability approaches zero and the normalized participation
function P (t)/N is finite. Therefore the asymptotic wavefunction in
this regime corresponds to an extended state with the wavefunc-
tion spreading through the entire lattice.

In Fig. 2, we start to analyze the effect of the nonlinearity re-
laxation time by reporting R(t) and O (t) versus χ at t → ∞. All
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Fig. 1. Return probability R(t → ∞) and normalized participation number P (t →
∞)/N versus χ for the case of instantaneous nonlinear response. For χ > 3.5
the return probability R(t → ∞) is finite and P (t → ∞)/N vanishes, suggesting
a localized (self-trapped) state. For χ < 3.5 the return probability approaches zero
proportional to 1/N and the normalized participation function is finite, the typical
behavior of delocalized wave packets.

Fig. 2. R(t → ∞) and O (t → ∞) versus χ for the case of a finite nonlinear re-
sponse time τ = 1. Two representative chain sizes are illustrated. For large χ , we
observe self-trapping as in the case of instantaneously responding media. Notice
that the regime of delocalized asymptotic wave packets is restricted to very small
nonlinear strengths. For a chain with N = 40 sites, the asymptotic wave packet in
the regime of intermediate nonlinearities becomes concentrated either around the
initial site or around the opposite site. The actual location of the asymptotic wave
packet depends on the system size. For a chain with N = 80 sites, it can even be-
come simultaneously distributed around both regions.

results will be shown for the particular case of a relaxation time
τ = 1. For χ > 3 the return probability is always finite and the
occupancy probability of the opposite site vanishes. This is the
typical behavior attained in the large χ regime of instantaneously
responding media corresponding to the wave packet self-trapping.
For smaller values of χ the wave packet shows an irregular se-
quence of localization around either the initial site or the opposite
site. Actually, there is also a small window of nonlinear strengths
on which the wave packet splits into two packets distributed si-
multaneously on two regions. Such splitting is not observed in
small chains. Further, the sequence of transitions depends on the
chain size. For small nonlinear strengths, the return and opposite
probabilities scale as 1/N , thus indicating that the wave packet
spreads over the entire chain. However, this regime of extended
asymptotic wave packet is significantly reduced as compared to
the one taking place in instantaneously responding media. Also,
this critical nonlinear strength separating the regime of extend and

Fig. 3. Critical nonlinearity χc versus N . Below χc the asymptotic wave packet re-
mains extended over the entire lattice. The phase of extended states is suppressed
as the chain size increases. The inset shows that, for large chain sizes, χc ∝ 1/N3/2.

Fig. 4. R(t), O (t) and P (t) versus time for three representative values of χ , con-
sidering a chain with N = 80 sites and a nonlinear response time τ = 1. All cases
show that the wave packet initially spreads (growing participation function) until
reaching an intermediate plateau during which the participation function remains
of the order of the chain size (delocalized wave packet). A dynamical transition
takes place and the participation function decreases until reaching a final asymp-
totic value (self-focusing). The illustrated cases correspond to self-focusing around
the opposite site (χ = 1.8: finite O (t → ∞) and vanishing R(t → ∞)), simulta-
neously around both regions (χ = 2.5: both O (t → ∞) and R(t → ∞) finite) and
around the initial site (χ = 3.2: finite R(t → ∞) and vanishing O (t → ∞)).

localized asymptotic wave packets decreases as the chain size is
increased. The dependence of χc on the chain size is depicted in
Fig. 3.

In order to develop a deeper understanding of the wave packet
dynamics in the regime of intermediate nonlinear strengths, we
plot in Fig. 4 the time evolution of the return and opposite prob-
abilities, as well as the time evolution of the normalized partic-
ipation function in a chain with N = 80 sites. Three representa-
tive values for the nonlinear strength are illustrated, correspond-
ing to asymptotic wave packets located around the opposite site
(χ = 1.8), around the initial site (χ = 3.2) and splitted on both
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regions (χ = 2.5). In all cases there is an initial transient during
which the initially localized wave packet spreads over the lattice,
signaled by an increasing participation function. This initial tran-
sient lasts until the wave packet become spread over the entire
lattice. After this initial transient, there is a plateau interval in the
participation function during which the wave packet remains delo-
calized over the lattice with similar occupancy probabilities on the
initial and opposite sites. The duration of this intermediate dynam-
ical regime depends on the nonlinear strength. After this plateau,
the wave packet starts to focus on a finite chain segment. This
self-focusing phenomena is strongly enhanced by the relaxation of
the nonlinearity. In instantaneously responding media, it only takes
place in a narrow interval of nonlinear strengths near the self-
trapping transition. Further, self-focusing leads to the localization
of the wave packet in distinct regions of the chain, depending on
the precise value of the nonlinear coupling. In the illustrated case
of a chain with N = 80 sites, the wave packet can even self-focuses
simultaneously in the regions around the initial and opposite sites.
We have observed that new windows with self-focusing on three
or more regions appear as the chain size is further increased. Fi-
nally, in the regime of strong nonlinear strengths (χ > 4), the in-
termediate plateau corresponding to fully delocalized wave packets
is suppressed. The wave packet remains trapped around its initial
position, although it can eventually expand over a large portion of
the chain before finally contracting to its final profile.

4. Summary and concluding remarks

In summary, we analyzed the one-electron wave packet dy-
namics in closed chains with a relaxational nonlinearity origi-
nated from an intrinsic electron–phonon coupling. Going beyond
the usual adiabatic approach, the response time of the nonlinear-
ity τ is considered explicitly through a Debye relaxation process.
We numerically solved a time dependent Schrödinger equation
for the electronic wave packet amplitudes simultaneously with
a Debye relaxation of the electron–phonon coupling. We found
that the wave packet dynamics is strongly sensitive to the non-
instantaneous character of the nonlinearity. In contrast with the
behavior derived from the adiabatic approach, which provides a
wide stability region of asymptotically delocalized wave packets,
the introduction of a finite response time makes the delocal-
ized state unstable at finite nonlinear strengths larger than χc =
O(1/N3/2). It is interesting to note that a modulational instabil-
ity analysis in nonlinear optical waveguides also showed that CW
waves become unstable with respect to harmonic perturbations in
the whole frequency spectrum when the non-instantaneous char-
acter of the nonlinear optical response is taken into account [31].
Our present results show that after spreading over the chain, the
one-electron wave packet self-focuses on a finite segment. The po-
sition of the focused wave packet depicts an irregular dependence
on the nonlinear coupling, alternating from the initial site, the op-
posite site or more complex mixed focused states. Self-trapping
still takes place at large nonlinear couplings on which the wave
packet remains concentrated around its initial position without an
intermediate delocalized dynamical regime. It would be valuable
to develop a linear stability analysis to analytically determine the
dependence of the critical nonlinear strength delimiting the tran-

sition from delocalized and self-focused stationary wave packets.
Also, the precise location of the transition from the self-focusing
to the self-trapping regime, as well as those corresponding to the
dynamical transitions leading to distinct focused states, requires a
careful finite-size scaling analysis of the intermediate dynamical
regime in order to reveal the mechanism leading to the instability
of delocalized wave packets. These aspects evidence the complexity
of the electron wave packet dynamics in media with a finite non-
linear response time. We hope the phenomenology here reported
will stimulate further studies along these lines, thus covering an
important, although still not properly addressed, aspect of the elec-
tronic transport in nonlinear systems.
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