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We study the Anderson localization in two-dimensional lattices with long-range correlated hopping
terms. The hopping energies along one lattice direction will be generated by a superposition of un-
correlated and long-range correlated contributions. Our numerical results strongly suggest the presence
of a Kosterlitz–Thouless-like transition above a critical correlation degree.
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1. Introduction

Materials with restricted geometry, such as semiconductor
quantum-well structures [1], quantum dots and wires [2,3], organic
thin films [4], quasiperiodic [5] as well as more general aperiodic
structures [6] are nowadays objects of growing interest from both
fundamental and practical point of views. An attributive peculiar-
ity of almost all of them is the presence of disorder, which can be
of an intrinsic nature (imperfections of the structure itself) as well
as originated from a random environment.

Whenever disorder is involved, Anderson’s ideas about localiza-
tion of quasiparticle states come into play [7]. In three dimensions,
the states at the center of the quasiparticle energy band remain ex-
tended for a relatively weak disorder (of magnitude smaller than
the bandwidth), while the other states (in the neighborhood of the
band edges) turn out to be exponentially localized. This implies
the existence of two mobility edges which separates the phases
of extended and localized states [8]. On the contrary, uncorrelated
disorder of any magnitude causes localization of all one-particle
eigenstates in one dimension (1D) [9] and two dimensions (2D)
[10]. However, it was suggested that low-dimensional Anderson
models with purely off-diagonal disorder might violate this gen-
eral statement since a singularity of the density of states (DOS)
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was found at the band center [11–14]. A throughly analysis of the
singularity of the DOS in the 1D Anderson model with off-diagonal
disorder and nearest-neighbor interactions showed that the states
belonging to this singularity are localized with no tendency of de-
localization with increasing chain size [13]. On the other hand,
the states belonging to the DOS singularity of the 2D counterpart
model display a power-law divergence with the system size, a typ-
ical behavior of critical states [14].

Since late eighties, however, it has been realized that extended
states may survive on 1D systems if the disorder distribution is
correlated [15–23]. Short-range correlated disorder was found to
support extended states at special resonance energies. In the ther-
modynamic limit, such extended states form a set of null measure
in the density of states [15–19], implying the absence of mobil-
ity edges in these systems. In contrast, systems with long-range
correlations in the disorder distribution support a finite fraction of
delocalized states [21,22], giving rise to mobility edges. Theoreti-
cal predictions of localization suppression on 1D geometries, due
to correlations of the disorder distribution, were confirmed ex-
perimentally in semiconductor superlattices with intentional cor-
related disorder [20], as well as in single-mode wave guides with
correlated scatterers [23].

A first study of the effects of long-range correlations in the
localization properties of 2d electronic systems with orthogonal
symmetry was performed in Ref. [24]. The authors considered a
striped media in the x–y plane with on-site disorder. The on-
site energies were generated by a superposition of an uncorre-
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lated term and a long-range correlated contribution along the
y-direction. It was predicted that this system displays a disorder-
driven Kosterlitz–Thouless-like MIT in the regime of strong cor-
relations. More recently, the effects of long-range correlations in
both x- and y-directions, were studied [25–28]. A transfer ma-
trix numerical calculation on a striped geometry, combined with
finite-size scaling arguments, confirmed the presence of a cor-
relation induced Kosterlitz–Thouless transition [25]. In addition,
by considering the site energies of the 2d Anderson Hamiltonian
distributed in such a way to have a power-law spectral density
S(k) ∝ 1/kα2d , an exact diagonalization formalism of finite lattices
with a square geometry showed that this model displays a phase of
low-energy extended states for α2d > 2. In this regime, the dynam-
ics associated with the spread of an initially localized wave packet
becomes ballistic [26]. Moreover, the exponents governing the col-
lapse of the participation function for low energies (ξ ∝ LD2) and
the long time decay of the autocorrelation function [C(t) ∝ t−β ]
were shown to satisfy the scaling relation D2 = βd. Furthermore,
the scale invariance of the participation function relative fluctu-
ation at the critical point was investigated in Ref. [27]. By using
a finite size scaling hypothesis it was shown that the correlation
length critical exponent depends on α2d , thus indicating that cor-
relations in the disorder distribution are indeed relevant in this
regime, in agreement with the extended Harris criterion.

While the delocalization phenomenon induced by long-range
correlations in the on-site potential has been extensively investi-
gated in the literature, the counterpart model with long-range cor-
related off-diagonal disorder is still quite unexplored. In this work,
we report further progress along this direction. We will develop
transfer matrix calculations on the 2d Anderson model with long
range correlated hopping terms. Here, we will consider a striped
geometry in the x–y plane with zero on-site potentials. The hop-
ping energies along the y-direction will be generated by a super-
position of an uncorrelated term and a long-range correlated one.
Combining the transfer matrix calculations with finite-size scaling
arguments, we compute the localization length in the thermody-
namic limit. We will show that the scaling behavior is compatible
with the presence of a Kosterlitz–Thouless metal–insulator transi-
tion [25].

2. Model and formalism

We consider the 2d Anderson Hamiltonian with disordered
hopping terms and null on-site energies (εim = 0) on a striped
square lattice geometry L × M [24,25]:

H =
∑

〈x1 y1,x2 y2〉
Tx1 y1,x2 y2

(|x1, y1〉〈x2, y2|
)
, (1)

where |x, y〉 is a Wannier state localized at site (x, y) and∑
〈x1 y1,x2 y2〉 represents a sum over nearest-neighbor pairs. The

matrix Tx1 y1,x2 y2 contains the hopping terms along both x- and
y-directions. In our calculations, we fix the hopping term along
the x-direction as tx = 1. The hopping terms along the y-direction
will be generated by a superposition of an uncorrelated contribu-
tion and a long-range correlated term,

t y = tanh (νy + ρy) + 〈t y〉. (2)

The first term νy represents a long-range correlated sequence de-
fined by

νy = ζ(α)

L/2∑
k=1

1

kα/2
cos

(
2πky

L
+ φk

)
(3)

where φk are L/2 (L even) independent random phases uni-
formly distributed in the interval [0,2π ] and ζ(α) is a normal-
ization constant which is chosen to have the sequence variance

σ =
√

〈ν2
y〉 − 〈νy〉2 = 1. We also shift the sequence in order to

have 〈νy〉 = 0. Typically, this sequence is the trace of a 1d frac-
tional Brownian motion with a well defined power-law spectrum
S(k) ∝ 1/kα . The second term ρy describes L independent random
numbers uniformly distributed in the interval [−W /2, W /2]. Here
we use 〈t y〉 = 2 to avoid negative hopping terms.

In order to calculate the typical localization length of electrons,
we use the finite size scaling method combined with the transfer-
matrix technique [24]. We calculate the damping of wave functions
in the y-direction for a long strip of size L × M with L being ex-
tremely large (L ≈ 2 × 106). The periodic boundary condition is
adopted in the x-direction. For a given energy E , a 2M ×2M trans-
fer matrix Q n can be easily set up, mapping the wave-function
amplitudes at column n + 1 to those at column n in the strip. The
propagation along the strip is therefore described by the product
of transfer matrices

P L = Q L−1 Q L−2 · · · Q 2 Q 1. (4)

The transfer matrix P L has M pairs of eigenvalues whose loga-
rithms correspond to the Lyapunov exponents [24,25]. The largest
localization length λ(E) for a given energy E in a system with a
finite width M is given by the inverse of the smallest Lyapunov ex-
ponent. In our numerical calculation, we choose L about 2×106 so
that the self-averaging effect automatically takes care of statistical
fluctuations. We estimate and control these fluctuations following
the deviations of the calculated eigenvalues of two adjacent itera-
tions. The finally obtained data have statistical errors less than the
symbol size in the corresponding figures. We use the standard one-
parameter finite-size scaling ansatz [24,25] to obtain the thermo-
dynamic localization length λ∞ . According to the one-parameter
scaling theory, the rescaled localization length Λ = λ(E)/M can be
expressed near the critical point in terms of a universal function
given by:

Λ = f (λ∞/M). (5)

We also study some dynamical aspects by examining the time
evolution of an initially localized wave packet on a L × L square
lattice. The Wannier amplitudes evolve in time according to the
time-dependent Schrödinger equation as (h̄ = 1) [26]

i
dcx,y(t)

dt
= t y−1cx,y−1(t) + t ycx,y+1(t) + cx−1,y(t) + cx+1,y(t),

x, y = 1,2, . . . , L. (6)

We consider a wave packet initially localized at site x0 =
L/2, y0 = L/2, i.e. cx,y(t = 0) = δx,x0δy,y0 . The above set of equa-
tions were solved numerically by using a high-order method based
on the Taylor expansion of the evolution operator V (�t):

V (�t) = exp(−iH�t) = 1 +
no∑

l=1

(−iH�t)l

l! (7)

where H is the Hamiltonian. The wave-function at time �t is
given by |Φ(�t)〉 = V (�t)|Φ(t = 0)〉. The method can be used
recursively to obtain the wave-function at time t . The following
results were taken by using �t = 0.05 and the sum was truncated
at no = 20. This cutoff was sufficient to keep the wave-function
norm conservation along the entire time interval considered. We
are particularly interested in calculating the wave packet mean-
square displacement ξ(t) along the y-direction (the correlated di-
rection) [26]

ξ(t) =
√√√√ L∑

x=1

L∑
y=1

[
(y − y0)2

]∣∣cx,y(t)
∣∣2

. (8)
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Fig. 1. Rescaled localization length λ(E)/M as a function of energy E for α = 0 and
M = 20 up to 80. The curves for smaller M are always above those of larger M
throughout the entire range of energies. This feature indicates that there is no mo-
bility edge.

Fig. 2. Rescaled localization length Λ = λ(E)/M as a function of energy E for α = 2
and M = 20 up to 120. We can see that all curves merge together for E < Ec ≈ 3.
This behavior signals a metal–insulator transition at E = Ec .

3. Results and discussion

All transfer matrix calculations were done for L ≈ 2 × 106 and
W = 1. Fig. 1 presents the rescaled localization length Λ = λ(E)/M
as a function of energy E for α = 0. the curves of the smaller M
are always above those of larger M throughout the entire range of
energies, thus indicating that there is no mobility edge and, corre-
spondingly, no metal–insulator transition. In Fig. 2 we show similar
data taken from the case of strongly correlated off-diagonal disor-
der (α = 2). This picture has a qualitatively different feature: all
curves merge together for E < Ec ≈ 3. This signals a delocaliza-
tion phase transition at E = Ec . In Fig. 3, we plot the rescaled
localization length Λ = λ(E)/M for a specific energy below Ec

(E = 1) as a function of M . We can see that the phase transition
occurs at α > 1, with the rescaled localization length becoming
size independent in the regime of large M . In Fig. 4(a) we col-
lect results for the localization length extrapolated to the thermo-
dynamical limit. These estimated values were obtained from the
scaling ansatz close to the critical energy Ec ≈ 3. We successfully

Fig. 3. Rescaled localization length Λ = λ(E)/M for a specific energy below Ec

(E = 1) as a function of M . We can see that the phase transition occurs for α > 1,
characterized by the size independence of the asymptotic scaled localization length.

fit the data with λ∞ ∝ exp(C/
√

E − Ec ) with Ec = 3.00(5) indicat-
ing a fast decay of the localization length on the insulating side by
increasing the deviation from the transition point. This behavior is
the typical one for a disorder driven Kosterlitz–Thouless-like tran-
sition (KT transition). Using the estimated extrapolated localization
lengths, we report in Fig. 4(b) the data for the scaled localization
length λ(E)/M close to critical energy Ec = 3.00(5) as a function
of the proper scaling variable λ∞(E)/M . We have used energy val-
ues from E = 3.20 up to 3.55 with �E = 0.05 and stripe sizes
ranging from M = 20 up to 120. The fact that all data from dis-
tinct energies and system sizes fall into a single curve, without the
need of any additional adjusting parameter, reflects the accuracy of
the estimated extrapolated localization length and the absence of
significant corrections to scaling in the asymptotic regime investi-
gated.

Finally, we show in Fig. 5 results for the time evolution of an
initially localized wave-packet in a square lattice with 3000 × 3000
sites and α = 0,1.5 and 3. Numerical convergence was ensured by
conservation of the norm of the wave-packet at every time step,
i.e., 1 − ∑

n |cn(t → ∞)|2 ≈ 10−15. The extended states that appear
in this model emerge in the regime at which the potential has a
strong correlation degree. These are typically non scattered modes
thus leading to a ballistic wave-packet spread, ξ(t) ∝ t . In Fig. 5
we obtain roughly a ballistic spread for α > 1. In the long-time,
ξ(t) displays a saturation that represents the package arrival at the
lattice boundaries.

4. Summary and concluding remarks

In this Letter, we studied the localization properties in 2D
striped media with off-diagonal long-range-correlated disorder.
The hopping energies along the y-direction were assumed to be
composed of a superposition of an uncorrelated disorder term and
a long-range correlated random contribution. The long-range cor-
related terms were distributed in such a way to have a power-law
spectral density S(k) ∝ k−α . By using the well-developed transfer-
matrix method we find that the system undergoes a unconven-
tional correlation-driven Kosterlitz–Thouless metal–insulator tran-
sition when the hopping disorder distribution exhibits a power-law
spectral density S(k) ∝ k−α with α > 1. This result is in remarkable
contrast to the one exhibited by 2D disordered media with uncor-
rected disorder, which do not display a metal–insulator transition
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Fig. 4. (a) Fit of the extrapolated localization length λ∞ ∝ exp(C/
√

E − Ec ) with Ec = 3.00(5). This scaling behavior in typical of a Kosterlitz–Thouless transition. (b) Data
collapse of the scaled localization length in the universal scaling form, thus supporting the accuracy of the estimated extrapolated localization lengths.

Fig. 5. The mean-square displacement ξ(t) of a one-electron wave-packet computed
in a square lattice with 3000 × 3000 sites and α = 0,1.5 and 3. A nearly ballistic
spread (ξ(t) ∝ t) takes place in the regime of strong correlations in the longitudinal
hopping distribution (α > 1).

for any amount of disorder. In addition, we followed the time evo-
lution of an initially localized wave-packet. Within our numerical
precision, we found that associated with the metal–insulator tran-
sition, a ballistic wave-packet propagation takes place. We hope
that the present work will stimulate further studies on semicon-
ductors and superlattices with intentional long-range correlated
off-diagonal disorder.
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