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Abstract

We study the diffusion process in a Heisenberg chain with correlated spatial disorder, with a power spectrum in the momentum
space behaving &s#, using a stochastic description. It establishes a direct connection between the fluctuation in the spin-wave
density of states and the noise density of states. For continuous ranges of the eyaneffind superdiffusive and ballistic
spin-wave motions. Both diffusion exponents predicted by the stochastic procedure agree with the ones calculated using the
Hamiltonian dynamics.
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1. Introduction port properties. In particular, the study of diffusion and
transport properties of physical systems with short or
long-range correlations in the disorder distribution has
f'a\ttracted a renewed interg4t-12]. For instance, the
unexpected high conductance of several doped quasi-
one-dimensional polymers was explained by assuming
pairwise correlations in the disorder distributi{8j.
mspondmg author. Similarly, the suppression of Anderson localization
E-mail address: fidelis@df.ufal.bi(F.A.B.F. de Moura). was recently confirmed experimentally in semicon-

In the last decades, a considerable number of dy-
namical systems have been studied and a great deal o
attention has been paid to the analysis of their trans-
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ductor superlattices with correlated disorfle3]. Fur- tion—dissipation theorefd7]:
ther, it was demonstrated that long-range correlations
in site also act towards the delocalization of 1D qua- Ci(t) = (h(®)h(0)) = (A%)I"(1). @
siparticle statefl0,11] The 1D Anderson model with  Here, (---) indicates an ensemble average in thermal
long-range correlated diagonal disorder displays a fi- equilibrium. In principle, the presence of the kernel
nite phase of extended states in the middle of the band I" () allows us to study a large number of correlated
of allowed energies, with two mobility edges sepa- processes. For example, in analogy with the usual
rating localized and extended stafé®]. This result Langevin’s equation, we can study the asymptotic be-
was experimentally validated by microwave transmis- havior of the second moment of the variable,

sion spectra through a single-mode waveguide with .

inserted correlated scatterdfst]. The above results 0= [ Aty 3)
have motivated the study of other model systems that o= 5143,
can be mapped onto the Anderson model, such as mag- 0

netic[15] and harmonic chaind 6]. namely

In the context of stochastic processes, Morgado et 2
al. [1], studied diffusion in systems with long-range |im (o)
time correlation. First, they establish a direct connec- "~ ¢
tion between the noise density of statgsw), andthe ~ Wherek is a constant. In Eq4), we havex = 1 for
diffusive process. Second, they conjecture that the dy- normal diffusion; for sub- and super-diffusiom,< 1
namics of a Hamiltonian system with space correlated anda > 1, respectively.
disorder could be described by the same formalism  The generalized field;(z), in Eq. (1) can be mod-
if one supposes that the fluctuation in the density of €led by a thermal bath composed of harmonic oscilla-
states of the quasi-particle or elementary excitation, t0rs; consequently, according to Eg), the memory
or (w), plays the same role as in the stochastic de- ~ function can be written as
scription. In this Letter, we present a numerical analy-
sis cFJ)f the validity of this conjecture. We study it for the F= / pn(@) COS@) do, ®)

one-dimensional quantum Heisenberg model exhibit- wherep, () is the noise density of states. It has been

ing long-range correlations in the random exchange proved]1] thatif the Laplace transform of the memory
couplings. For continuous ranges of the degree of cor- ¢ ,ntion of a unidimensional system behaves as
relation, this system presents superdiffusive and ballis-

tic motions[15]. Here, we provide numerical evidence I"(z — 0) oz, (6)
that the Hamiltonian description and the stochastic one
can be unified through the referred conjecture, thus
confirming early expectatiorj&]. a=v+1 )

=K, (4)

then the diffusion exponent is

In disordered Hamiltonian systems the diffusion pro-
cess can be studied through direct integration of the
2. Stochastic and Hamiltonian descriptions equations of motiorj15,16] Now then, how can we
assure that the two approaches are compatible and lead
to the same results? For those systems the density of
states of the quasi-particle or of the elementary excita-
tion, D(E), plays the most significant role. However,
it displays fluctuations, which are intrinsically con-
dA(t) e, nected to the diffusive behavior. Here, we conjecture
i / L —)AE)dr +h(), (1) that, for the relaxation processes, the fluctuation in the
0 density of statespr(E), plays the same role as the

. . . . . hoise density of states in the stochastic process, thus
whereh(t) is a stochastic noise subject to the condi-

tions (h(z)) =0, (h(t)A(0)) = 0, and to the fluctua- p,(E) < pr(E). (8)

Let us suppose that the equation of motion for an
operatorA can be cast in the forfi7—20]
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Consequently, if we calculater(E) we can obtain
the memory function through E¢b) and the diffusion
exponent using Eqg6) and (7) Below, we explore
these ideas in the framework of the referred magnetic 1.4x102 |
Hamiltonian systenfil 5].

1.8x102 |

—
Ll

The one-dimensional Heisenberg chain with long- < 2 "
. & 1.0x10° 1 " 1
range correlated random exchange couplings can be F
described by the Hamiltonida5] S
6.0x10> S B=15 .
N /'l_,m
H=-) JS-S41, O g o
; 2.0x10°3 p , , , | 1
where S = 1/2, and the exchange integral is defined 0 2 4 6 8 10
by E
Fig. 1. Fluctuations in the density of stateg(E) as function ofE
N/2 1/2 for 8 =0 andg = 1.5. The average is over 900 samples. Bot 0,
Ji = Z Ak) / coSrwkl/N + ¢r). (20) the curve suggests a power-law for low energies, whilesfer 1.5,
k=1 a plateau is observed.

Here,¢; are random phases, andk) is a power law _ _
spectrum in thé space given by compute the functiopr (E), defined by

Ak) kP an  pr(E)=(DE?). — (DB, (12)

By using a numerical renormalization group tech- Where(--)c is a configurational average over chains
nique, it was predicted that this Hamiltonian supports With different random sets of exchange integrals. This
a phase of low-energy extended spin waves in the IS @n appropriate procedure to assure the equivalence
strongly correlated regim@ > 1. Associated with ~ Pn(E) < pr(E), as proposed in Ed8). To that end,
these non-scattered modes, the spread of an initially W& use Dean’s numerical meth¢2l] to obtain the
localized wave packet displays a ballistic behavior in SPin-wave density of stateS(£), and the correspond-
the long time limit[15]; i.e. Eq.(4) with « = 2. In the ing pr(E), shown inFig. 1, for § =0 andf = 1.5. It
weakly correlated regime, 8 8 < 1, a superdiffusive |s_clear from _the data that, for low energies, the _fluctu-
behavior is obtained with = 1.5. It is worth mention- ~ ationspr (E) in the correlated casg, = 1.5 in this fig-

ing that the wave packet dynamics was investigated by Ure; are smaller than the uncorrelated cgse 0). For

means of a direct integration of the equations of mo- # > 1, it was shown in Ref|15] that the low energy
tion using a fourth order Runge—Kutta metrjad, 15} states are extended, and that the density of states has

In this case the site spin opera@ris here identified a similar behavior as thgt_of the pure chain. Th_erefore,
with operatorA in the stochastic formalism. Therefore We concluded that the finite value fof(£) obtained

if conjecture(8) is true the exponent of E¢7) should 1N the correlated caseg(= 1.5) was not stable in the
match the one calculated using the Hamiltonian dy- thermodynamic limit. In order to obtain the most prob-
namics[15]. able value of the fluctuations in the correlated case, we

perform a scaling analysis of the functigmn (E) for
chains with distinct lengths.

3. Numerical analysis Hence, we consider the following scaling function

O(E, N1, N2)
Now we describe the numerical method used to  _ . _
obtain the dynamical behavior, which consists in cal- = exp(~[or(E. NON1 = pr(E. N))No]) - (13)
culating the Laplace transform(z) of the memory with N1 > N>. This method has been successfully
function I (r) defined by Eq(5). However, we first used to obtain the behavior of a harmonic chain in the
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Fig. 2. Scaling function®(E, N1, N») as function of energy.
Here N, = 1.0 x 10* in all figures. (a) From top to bottom
N1 =15x 10%, 2.0 x 10%, 3.0 x 10*. We find that® — 1, i.e.,
pp(E) =0 only for E =0, otherwise® — 0 in the thermodynam-
ical limit. The inset shows the original data without interpolations
for Nq = 3.0 x 10*. Average performed over 120 chains. (b) From
top to bottomA; = 2.0 x 10%, 3.0 x 10%, 4.0 x 10%. In the thermo-
dynamical limit® — 0, except in the region @ E < E. (E. ~ 4)
wherepp (E) — 0and® — 1. Inset:N1 =4.0 x 104, Average per-
formed over 100 chains.

thermodynamic limif16]. If ®(E, N1, N2) vanishes

1 T T T

0.1

N 0.01

0.001

1e-04

Fig. 3. The Laplace transform of the memory functibtx) as func-
tion of z. The upper curve is a guide for the eye. The lower curve is
our result forg = 1.5, averaged over 900 chains. In the limit> 0

we approach the expected linear behavior.

for N1. Fig. 2(a) displays the results fg@ = 0. From
this figure we can see th&(E, N1, N2) < 1 in all
energy ranges, except At= 0. This indicates the ex-
istence of an extended state at this energy, which is
determinant in the superdiffusive behavibig. 2(b)
shows ®(E, N1, N2) for B = 1.5. In the range of
low extended states,Q E < E., @(E, N1, N2) — 1,
meaning thapr(E) — 0 in the thermodynamic limit.
Above E., ®(E, N1, N2) < 1. The presence of a fi-
nite range of energy with extended stateg(E) =0
forO< E < E. (E. = 4), is responsible for the ballis-
tic behavior{1].

Now we proceed by numerically integratipg (E)
in order to obtain the limiting behavior of (z) as
z— 0, usingEc = 4. In Fig. 3, we showl"(z) as a
function of z for 8 = 1.5. Observe the verification of
the conjecturev ~ 1.0, implyinga ~ 2.0. We find su-
perdiffusive motion foB < 1, and ballistic motion for
B > 1. Since the numerical method has greater errors
for smaller values of£, we find it difficult to obtain
the density of states for smal (large times). This

as the chain size increases, fluctuations are finite in the sort of error is expected to have an influence on small

thermodynamic limit. However, i® (E, N1, N2) ~ 1,

fluctuations are neglegible. IRig. 2, we show the
scaling function®(E, N1, N2) as a function of the
energyE. In order to clarify this figure, we interpo-

lated the data using a Bezier interpolation function. In

values ofz in the Laplace transform. Another numeri-
cal problem is due to the finite size of the chain, which
has important implications fof > 1, as seen by the
presence of the plateau kig. 1

Finally, Fig. 4showsx as a function of8. We select

the insets we show the original data without interpola- 0 < 8 < 2, covering both regimes. The numerical sim-

tions. We useV, = 1.0 x 104, and three distinct values

ulations are quite compatible with the stepwise behav-
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ing modes, here identified by the presence of a finite
range of energy with extended stateg:(E) = 0 for

0 < E < E.. This effect has been used recerjfig] to
obtain ballistic diffusion in ratchet devices. Another
related phenomenon is chaos synchronizaf{ia@],
which presents a reduction in the allowed phase space.
A large time to achieve equilibrium, or the absence
of some regions of the phase space, leads to the same
effect. Some of its important consequences, such as
violation of ergodicity[22,30]and of the fluctuation—
dissipation theorerf22], have been observed.

1.2 : : :
0.0 0.5 1.0 1.5 2.0
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Fig. 4. Numerical data for the diffusion exponenas function ofg
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