
ge

mentum
in-wave
c
using the
Physics Letters A 339 (2005) 33–38

www.elsevier.com/locate/pla

Stochastic description of the dynamics of a random-exchan
Heisenberg chain

M.H. Vainsteina, R. Morgadoa, F.A. Oliveiraa, F.A.B.F. de Mourab,c,∗,
M.D. Coutinho-Filhob

a Instituto de Física and Núcleo de Supercomputação e Sistemas Complexos, ICCMP, Universidade de Brasília,
CP 04513, 70919-970 Brasília, DF, Brazil

b Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco,
50670-901 Recife, PE, Brazil

c Departamento de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil

Received 18 June 2004; received in revised form 24 January 2005; accepted 23 February 2005

Available online 11 March 2005

Communicated by A.R. Bishop

Abstract

We study the diffusion process in a Heisenberg chain with correlated spatial disorder, with a power spectrum in the mo
space behaving ask−β , using a stochastic description. It establishes a direct connection between the fluctuation in the sp
density of states and the noise density of states. For continuous ranges of the exponentβ, we find superdiffusive and ballisti
spin-wave motions. Both diffusion exponents predicted by the stochastic procedure agree with the ones calculated
Hamiltonian dynamics.
 2005 Published by Elsevier B.V.
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1. Introduction

In the last decades, a considerable number of
namical systems have been studied and a great de
attention has been paid to the analysis of their tra
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port properties. In particular, the study of diffusion a
transport properties of physical systems with shor
long-range correlations in the disorder distribution h
attracted a renewed interest[1–12]. For instance, the
unexpected high conductance of several doped qu
one-dimensional polymers was explained by assum
pairwise correlations in the disorder distribution[3].
Similarly, the suppression of Anderson localizati
was recently confirmed experimentally in semico
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ductor superlattices with correlated disorder[13]. Fur-
ther, it was demonstrated that long-range correlati
in site also act towards the delocalization of 1D q
siparticle states[10,11]. The 1D Anderson model with
long-range correlated diagonal disorder displays a
nite phase of extended states in the middle of the b
of allowed energies, with two mobility edges sep
rating localized and extended states[10]. This result
was experimentally validated by microwave transm
sion spectra through a single-mode waveguide w
inserted correlated scatterers[14]. The above result
have motivated the study of other model systems
can be mapped onto the Anderson model, such as m
netic[15] and harmonic chains[16].

In the context of stochastic processes, Morgad
al. [1], studied diffusion in systems with long-rang
time correlation. First, they establish a direct conn
tion between the noise density of states,ρn(ω), and the
diffusive process. Second, they conjecture that the
namics of a Hamiltonian system with space correla
disorder could be described by the same formal
if one supposes that the fluctuation in the density
states of the quasi-particle or elementary excitat
ρF (ω), plays the same role asρn in the stochastic de
scription. In this Letter, we present a numerical ana
sis of the validity of this conjecture. We study it for th
one-dimensional quantum Heisenberg model exh
ing long-range correlations in the random excha
couplings. For continuous ranges of the degree of
relation, this system presents superdiffusive and ba
tic motions[15]. Here, we provide numerical eviden
that the Hamiltonian description and the stochastic
can be unified through the referred conjecture, t
confirming early expectations[1].

2. Stochastic and Hamiltonian descriptions

Let us suppose that the equation of motion for
operatorA can be cast in the form[17–20]

(1)
dA(t)

dt
= −

t∫

0

Γ (t − t ′)A(t ′) dt ′ + h(t),

whereh(t) is a stochastic noise subject to the con
tions 〈h(t)〉 = 0, 〈h(t)A(0)〉 = 0, and to the fluctua
-

tion–dissipation theorem[17]:

(2)Ch(t) = 〈
h(t)h(0)

〉 = 〈
A2〉Γ (t).

Here,〈· · ·〉 indicates an ensemble average in therm
equilibrium. In principle, the presence of the kern
Γ (t) allows us to study a large number of correla
processes. For example, in analogy with the us
Langevin’s equation, we can study the asymptotic
havior of the second moment of the variable,

(3)σ(t) =
t∫

0

A(s) ds,

namely

(4)lim
t→∞

〈σ 2(t)〉
tα

= K,

whereK is a constant. In Eq.(4), we haveα = 1 for
normal diffusion; for sub- and super-diffusion,α < 1
andα > 1, respectively.

The generalized field,h(t), in Eq. (1) can be mod-
eled by a thermal bath composed of harmonic osc
tors; consequently, according to Eq.(2), the memory
function can be written as

(5)Γ (t) =
∫

ρn(ω)cos(ωt) dω,

whereρn(ω) is the noise density of states. It has be
proved[1] thatif the Laplace transform of the memory
function of a unidimensional system behaves as

(6)Γ̃ (z → 0) ∝ zν,

then the diffusion exponent is

(7)α = ν + 1.

In disordered Hamiltonian systems the diffusion p
cess can be studied through direct integration of
equations of motion[15,16]. Now then, how can we
assure that the two approaches are compatible and
to the same results? For those systems the densi
states of the quasi-particle or of the elementary exc
tion, D(E), plays the most significant role. Howeve
it displays fluctuations, which are intrinsically co
nected to the diffusive behavior. Here, we conject
that, for the relaxation processes, the fluctuation in
density of states,ρF (E), plays the same role as th
noise density of states in the stochastic process, th

(8)ρ (E) ↔ ρ (E).
n F
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Consequently, if we calculateρF (E) we can obtain
the memory function through Eq.(5) and the diffusion
exponent using Eqs.(6) and (7). Below, we explore
these ideas in the framework of the referred magn
Hamiltonian system[15].

The one-dimensional Heisenberg chain with lon
range correlated random exchange couplings ca
described by the Hamiltonian[15]

(9)H = −
N∑

l=1

JlSl · Sl+1,

whereS = 1/2, and the exchange integral is defin
by

(10)Jl =
N/2∑
k=1

�(k)1/2 cos(πkl/N + φk).

Here,φk are random phases, and�(k) is a power law
spectrum in thek space given by

(11)�(k) ∝ k−β.

By using a numerical renormalization group tec
nique, it was predicted that this Hamiltonian suppo
a phase of low-energy extended spin waves in
strongly correlated regimeβ > 1. Associated with
these non-scattered modes, the spread of an init
localized wave packet displays a ballistic behavior
the long time limit[15]; i.e. Eq.(4) with α = 2. In the
weakly correlated regime, 0< β < 1, a superdiffusive
behavior is obtained withα = 1.5. It is worth mention-
ing that the wave packet dynamics was investigated
means of a direct integration of the equations of m
tion using a fourth order Runge–Kutta method[12,15].
In this case the site spin operatorSl is here identified
with operatorA in the stochastic formalism. Therefo
if conjecture(8) is true the exponent of Eq.(7) should
match the one calculated using the Hamiltonian
namics[15].

3. Numerical analysis

Now we describe the numerical method used
obtain the dynamical behavior, which consists in c
culating the Laplace transform̃Γ (z) of the memory
function Γ (t) defined by Eq.(5). However, we first
Fig. 1. Fluctuations in the density of statesρF (E) as function ofE
for β = 0 andβ = 1.5. The average is over 900 samples. Forβ = 0,
the curve suggests a power-law for low energies, while forβ = 1.5,
a plateau is observed.

compute the functionρF (E), defined by

(12)ρF (E) = 〈
D(E)2〉

C
− 〈

D(E)
〉2
C
,

where〈· · ·〉C is a configurational average over cha
with different random sets of exchange integrals. T
is an appropriate procedure to assure the equival
ρn(E) ↔ ρF (E), as proposed in Eq.(8). To that end,
we use Dean’s numerical method[21] to obtain the
spin-wave density of states,D(E), and the correspond
ing ρF (E), shown inFig. 1, for β = 0 andβ = 1.5. It
is clear from the data that, for low energies, the fluc
ationsρF (E) in the correlated case,β = 1.5 in this fig-
ure, are smaller than the uncorrelated case (β = 0). For
β > 1, it was shown in Ref.[15] that the low energy
states are extended, and that the density of state
a similar behavior as that of the pure chain. Therefo
we concluded that the finite value forρF (E) obtained
in the correlated case (β = 1.5) was not stable in th
thermodynamic limit. In order to obtain the most pro
able value of the fluctuations in the correlated case
perform a scaling analysis of the functionρF (E) for
chains with distinct lengths.

Hence, we consider the following scaling functio

(13)

Θ(E,N1,N2)

= exp
(−[

ρF (E,N1)N1 − ρF (E,N2)N2
])

with N1 > N2. This method has been successfu
used to obtain the behavior of a harmonic chain in



36 M.H. Vainstein et al. / Physics Letters A 339 (2005) 33–38

-
ns
m

the

-
. In
la-
s

e is

-
h is

.
-

-

f

rors

all
ri-
ich
e

m-
av-
Fig. 2. Scaling functionΘ(E,N1,N2) as function of energyE.
Here N2 = 1.0 × 104 in all figures. (a) From top to bottom
N1 = 1.5 × 104, 2.0 × 104, 3.0 × 104. We find thatΘ → 1, i.e.,
ρF (E) = 0 only for E = 0, otherwiseΘ → 0 in the thermodynam
ical limit. The inset shows the original data without interpolatio
for N1 = 3.0 × 104. Average performed over 120 chains. (b) Fro
top to bottomN1 = 2.0× 104, 3.0× 104, 4.0× 104. In the thermo-
dynamical limitΘ → 0, except in the region 0< E < Ec (Ec ≈ 4)

whereρF (E) → 0 andΘ → 1. Inset:N1 = 4.0×104. Average per-
formed over 100 chains.

thermodynamic limit[16]. If Θ(E,N1,N2) vanishes
as the chain size increases, fluctuations are finite in
thermodynamic limit. However, ifΘ(E,N1,N2) ≈ 1,
fluctuations are neglegible. InFig. 2, we show the
scaling functionΘ(E,N1,N2) as a function of the
energyE. In order to clarify this figure, we interpo
lated the data using a Bezier interpolation function
the insets we show the original data without interpo
tions. We useN = 1.0×104, and three distinct value
2
Fig. 3. The Laplace transform of the memory functionΓ̃ (z) as func-
tion of z. The upper curve is a guide for the eye. The lower curv
our result forβ = 1.5, averaged over 900 chains. In the limitz → 0
we approach the expected linear behavior.

for N1. Fig. 2(a) displays the results forβ = 0. From
this figure we can see thatΘ(E,N1,N2) 
 1 in all
energy ranges, except atE = 0. This indicates the ex
istence of an extended state at this energy, whic
determinant in the superdiffusive behavior.Fig. 2(b)
shows Θ(E,N1,N2) for β = 1.5. In the range of
low extended states, 0< E < Ec, Θ(E,N1,N2) → 1,
meaning thatρF (E) → 0 in the thermodynamic limit
Above Ec, Θ(E,N1,N2) 
 1. The presence of a fi
nite range of energy with extended states,ρF (E) = 0
for 0< E < Ec (Ec ≈ 4), is responsible for the ballis
tic behavior[1].

Now we proceed by numerically integratingρF (E)

in order to obtain the limiting behavior of̃Γ (z) as
z → 0, usingEC = 4. In Fig. 3, we showΓ̃ (z) as a
function of z for β = 1.5. Observe the verification o
the conjecture:ν ≈ 1.0, implyingα ≈ 2.0. We find su-
perdiffusive motion forβ < 1, and ballistic motion for
β > 1. Since the numerical method has greater er
for smaller values ofE, we find it difficult to obtain
the density of states for smallE (large times). This
sort of error is expected to have an influence on sm
values ofz in the Laplace transform. Another nume
cal problem is due to the finite size of the chain, wh
has important implications forβ > 1, as seen by th
presence of the plateau inFig. 1.

Finally,Fig. 4showsα as a function ofβ. We select
0< β < 2, covering both regimes. The numerical si
ulations are quite compatible with the stepwise beh
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Fig. 4. Numerical data for the diffusion exponentα as function ofβ
averaged over 900 chains. The step (dotted-line) signs the tran
at β = 1 from the superdiffusive behavior (α = 1.5) to the ballistic
one (α = 2) [15].

ior [15], although the behavior close to the transiti
(β = 1) was not studied due to numerical difficultie
The maximum deviation observed is atβ = 0.8, with
an error of about 8%, which results inα = 1.39.

4. Discussion and conclusions

The main results reported in this Letter are the f
lowing: first, for the Heisenberg system we have c
culated the superdiffusive and ballistic exponents w
reasonable precision. Second, we have been able t
sociate a memory function to a Hamiltonian, throu
which we unite two powerful formalisms: a stochas
description and the quantum equations of motion. T
result may have implications far beyond the spec
example outlined in this Letter. Evidently, we ne
more simulations and experiments connecting the
ponentsα andν in several diffusive processes in ord
to have a more complete picture of the validity of co
jecture(8). It is important to notice that there are ma
phenomena associated with those described here
example, in the ballistic regime (α = 2), there re-
mains some open issues concerning the use of
fluctuation–dissipation theorem[22]. Since the early
experiment of Kauzmann[23], situations have bee
found where the systems do not thermalize, usually
sociated with their slow dynamics[22–27]. This slow
dynamics is due to the softening of the lower fluctu
-

r

ing modes, here identified by the presence of a fi
range of energy with extended states:ρF (E) = 0 for
0< E < Ec. This effect has been used recently[28] to
obtain ballistic diffusion in ratchet devices. Anoth
related phenomenon is chaos synchronization[29],
which presents a reduction in the allowed phase sp
A large time to achieve equilibrium, or the absen
of some regions of the phase space, leads to the s
effect. Some of its important consequences, suc
violation of ergodicity[22,30] and of the fluctuation–
dissipation theorem[22], have been observed.
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