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a b s t r a c t

In this work, we numerically calculate the dynamics of an electron in one-dimensional disordered

systems. Our formalism is based on the numerical solution of the time-dependent Schrödinger equation

for the complete Hamiltonian combined with a finite-size scaling analysis. Our calculations were

performed on chains with short-ranged exponential correlation on the diagonal disorder distribution.

Our formalism provides an accurate estimate for the dependence of the localization length with the

width of disorder. We also show here numerical calculations of the localization length by using a

standard renormalization procedure. Our results agree within our numerical precision. We provide a

detailed description of the role played by these short-range correlations within electronic transport. We

numerically demonstrate the relationship between localization length, correlation length, and the

strength of disorder.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The time-dependent propagation of an initially localized one-
electron wave-packet in a disordered system can reveals some
detail about the insulator/metal properties of such system [1–4].
From the Anderson localization theory for dr2 [3] it is well know
that the width of the wave-packet saturates at a finite region
around the initial position at limit of long time. However, during
the last two decades, it has been shown that low-dimensional
disordered systems can support extended states or a localization–
delocalization transition in the presence of short or long-range
correlations in the disorder distribution [5–31]. The absence of
Anderson localization in the presence of spatial short-range
correlations in disorder was theoretically pointed out by Flores
[5] and Dunlap [6] at the end of eighties and the experimental
confirmation was obtained by Domı́nguez-Adame and co-workers
[14] in a semiconductor super lattice with intentional correlated
disorder. The delocalization problem in one-dimensional (1d)

systems with long-range correlated diagonal disorder have
attracted attention since the end of the nineties. It has been
reported [8,11,13,16] that these systems display an Anderson
Metal–insulator transition (MIT) with mobility edges separating
localized and extended states for sufficiently strong correlations.
The effect of long-range correlated scatters on the transport
properties of microwave guides was experimentally studied and
corroborated the predicted presence of mobility edges [17].
Moreover, it was suggested that an appropriate algorithm for
generating random correlated sequences with desired mobility
edges could be used in the manufacture of filters for electronic or
optical signals [11]. Furthermore, the theoretical prediction that is
possible to see Anderson localization in a random multi layered
filter[32] opened a wide field of investigations of effects of
correlated disorder in optical systems.

In this paper we study the problem of one-electron localization
in 1d systems with correlated disorder by using two numerical
formalisms. The first one is a dynamics formalism based on the
numerical solution of the time-dependent Schrödinger equation
for the complete Hamiltonian. By considering the spread of the
wave-function at the long-time limit we will estimate the bigger
localization length inside the wave-packet. Moreover, we also
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apply a renormalization technique based on the Dyson equation
for the Green’s function elements to estimate the localization
length at the band center. Our calculations were carried on chains
with short-range exponential correlation on the disorder distri-
bution. Our formalism provides an accurate estimate for the
dependence of the localization length with the width of disorder.
The results obtained using the two distinct formalisms used here
are in agreements within our numerical precision. We numeri-
cally investigate the divergence of the large localization length
with the correlation length. For weak disorder and small correla-
tion length, the localization length increases cubically with the
correlation length. However as the width of disorder is increased,
the scaling relation between the localization length and the
correlation function changes drastically. At the strong disorder
limit, the localization length becomes almost a constant as the
correlation length is increased. Our results have shown that there
are a counterintuitive competition between the degree of correla-
tions and the disorder strength. We will discuss in detail this
competition by analyzing some local properties of the correlated
disorder.

2. Model and formalism

The disordered Anderson model is defined by the one-electron
Hamiltonian

H¼
XN

n ¼ 1

En9nS/n9þV
X

/n,mS

½9nS/m9�, ð1Þ

where 9nS is a Wannier state localized at site n and
P

/n,mS
represents a sum over nearest-neighbor pairs. Here the hopping
energy V is taken to be unitary (V¼1). En are the on-site disorder
distribution. In our study we will consider systems with short-
range correlated on-site disorder distribution. The on-site poten-
tial En will be generated by using the following formalism:
Initially we will calculate the sequence En defined by

En ¼
X

m

Zmnexpð�9n�m9=zÞ, n¼ 1, . . . ,N, ð2Þ

where Zm are independent random number uniformly distributed
in the interval ½�0:5,0:5� and z is the correlation length. We will
take account to the sum of Eq. (2) the terms such that
9n�m9o50z. This cutoff speeds the numerical calculations
and does not modify the statistical properties of sequence En.

The on-site potential En is obtained by using the formula

En ¼D n ½En�/EnS�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/E2

nS�/EnS2
q

, n¼ 1, . . . ,N: ð3Þ

Therefore the on-site disorder distribution have null mean value

(/EnS¼ 0) and fixed standard deviation (D¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/E2

nS�/EnS2
q

). The

limit z-0 recovers an uncorrelated disorder distribution. For

0ozo1 we generate a disorder distribution with short-range
correlations. To characterized the degree of disorder we will use the
standard deviation D of the disorder distribution as a tunable
parameter. In Fig. 1(a) we plot on-site potentials generated by the
preceding formalism. We can note the smoothening of the energy
landscape as the localization length is increased. To compare some
statistical properties of the above sequences, we compute the auto

correlation function (CðrÞ ¼ ½1=ðN�rÞ�n
PN�r

n ¼ 1 EnEnþ r) of the potential

landscape of segments (see Fig. 1(b)). We can see clearly the
exponential decay of the correlation function imposed in our numer-
ical formalism to generate the diagonal potential.

We would like to stress that in Refs. [11,12,30,31] models with
exponentially decaying correlations in the disorder distribution
were investigated. Particularly, it was analytically studied for the
first time in Ref. [11], the Anderson model with exponential
correlations in the disorder distribution. The authors obtained,
by using a perturbative approach at the weak disorder limit, an
analytical expression for the energy-dependent localization
length in terms of the intrinsic correlation function. Calculations
indicate that for a finite correlation length all eigenstates remains
localized [11,12,30]. Moreover, the Anderson model with dichoto-
mic correlated diagonal disorder was investigated in Ref. [31]. The
dichotomic or random telegraph process consist of a binary
sequence defined by En ¼ E0ð�1ÞUn . The initial dichotomic variable
E0 can assume values W or �W with same probability p¼0.5.
Un denotes a Poisson process and n is the nth lattice site [31]. By
using this formalism the authors generated a random process
with zero mean (/EnS¼ 0) and the two points correlation func-
tion /EnEnrSpexpð�2r=zÞ. Calculations of the localization length
were done by using a perturbative approach at the weak disorder
limit. It was shown analytically the absence of the extended state
in this limit [31]. In our manuscript we revisit the problem of one-
electron moving in chains with exponentially decaying correla-
tions in the disorder distribution on light of numerical formalisms
based on the time-dependent Schrödinger equation and also
renormalization group technique.
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Fig. 1. (a) The on-site energy landscape with exponentially decaying correlations. Notice the smoothening of the energy landscape as the z is increased. (b) Numerical

calculation of the two-point auto correlation function defined by CðrÞ ¼ ½1=ðN�rÞ�n
PN�r

n ¼ 1 EnEnþ r .
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3. Numerical calculation

We will follow the time evolution of an initially localized wave
packet. The Wannier amplitudes evolve in time according to the
time-dependent Schrödinger equation as (_¼ 1)

i
dcnðtÞ

dt
¼ EncnðtÞþ

X
/mS

cmðtÞ: ð4Þ

We consider a wave packet initially localized at site n0, i.e.
9Fðt¼ 0ÞS¼

P
ncnðt¼ 0Þ9nS where cnðt¼ 0Þ ¼ dn,n0

. The above
set of equations were solved numerically by using a high-order
method based on the Taylor expansion of the evolution operator
UðDtÞ

UðDtÞ ¼ expð�iHDtÞ ¼ 1þ
Xlo

l ¼ 1

ð�iHDtÞl

l!
, ð5Þ

where H is the Hamiltonian. The wave-function at time Dt is given
by 9FðDtÞS¼UðDtÞ9Fðt¼ 0ÞS. The method can be used recur-
sively to obtain the wave-function at time t. To obtain
Hl9Fðt¼ 0ÞS we will use a recursive formula derived as follow.
Let define Hl9Fðt¼ 0ÞS¼

P
nCl

n9nS. Using the Hamiltonian for-
mula (Eq. (1)) we can compute H19Fðt¼ 0ÞS and obtain C1

n as

C1
n ¼ Encnðt¼ 0Þþ

X
/mS

cmðt¼ 0Þ, ð6Þ

where
P

/mS represents a sum over nearest-neighbor pairs.
Therefore, using that Hl9Fðt¼ 0ÞS¼H

P
nCl�1

n 9nS, Cl
n can be

obtained recursively as

Cl
n ¼ EnCl�1

n þ
X
/mS

Cl�1
m : ð7Þ

The following results were taken by using Dt¼ 0:5 and the sum
was truncated at lo¼15. This cutoff was sufficient to keep the
wave-function norm conservation along the entire time interval
considered (tmaxc105). This formalism is faster than high
order Runge–Kutta methods and it is easier to implement.
We are particularly interested in calculating the wave packet
mean-square displacement sðtÞ defined by [21]

sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

½ðn�n0Þ
2
�9cnðtÞ9

2

s
: ð8Þ

Note that sðtÞ varies from 0, for a wave function confined to a
single site, to proportional to number of sites, for a wave
uniformly extended over the whole system. We are interested
in the long time behavior of mean square displacement
S¼ limt-1sðtÞ in our calculation we will use tmax4106. In
addition we will estimate directly the localization length by using
a general renormalization technique which is based on the
particular form assumed by the Dyson equation [8]

ðE�E0
mÞGm:n ¼ dm:0þHm,m�1Gm�1,nþHm,mþ1Gmþ1,n, ð9Þ

where Gm,n ¼/m91=ðE�HÞ9nS is the Green’s function elements
and Hm,m71 ¼ V ¼ 1. After eliminating the elements associated
with a given site, the remaining set of equations of motion can be
expressed in the same form as the original one but with site
energies and hopping amplitude renormalized. Therefore, we can
remove iteratively the sites 1,2,3, . . . ,N of the lattice, obtaining
the effective energies of the extremal sites and the effective
hopping interaction between them through the following three
iterative equations:

ENþ1
0 ¼ EN

0 þVeff
0,N

1

E�EN�1
N

, ð10Þ

EN
Nþ1 ¼ E

0
Nþ

1

E�EN�1
N

, ð11Þ

Veff
0,Nþ1 ¼ Veff

0,N

1

E�EN�1
N

, ð12Þ

where EN
0 and EN

Nþ1 are respectively the effective energy at sites
0 and Nþ1 after the decimation of the N internal sites. Veff

0,Nþ1 is
the effective hopping between sites 0 and Nþ1. The localization
length is defined as [8]

l¼ � lim
N-1

1

N
log 9Veff

0,Nþ19
� ��1

: ð13Þ

In our calculations we compute the average localization length
defined by L¼ ð1=Nf Þ

PE ¼ 0:01
E ¼ �0:01 lðEÞÞ where Nf is the number of

eigenstates within each interval ½�0:01,0:01�. LpN for extended
states and it is finite for exponentially localized ones. From the
point of view of time-dependent Schrödinger equation, the long
lime electronic spread is dominated by the eigenvector with
larger localization length, i.e. the localization length at the band
center. Therefore, we expected that S�L.

4. Results

Initially, we numerically obtained the time evolution of a
wave-packet initially localized at center of a self-expanding chain

(i.e. fcnðt¼ 0Þ ¼ dn,n0
g). The self-expanding chain was used to

minimize end effects;whenever the probability of finding the

particle at the ends of the chain exceeded 10�30, ten new sites
were added to each end. The high-order method based on the
Taylor expansion of the evolution operator is used to solve the set
of time-dependent Schrödinger coupled equations (Eq. (4)).
Numerical convergence was ensured by conservation of the norm

of the wave-packet at every time step, i.e., 91�
P

n9cnðtÞ9
29o10�10.

All calculations were averaged over 30 disorder configurations.
Calculations of localization length were done by using Green

function method for chains with N� 5� 107. We will start
our calculations by reproducing some previous results about
electron localization in chains with uncorrelated disorder [1,30].
To simulate chains with uncorrelated disorder we will consider En

as independent random number with zero mean /EnS¼ 0 and

fixed standard deviation (D¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/E2

nS�/EnS2
q

). In Fig. 2 we plot
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Fig. 2. Calculations of the wave packet mean-square displacement in a chain with

uncorrelated diagonal disorder distribution with standard deviation D¼ 0:1 up to

0.6. The initial condition was an initially localized one-electron wave-packet at the

center 0 of the chain (i.e. fcnðt ¼ 0Þ ¼ dn,n0
g). The spread of wave-function increases

as the disorder degree D is decreased.
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the wave packet mean-square displacement sðtÞ versus time t for
a chain with uncorrelated diagonal disorder distribution with
standard deviation D¼ 0:1 up to 0.6. In good agreements with
localization theory [1,30], the mean-square displacement is
increasing as the disorder degree D is decreased. In Fig. 3 we
collect the long time limit of the mean-square displacement

S¼ limt-tmaxsðtÞ versus the standard deviation of the on-site
energy distribution D (see ( v ) in Fig. 3). The best fit (dotted

line) provide us SpD�2:00ð5Þ. In Fig. 3 (�) represent calculations of
mean localization length at band center L versus D for the same
chain with uncorrelated diagonal disorder. We can see that

both results agree within numerical tolerance(LpD�2:00ð5Þ).
Our results are in perfect agreements with previous prediction

about degree of localization in 1d models with uncorrelated
disorder [1,30]. Therefore, both formalisms provide accurate esti-
mate of the degree of electronic localization in disordered systems.
Now, we start our numerical analysis about the effect of short-
range exponential correlation on the disorder distribution. We have
generated the diagonal disorder by using the formalism described
in Eqs. 2 and 3. Before show our results some words about
numerical procedure and accuracy. The numerical calculation

involving direct solution of Schrödinger equation, even using high
order methods, require much computational time. Moreover,
depending on the magnitude of largest localization length, the
numerical precision obtained by using Green’s function method is
more interesting. As the correlation length is increased, the error
bar obtained by using direct solution of Schrödinger equation
becomes two or three times larger than the error bar obtained by
using Green’s function method. Therefore, from now we will show
results obtained by using Green function formalism. However, we
would like to stress that both calculations are in agreements within
error bars. In Fig. 4(a) we show the log–log plot of the localization
length L versus standard deviation D for several values of the

correlation length z. Here we used D¼ 0:1 up to 0.55. In general, L
increases as z is increased. We can see also that, as was predicted in

Ref. [30] even in the presence of short-range correlation LpD�2.

However, about z47 it seems that the localization length does not

obey the power law tendency LpD�2 in the regime of disorder
D40:45. At the strong disorder limit (i.e. disorder width compar-
able with the band width) the effect of short range correlations
within diagonal terms works in a counterintuitive way. This effect is
analyzed in detail in Figs. 5 and 6. For a finite amount of disorder D
the localization length becomes comparable to the size system.
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versus the standard deviation of the on-site energy distribution D. The best fit
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However, as was reported in Ref. [30], that this model does not
contain extended states. In Fig. 4(b) we can see a finite size scaling
analysis of the scaled localization length L=N versus system size

N¼ 2� 107 up to 5� 107. We have considered weak disorder

D¼ 0:1 and several values of the correlation length (z¼ 4 up to
12). We have obtained L=Np1=N that indicate a finite localization
length at the thermodynamic limit in good agreements with Ref.
[30]. In Fig. 5 we study the scaling of the degree of localization with

the correlation length z. We plot L versus z for D¼ 0:1 up to 0.6.
For weak disorder (Dr0:45), the localization length scale propor-

tional to z3 within range of correlation length used here (z¼ 1 up to

18). For strong disorder(D40:45), L increases cubically with z
within range 1rzo10 however apparently saturates in a finite

value smaller than the system size when z410. Therefore, there
are a counterintuitive competition between the degree of correla-
tions and the disorder strength. We now discuss in detail this
competition by analyzing some local properties of the on-site short-
range correlated disorder. Let us compute the local standard
deviation DL0

of the on-site energies of a segment with L0 sites.

The local standard deviation DL0
is defined by

DL0
¼

XM
k ¼ 1

Dk,L0

 !,
M, ð14Þ

where

Dk,L0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi ¼ kL0

i ¼ ðk�1ÞL0þ1

ðEiÞ
2=L0�

XkL0

i ¼ ðk�1ÞL0þ1

Ei=L0

0
@

1
A

2
vuuut , ð15Þ

and M¼N=L0. DL0
is a measurement of the local disorder strength

in a segment with L0 sites. In Fig. 6(a) we plot DL0
versus z

computed by using Eqs. (14) and (15) in on-site potential sequences

with standard deviation D¼ 0:5 and N¼ 107. Calculations were
done for L0 ¼ 100,1000,10 000,100 000. We can see initially that for
L0 ¼ 100 and 1000, DL0

decreases substantially as the correlation

length is increased. For L0 ¼ 10 000 and 100 000 we observe also a

decreasing with z however much slower. In general lines the
decreasing of the local disorder as the correlation length is
increased is in good agreements with usual theory of correlated
random process. Our best fit indicate that the local disorder goes to

zero as DL0
pexp½�BðL0Þz�. The exponential decay of the local

disorder with z is related with kind of correlated disorder we have

used. Let us return to discuss the data of Fig. 6(a) for distinct values

of L0. We observe that, for a fixed z, the local disorder degree
increases as L0 is increased. This behavior is the key ingredient
behind the apparent saturation of localization length found in Fig. 5.
Let us focus on the strong disorder case (DZ0:45): When the
correlation length increases the localization length increases up to

104 or 105 sites. Therefore, the wave-function is trapped in a finite

segment with about 104 or 105 sites. As we saw in Fig. 6(a), for the

range of z used in our calculation, the strength of the disorder
within a segment with 104 or 105 sites is comparable to the
standard deviation of disorder D. Therefore, in this case, the strong
local disorder will compete with the correlation effect slowing the
increasing of the localization length. For a large correlation length,
the local disorder will decrease substantially and the localization
length will return to increase. We can see this behavior in Fig. 6(b).
However, the large computational times needed at the limit of high
correlation, force us to decrease the number of samples thus
decreasing the accuracy. Therefore, we have obtained a big error
bar for our date and the scaling behavior of the localization length
with the correlation length was not obtained in this case.

5. Summary and conclusions

In this work, we studied the localization aspects of a one-
dimensional system with a diagonal disorder distribution con-
taining an exponential correlation function. The degree of corre-
lations was controlled by the correlation length z. For z¼ 0, we
recovered the Anderson model with an uncorrelated diagonal
disorder distribution. For 0ozo1, we generated a disorder
distribution with short-range correlations. By considering the
spread of a wave-function at long-time, we calculated the largest
localization length inside the wave-packet. Moreover, we also
applied a renormalization technique based on the Dyson equation
for Green’s function elements to estimate the localization length
at the band center. The results obtained using the two distinct
formalisms are in agreement within our numerical precision. We
would like to stress that the estimation of larger localization
lengths based on long-time behavior of the wave-packet, in spite
of being more expensive computationally, is a good technique for
studying localization length aspects of high dimensional systems.
Within the context of models having an exponentially correlated
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Fig. 6. (a) DL0
versus z computed in on-site disordered sequences with standard deviation D¼ 0:5, N ¼ 107 and distinct values of L0. In general lines in good agreements

with usual theory of correlated random process, we observe the decreasing of the local disorder as the correlation length is increased. Moreover, for a fixed value of z, the

local disorder degree increases as L0 is increased. (b) Localization length L versus z computed in a chain with standard deviation D¼ 0:5 and N ¼ 107 sites. We can see

the counterintuitive dependence of L with z. For small correlation length our results indicate a cubic increase. For an intermediate range of correlation length, the effect of

the local disorder is majoritary thus stabilizing the localization length in a constant. For a large correlation length, the local disorder will decrease substantially and the

localization length return to increase.
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disorder distribution, our results indicate that these correlations
do not drastically modify the divergence of localization length
with degree of disorder (1=D2). Moreover, by using a finite size
scaling analysis, we predicted that the localization length, in spite
of being large, is finite at the thermodynamic limit. Both results
are in good agreement with previous works [30,31]. In addition,
we investigated the divergence of the localization length with the
correlation length. For weak disorder (Do0:5), the localization
length is proportional to z3. Our calculations for weak disorder
were limited to small correlation length limit zo20. To analyze in
detail the range zc20 within the weak disorder framework, we
would need to consider a system size N that is much larger than
our computational limit (Nc108 sites). A one-dimensional model
with short-range correlated diagonal disorder similar to that was
considered here was investigated in Ref. [30]. By using a Hamil-
tonian map approach, it was demonstrated that the localization
length increases linearly with the correlation length [30]. The
authors used perturbation theory at the weak disorder limit and
large correlation length [30]. We believe that is difficult to
compare our results with previous one since we cannot consider
with good accuracy the range of large correlation length. For
strong disorder and a small correlation length, the degree of
localization increases also cubically with z. However, for an
intermediate range of correlation length, due to the drastic effects
of local disorder, the localization length apparently saturates in a
finite value smaller than the system size. For a large correlation
length, the local disorder will decrease substantially, and the
localization length will return to increase. Our results show a
relation between the local properties of the disorder distribution
and the localization aspects. The presence of correlation in the
disorder distribution can be understood as a smoothing of the
disorder in a finite segment of the sample. This smoothing can be
directly measured by monitoring the strength of the local dis-
order. We hope that our paper can stimulate discussion along
this line.
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