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Abstract

In our work, we consider the problem of electronic transport mediated by coupling with

solitonic elastic waves. We study the electronic transport in a 1D unharmonic lattice with a

cubic interaction between nearest neighboring sites. The electron-lattice interaction was

considered as a linear function of the distance between neighboring atoms in our study.

We numerically solve the dynamics equations for the electron and lattice and compute the

dynamics of an initially localized electronic wave-packet. Our results suggest that the solitonic

waves that exist within this nonlinear lattice can control the electron dynamics along the chain.

Moreover, we demonstrate that the existence of a mobile electron–soliton pair exhibits a

counter-intuitive dependence with the value of the electron-lattice coupling.
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1. Introduction

Lattice vibrations and their coupling with electronic dynam-

ics (the electron–phonon interaction) play relevant roles in

effective electronic transport [1–43]. In [8], the authors con-

cluded that the superconducting state of IrGe is due to strong

electron–phonon coupling. The authors in [9] also demon-

strated that strong electron–phonon coupling is the mecha-

nism behind the superconductivity of La2C3. Based on the

electrosoliton concept proposed by Davydov and associated

works, we know that the nonlinear character of the electron-

lattice term can promote charge transport [19–43]. Davydov’s

formalism consists of a Hamiltonian that describes the elec-

tronic dynamics under the influence of lattice vibrations. More

recently, the existence of a polaron–soliton pair has been con-

sidered as a possible mechanism to promote charge transport

[30–41]. This polaron–soliton ‘quasiparticle’ has been gener-

ally termed as a solectron [30–39]. It demonstrated the possi-

bility of non-Ohmic supersonic electric conduction mediated

by the solectron dynamics [38]. In [39], Velarde et al pre-

sented robust numerical evidence for the possibility of fast

electron–soliton transport along the crystallographic axes of

2D unharmonic lattices. Moreover, the electronic dynam-

ics in a Fermi–Pasta–Ulam disordered chain with electron-

lattice interaction was considered in [42]. The electron-lattice

interaction was introduced by considering energy hopping as

a function of the distance between neighboring atoms. By nu-

merically solving the dynamics equations, evidence was found

that the solitonic excitations induced by the nonlinear cubic

interaction can control the electron dynamics along the entire

lattice. The electron–soliton pair found in [42] was a direct

consequence of the cubic nonlinearity of the α-Fermi–Pasta–

Ulam model. We emphasize that in most works by Velarde et al

(see [24–28, 30–38]), the electron–soliton pair was obtained

by considering the nonlinear Morse potential. The possibil-

ity of electric conduction induced by nonlinear elasticity is

a general issue with several connections to distinct fields of

condensed matter. In [41], the electron transfer mediated by

soliton-like excitations was investigated in several 2D anhar-

monic lattices, particularly in a square lattice similar to the

cuprate lattice. The authors offered computational evidence

of the possibility of almost loss-free electron–soliton transfer

along the crystallographic axes. However, we emphasize that

there is an open question about the existence and stability of

thermal solitons (and solectrons) up to relatively high tempera-

tures, e.g. room or physiological temperatures [38]. Recently,

the problem of electron transfer in thermal lattices was inves-

tigated in [28, 33, 40]. These numerical calculations showed

that the solectron-charge transport in the Toda–Morse lattice

appears stable up to room temperature (about 300 K).
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The main physical motivation behind the above topics is

the identification of possible mechanisms of the charge trans-

fer in DNA chains, polypeptides, bio molecules, and random

lattices [43–50]. In [45], several theoretical models of charge

transfer mechanisms in DNA models were discussed and the

scopes of their application were analyzed. In particular, the au-

thors focused on the charge transport induced by the polaron

mechanism. The procedure considered in [45] is quite simi-

lar to that used by Velarde et al; the electronic dynamics was

treated by a Quantum Hamiltonian and the lattice vibrations by

a classical formalism. However, the electron-lattice interaction

considered in [43, 45] was the standard SSH [51] approxima-

tion. Within the works of Velarde [24–28, 30–38], the electron–

phonon term was introduced as an exponential of the distance

between nearest neighbor atoms, which is a generalization of

the linear SSH approximation. Moreover, the nonlinear term

considered in [43, 45] was the cubic term, in contrast with the

Toda–Morse potential considered by Velarde. The cubic poten-

tial used in [43, 45] represents an expansion of the Toda–Morse

potential when the deviation from the equilibrium position is

not very large [45].

In our work, we report further progress along these lines.

We consider the problem of electron transport mediated by

coupling with a solitonic wave. Our model consists of one

electron moving in an unharmonic lattice and we focus on the

existence of an electro–soliton pair similar to that obtained in

[24–28, 30–43]. In our model, we consider a 1D unharmonic

lattice with a cubic interaction between nearest neighboring

sites. The electron–lattice interaction was introduced by con-

sidering the energy hopping following the SSH approxima-

tion, i.e. a linear function of the distance between neighboring

atoms. We numerically solve the dynamics equations for the

electron and lattice and compute the dynamics of an initially

localized electronic wave-packet. Our results suggest that the

solitonic waves that exist within this nonlinear lattice can con-

trol the electron dynamics along the entire lattice. We study in

detail the formation of an electron–soliton state that can move

along the chain. This mobile electron–soliton pair can be a key

ingredient to the charge transport in a nonlinear chain. More-

over, we will investigate in detail the intensity of the electron-

lattice interaction necessary to promote the appearance of this

electron–soliton pair. Our calculations suggest that, even for

strong electron-lattice coupling, we can find an electronic dy-

namics non-mediated by solitonic waves.

2. Model

In our model, we considered one electron moving in a chain

of N masses. We considered that each mass is coupled with

its nearest neighbors through a cubic force. We considered

the electronic dynamics using a Quantum Hamiltonian and the

lattice using a classical Hamiltonian. We also considered the

coupling between the electron motion and atomic vibration.

The electron-lattice interaction was considered by following

the well-known SSH approximation. According to SSH the-

ory, the electron’s kinetic energy depends on the effective dis-

tance between neighboring atoms. The complete Hamiltonian

for one electron coupled with the vibrations of a nonlinear

chain can be written as H = He + Hlattice where:

He =
∑

n

Vn+1,n(d
†
n+1dn + d†

ndn+1)

Hlattice =
∑

n

hn (1)

d†
n and dn are the creation and annihilation operators for the

electron at site n. Vn+1,n, representing the electron’s kinetic en-

ergy (the hopping term). hn(t) represents the classical energy

of the nth-site and is defined by:

hn =
P 2

n

2mn

+
1

4

[

βn(Qn+1 − Qn)
2 + βn−1(Qn − Qn−1)

2
]

+
η

6

[

(Qn+1 − Qn)
3 + (Qn − Qn−1)

3
]

(2)

Pn and Qn define the momentum and displacement of the mass

at site (n), respectively. We considered all masses and elastic

constants identical to βn = mn = 1. η represents the strength

of the cubic non-linearity considered in our model. The clas-

sical Hamiltonian with cubic non-linearity considered here is

the Fermi–Pasta–Ulam (FPU) α model [59]. The hopping

elements Vn+1,n depend on the relative distance between two

consecutive molecules on the chain in the following the SSH

expression:

Vn+1,n = −[V0 − α(Qn+1 − Qn)] (3)

V0 is the transfer integral between the nearest-neighbor sites

in the absence of electron-lattice coupling. α defines the ef-

fective electron-lattice coupling. In general, in the previous

papers that have used the SSH approximation [1–7, 51], the

parameter α was chosen α > V0/a (a is the lattice parameter,

in our work a = 1). Here, we follow this trend and con-

sider V0 = 1 and α > 1. The time-dependent wave-function

|Φ(t)〉 =
∑

n cn(t)|n〉 was obtained by numerical solution of

the time-dependent Schrödinger. We consider the electron ini-

tially localized at site N/2, i.e. |Φ(t = 0)〉 =
∑

n cn(t = 0)|n〉

where cn(t = 0) = δn,N/2. The Wannier amplitudes evolve in

time according to the time-dependent Schrödinger equation as

(h̄ = 1):

i
dcn(t)

dt
= −[1 − α(Qn+1 − Qn)]cn+1(t)

− [1 − α(Qn − Qn−1)]cn−1(t) (4)

Moreover, the lattice equation can be written as

d2Qn(t)

dt2
= (Qn+1 − Qn) − (Qn − Qn−1)]

+ η[(Qn+1 − Qn)
2 − (Qn − Qn−1)

2]

− α
{

(c∗
n+1cn + cn+1c

∗
n) − (c∗

ncn−1 + cnc
∗
n−1)

}

(5)

Our numerical formalism was based on the precise numerical

solution of the previous equations (4) and (5). The dynamics

equations for cn(t) and Qn(t) were solved by using a numerical

method that consists of a combination of a high-order Taylor

expansion [52] and a second order Euler procedure [53].

The electron dynamics equations (equation (4)) were solved
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numerically using a high-order method based on the Taylor

expansion of the evolution operator U(∆t) [52]:

U(∆t) = exp (−iHe∆t) = 1 +

no
∑

l=1

(−iHe∆t)l

l!
(6)

where He is the one-electron Hamiltonian. The wave-function

at time ∆t is given by |Φ(∆t)〉 = U(∆t)|Φ(t = 0)〉. The

method can be used recursively to obtain the wave-function at

time t . The classical equations (equation (5)) were solved us-

ing a second order Euler method defined as the following [53]:

The procedure begins using a standard Euler method to find a

prediction Qn(t + ∆t)∗ at the time t + ∆t :

Qn(t + ∆t)∗ ≈ Qn(t) + ∆t
dQn

dt

∣

∣

∣

t
(7)

The next step consists of applying a correction formula in order

to find an improved approximation to Qn(t + ∆t)

Qn(t + ∆t) ≈ Qn(t) +
∆t

2

[

dQn

dt

∣

∣

∣

t
+

dQ∗
n

dt

∣

∣

∣

t+∆t

]

(8)

The following results were obtained using ∆t = 10−3 and the

sum of equation (6) was truncated at no = 10. This procedure

was sufficient to keep the wave-function norm conservation

along the entire time interval considered at (|1−
∑

n |cn(t)|
2| <

10−8). We emphasize that, in order to ensure accuracy of

our compost numerical procedure, we compared our calcu-

lations with the results obtained using the standard fourth-

order Runge–Kutta (RK4) [53]. The results obtained with our

numerical formalism are in excellent agreement with (RK4).

Moreover, our formalism requires a computational time lower

than in the case of (RK4).

Aiming to characterize the dynamic behavior of the wave

packet, we computed a typical quantity that can describe

the electronic transport in this nonlinear model, namely the

participation function defined as [54, 55]

ξ(t) = 1/
∑

n

|cn(t)|
4. (9)

The participation function provides an estimate of the number

of base states over which the wave packet is spread at time t . In

particular, the asymptotic participation number becomes size-

independent for localized wave packets. On the other hand,

ξ(t → ∞) ∝ N corresponds to the regime where the wave

packet is uniformly distributed over the lattice [54, 55].

3. Results

In our calculations, we followed the time evolution of a wave-

packet initially localized at the center of a self-expanding

chain. The self-expanding chain was used to avoid bound-

ary effect; whenever the probability of finding the particle

at the ends of the chain exceeded 10−30, twenty new sites

were added to each end. The initial wave-packet is defined as
{

cn(t = 0) = δn,n0

}

where n0 represents the center of the self-

expanding chain. A high-order method based on the Taylor

expansion of the evolution operator was used to solve the set of
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Figure 1. The long-time participation function (ξm = limt→tmax ξ(t))
versus the electron-lattice coupling strength α. tmax was considered
about 2 × 104 units and the strength of the cubic and harmonic
forces η = β = 1.

time-dependent Schrödinger coupled equations (equation (4))

and the second-order Euler method to solve the classical lattice

equations (equation (5)). The lattice equations were solved by

considering an initial energy input fully localized at the cen-

ter n0 of the self-expanding chain, i.e. {Qn(t = 0) = 0} and
{

Q̇n(t = 0) = δn,n0

}

. Numerical convergence was ensured by

checking the conservation of the norm of the wave-packet at

each time step. In our calculations, |1 −
∑

n |cn(t)|
2| < 10−8

along the entire time considered. Figure 1 shows the long-time

limit of the participation function ξm = limt→tmax
ξ(t) versus

the electron-lattice coupling strength α. In our calculations,

tmax was considered as about 2 × 104 units. Calculations were

performed considering the strength of the cubic and harmonic

forces η = β = 1. Figure 1 shows the existence of certain

regions with a large participation number and other regions in

which the participation number ξm is less than 10 sites (some

valleys). Therefore, our results suggest that, depending on

the α value chosen, the electronic wave-packet can become

extremely localized or exhibit some spread along the lattice.

This result deserves more detailed analysis. The first point of

our analysis focuses on understanding what is happening with

the electronic wave-packet in both regimes. We focused on the

time-dependent participation number ξ(t)versus time t for sev-

eral values of the electron-lattice coupling α (see figures 2(a)

and (b)). We tuned the values of α to investigate both the case

with the larger participation number (α = 5, 19, 32, 37)as well

as the case in which the wave-packet remains localized (α =

27.5, 47.5, 67.5, 100). We observe in figure 2(a) that the par-

ticipation number for α = 5, 19, 32, 37 increases with time

t approximately as ξ ∝ t0.25(3). In [12, 15, 17], the electronic

dynamics in a nonlinear Schrödinger equation was investigated

and a similar sub-diffusive propagation was also observed. We

emphasize that the effective nonlinearity considered in [12, 15,

17] was raised from the interaction with the lattice phonons.

Moreover, our results in figure 2(a) are in good agreement with

the results shown in figure 1 for the same values of α. How-

ever, the results in figure 2(b) show that, for short-times, the

3
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Figure 2. (a, b) Time-dependent participation number ξ(t) versus time t for several values of the electron-lattice coupling α. (a) The case
with larger participation number (α = 5, 32.5, 37.5, 60); (b) the case in which that the wave-packet remains fully localized
(α = 27.5, 47.5, 67.5, 100); and (c) the mean position of the wave-packet < n(t) > for the fully localized regime with
α = 27.5, 47.5, 67.5, 100. < n(t) >= 0 represents the center of the chain, i.e. the initial position.

participation number for α = 27.5, 47.5, 67.5, 100 increases

until there are few sites (less than 10) saturated for long-times.

The saturation of ξ at the long-time limit is in perfect agreement

with the calculations of the participation number found at the

valleys of figure 1. In figure 2(c), we focused on the electronic

mobility for those cases in which the nonlinear coupling α is

chosen within the valleys of the figure 1. We computed the time

evolution of the mean position (centroid) defined as [54, 55]

〈n(t)〉 =
∑

n n|cn(t)|
2 for α = 27.5, 47.5, 67.5, 100. We em-

phasize that for these values of α the wave-packet remains

localized for long-times. We can see that, in spite of the width

of wave-function remaining finite (see figure 2(a)), the wave-

packet centroid evolves along time. This result suggests that

this localized electronic wave-packet has mobility and thus

charge transport is possible within this nonlinear chain.

Therefore, our results shown in figures 2(a) and (c)

demonstrate that the electron wave-function can become

trapped in a small fraction of the chain. We now investi-

gate some specificities of this fully localized behavior. We

examine the time-dependent wave-function profile. In fig-

ures 3(a)–(d), we plot |cn|
2 versus t and n for η = β = 1

and α = 27.5, 47, 5, 67.5, 100 (we chose distinct values of α

in which the electron wave-function remains fully localized).

Calculations were performed in a finite lattice with N = 600

sites. it is clearly in good agreement with results shown in

figures 1 and 2. The wave-function remains trapped in a fi-

nite fraction of the lattice. We can also see that the localized

electronic wave-packet is moving along the chain. The mo-

bility found in figure 3 is in good agreement with the centroid

calculations shown in figure 2(c). It should be noted that we

are dealing with an unharmonic chain with cubic nonlinear-

ity. Therefore, the nonlinear interaction between the nearest

neighbor atoms promotes the appearance of a soliton mode

[56–60]. The dynamics of this soliton mode is directly related

to the type of nonlinearity considered and the type of initial

condition chosen. For example, within the present model with

cubic nonlinear forces, the direction of the motion can be in-

verted by exchanging the sign of the initial velocity excitation.

figure 4 shows the spatial and temporal evolution of the lattice

deformation An = exp [(Qn − Qn−1)] and the energy hn(t)

of the mass at site (n). We plot An and hn(t) times t and n

for the anharmonic chain with η = 1 and the electron-phonon

coupling α = 27.5. Our results show that the initial excita-

tion propagates along the classical chain in a solitonic state.

We observed that the lattice deformation An moves in an in-

variant form with constant velocity over the chain. Moreover,

4
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Figure 3. The wave-function component |cn|
2 versus t and n for η = β = 1 and α = 27.5, 47, 5, 67.5, 100. The majority of the initial

wave-packet is trapped by the solitonic wave and this electron–soliton pair exhibits mobility along the chain.
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Figure 4. The lattice deformation An = exp [(Qn − Qn−1)] and the local energy hn(t) versus t and n for an anharmonic chain with cubic
nonlinearity η = 1 and electron-lattice coupling α = 27.5. Our results show that the initial excitation propagates along the chain in a
solitonic state.

we also observed that the energy intensity of this soliton-like

mode appears to remain constant and moving along the lat-

tice. The energy pulse profile shown in figures 4(a and b) is

a clear signature of the presence of a solitonic mode within

the nonlinear harmonic lattice. Therefore, the results shown in

figure 4 are in good agreement with the wave-function dynam-

ics obtained in figures 3(a–d) thus supporting the hypothesis

of the electron–soliton pair formation. Therefore, our calcu-

lations suggest that the electron-lattice interaction considered

here promotes the appearance of a mobile electron–soliton pair.

The electron–soliton excitation observed here is quite similar

to those obtained in [30–42]. We observed that the soliton

mode can trap most part of the initial electronic wave-packet.

The dynamics of this electron–soliton pair seem to be domi-

nated by the mobility of the solitonic mode [30–39].

We also investigated the wave-function spatial profile at

the cases in which the participation number increases with

time. The spatial profile of the wave-function fully fills the

(t, n) plane. Therefore, a three dimensional presentation using

(|cn(t)|
2, t, n) does not provide a good visualization of the

data in this case. Therefore, we ploteted in figure 5 |cn(t)|
2

versus n for several instants and electron–phonon coupling

α. We tuned α to choose the cases in which the participation

number increases with time t . We are interested in analyzing

the electronic dynamics in those cases with apparent absence

of the electron–soliton pair. We performed our calculations

in a finite chain with N = 2000 sites. We considered

η = β = 1, α = 37, 60 and t = 200, 400, 600, 800.

We again emphasize again that for these values of α, the

participation number increases with time t and, therefore, the

electron–soliton pair apparently does not exist. We observed

5
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Figure 5. |cn(t)|
2 versus n for several instants and electron-lattice couplings α. Calculations were performed for α = 37, 60. For these

cases the participation number is increased with time t and the electron–soliton pair apparently does not exist.

that the wave-packet spreads along the entire lattice in good

agreement with the behavior of the participation number found

in figure 2(a). However, we observed that even from the initial

stage, the wave packet splits in a structure with two peaks

that move in opposite directions. Particularly, we observed

that one of these peaks (the peak at the left of the center

of the chain)keeps its intensity approximately constant along

time (see the arrows). Usually, within the context of time-

dependent electronic dynamics, the initial wave packet should

split from its single peak structure to a structure with two stable

peaks that move in opposite directions [61]. Moreover, from

[61], we know that these two peaks should exhibit a small finite

width and that this width increases as time is increased. In our

study, the one-electron dynamics displays behavior somewhat

different from the standard theory [61]. The peak structure

reported in figure 5 exhibits some similarities with the one-

electron wave-packet profile found in [13]. Our results suggest

that, in spite of the wave-packet spreading along the chain,

we can find some elements associated with the formation of

electron–soliton pair. The mobile peaks found (see the arrows

in figure 5) suggest that a small finite fraction of the initial

wave-packet is trapped by the solitonic modes. However, most

of the wave-packet is decoupled of the solitonic mode and

propagates along the chain. Therefore, we have found some

evidence that suggests that even in the case where the electron–

phonon coupling α is tuning on the peaks of figure 1, a small

fraction of the wave-packet is trapped by the solitonic waves.

However, the electron–phonon interaction at these cases is not

sufficient to dominate the electronic dynamics.

4. Summary

In our work, we studied the dynamics of a one-electron in a

unharmonic chain at the presence of the electron-lattice inter-

action. We considered a Fermi–Pasta–Ulam lattice with a cu-

bic potential. The electron transport was treated by following

a quantum tight-binding approximation and the longitudinal

vibrations of the lattice were described using a classical for-

malism. The interaction between the electron and the lattice

was considered such that the transfer integral between neigh-

boring atoms was dependent on the effective distance between

neighboring atoms. We used the SSH approximation, meaning

that the hopping term is defined as a linear function of the dis-

tance between neighboring atoms. By using a high precision

procedure for solving the dynamics equations for the electron

and lattice, we computed the spreading of an initially localized

one-electron wave-packet. Our results suggest that the soliton

mode that exists within this nonlinear lattice can control the

electron dynamics along the entire lattice. Our data revealed

a kind of electron–soliton state moving along the chain. This

mobile electron–soliton pair exhibits a velocity approximately

constant and can be a key ingredient in the charge transport in

a nonlinear chain. These results are in good agreements with

recent works [24–28, 30–38, 42] that point out the existence of

a new excitation resulting from the trapping of an electron by

a solitonic wave. Moreover, we demonstrated the range of α

values necessary to promote the appearance of this electron–

soliton pair. Our calculations suggest that, even for strong

electron-lattice coupling α, we can determine the absence of

electron–soliton dynamics. This is a non-intuitive result. In

general, we would expect that as the electron-lattice coupling

α is increased, it should be easier to promote electron trapping

and, consequently, electron–soliton pair formation. However,

within the cubic nonlinearity considered in our work, our re-

sults suggest that this is not true. We emphasize that our cal-

culations were performed in a Fermi–Pasta–Ulam lattice with

a cubic potential and the electron-lattice term was considered

by following the SSH approximation. We also stress that a di-

rect comparison with the results of Velarde is difficult. Velarde

et al obtained the electron–soliton pair by considering the orse

potential and the hopping term following an exponential of the

distance between nearest atoms. The cubic potential in the

SSH approximation considered here are properties similar to

the Velarde approach at the limit of weak vibrations. There-

fore, we suspect that the behavior reported in our paper should

also appear within the approach they used. Moreover, we also

emphasize that we did not consider the difference τ between

the time scale of the electron dynamics and the time scale of
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the lattice vibrations. Velarde et al used an artifice of to multi-

ply the right side of the quantum Schrödinger equation by τ in

order to include the difference between both time scales. We

stress that this procedure represents an increase of the elec-

tronic hopping intensity and promotes only a rescaling of the

electron-lattice coupling range of values. We hope that our

paper can stimulate discussion along this line.
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