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Abstract
We investigate the electronic wavepacket dynamics in a finite segment of a DNA single-strand
chain considering the electron–phonon coupling. Our theoretical approach makes use of an
effective tight-binding Hamiltonian to describe the electron dynamics, together with a classical
harmonic Hamiltonian to treat the intrinsic DNA vibrations. An effective time-dependent
Schrödinger equation is then settled up and solved numerically for an initially localized
wave-packet using the standard Dormand–Prince eighth-order Runge–Kutta method.
Our numerical results indicate the presence of a sub-diffusive electronic wavepacket spread
mediated by the electron–phonon interaction.
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1. Introduction

Recent advances in physical and biochemical methods have
strongly supported that biomolecules can be a proper medium
for charge transport. Several studies aiming to characterize the
current flow through double-strand DNA molecules connected
with metal electrodes have suggested a wide range of regimes
ranging from high electron mobilities to insulator behavior [1–
7]. The observed distinct behaviors is intimately related
to the characteristics of the contact with the electrodes, the
environment, the mechanical stress, the molecular orientation,
as well as upon the integrity of the molecule itself [8, 9].
In general, biostructures show complex topologies with high
flexibility and many degrees of freedom [8]. The ability of
biological organisms to manufacture such complex molecules
is one of the main drivers of bio-electronics research. This
important feature counterbalances with their low lifetime due
to degradation, as well as their reactivity with water and other
substances (for a recent review see [10]). Considering the
growing technological interest in developing bio-electronic

devices based on organic molecules [8], it is fundamental
to deeply understand the charge transport through organic
molecules, in special DNA, RNA and proteins. Along this
direction, new mathematical and numerical methodologies are
necessary to study these molecules due to their complexity
when compared with the more traditional solid-state materials.

In determining the electronic properties of biomolecules,
the molecular structure must be calculated, and a suitable
transport theory must be used to describe the time evolution of
the appropriate charge distribution. For the DNA molecule, the
possibility of replicating and performing its biological function
implies rapid structural dislocations, measured by dramatic
nonlinear deformations leading to Anderson localization, i.e.
to the exponential localization of the electronic states, and thus
significant reduction of conductance [5–7, 10]. A theoretical
description of these effects is usually carried out at the
level of polaronic theories [11, 12], despite the dislocation’s
sufficiently high amplitude.

Interaction of a DNA electronic subsystem (considered
in the one-band approximation) with the conformationally
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active vibrational modes of the chain (considered as a
symbolic sequence of a four letter alphabet, namely guanine-
G, cytosine-C, adenine-A and thymine-T ) is, in most cases,
non-linear [13]. The electron-lattice coupling is mainly
considered to describe the DNA electron interaction with the
stretching/squeezing transversal harmonic vibrational modes
of the DNA chain [14]. These dislocations can either occur
in a synchronized manner (normal mode propagation) [15] or
incoherently (thermal motion) [16–18].

In low-dimensional systems, like the majority of the
biological molecules, the effect of nonlinearity seems to be
dominant over the role played by disorder. For instance,
the spreading of an initially localized wave-packet in a
1D discrete nonlinear Schrödinger lattice with disorder
was recently studied, and it was observed that Anderson
localization is suppressed and sub-diffusive dynamics takes
place above a certain critical nonlinearity strength [19].
The electronic wave-packet dynamics in a twisted ladder
geometry mimicking a DNA-like segment has also been
addressed considering an electron–phonon interaction within
the adiabatic approximation [20]. The results suggested a
diffusive-like spread of the electronic wave-packet induced by
the nonlinearity [21].

Tight-binding models describing the electronic wavepacket
dynamics in DNA segments have been successfully accounted
for the Anderson localization of the one-electron eigenstates
[5–7, 10, 22, 23]. Due to the random distribution of the dis-
tinct bases, the electronic eigenstates remain exponentially
localized on small segments of the DNA chain. Notwithstand-
ing, the presence of some degree of correlation in the disor-
der distribution has a limited influence on the nature of these
eigenstates [22]. Furthermore, simple models considering a
single-strand DNA (ss-DNA) molecule are able to capture the
main aspects related to the disorder effect on the nature of
the electronic states [22, 23]. On the other hand, as far as the
vibrational modes of a DNA molecule are concerned, the effec-
tive spring constant between neighboring bases mediated by
the sugar-phosphate backbone is much larger than the spring
constants between paired bases, i.e. the harmonic inter-strand
coupling is much weaker than the intra-strand coupling [24].
Therefore, the main influence of the electron-lattice coupling
in DNA segments is expected also to be well described by
single-stranded models, avoiding the use of the more robust,
although more physically and biologically relevant, double
stranded DNA (ds-DNA) molecule.

Following the lines described above, it is the aim of this
paper to study the dynamics of a one-electron wavepacket
spreading in a single-strand DNA molecule in the presence of
harmonic, as well as anharmonic vibrations associated with the
bases displacements. The single-strand DNA chain contains
four distinct values of the on-site potentials simulating the
four bases of a DNA molecule. Further, we will take into
account a direct coupling between the electron dynamics and
the local vibrations. The electronic hopping energy will be
assumed to depend on the effective distance between nearest-
neighboring bases, increasing exponentially when the distance
between neighboring bases decreases. By solving numerically
the equations describing the dynamics for the electron and the

lattice vibrations, we compute the spreading of an initially
localized electronic wave-packet, whose solution suggests that
the electron–phonon term considered here promotes a sub-
diffusive spread for long times.

The plan of this work is as follows: in section 2 we present
the effective tight-binding Hamiltonian together with the lattice
Hamiltonian to describe the electronic motion. Section 3
depicts our main results with a detailed discussion of them.
The conclusions are in section 4.

2. Model and formalism

Our basic theoretical model makes use of an effective tight-
binding Hamiltonian describing one electron moving in a DNA
single-strand segment with N bases, coupled to the lattice
harmonic vibrations, whose expression is given by [25]:

H = Hlattice +
N∑

n=1

[
Vn+1,n(c

†
n+1cn) + Vn,n−1(c

†
ncn−1)

]

+
N∑

n=1

εnc
†
ncn. (1)

Here, Vn±1,n is the electronic hopping term between two
adjacent nucleotides, whose ionization energies at site n

are defined by εn. Also, Hlattice represents the classical
Hamiltonian describing the lattice harmonic vibrations:

Hlattice =
N∑

n=1

P 2
n

2mn

+
1

4

[
βnQ

2
+ + βn−1Q

2
−
]
, (2)

with Q+ = Qn+1 − Qn and Q− = Qn − Qn−1. Pn and
Qn are the classical momentum and displacement coordinates
of the DNA’s bases (G, C, A, and T ) at site n. In this
approach, we will consider all elastic forces constants, i.e.
βn = βn−1 = β. The ionization energies at site n, εn, will be
constructed as follows: initially we consider an uncorrelated
random sequence containing four distinct values of the on-
site ionization energies mimicking the sequence of the DNA’s
bases. For the on-site energies we used the values εG = 7.75,
εC = 8.87, εA = 8.24, and εT = 9.14, all units in eV
[10]. The fraction of each base is taken to be the same one
found in the firstly sequenced human chromosome 22 (Ch 22),
entitled NT011520, whose number of letters is about 3.4 × 106

nucleotides. This sequence was retrieved from the internet
page of the National Center of Biotechnology Information.
However, we would like to stress that the exact sequence of
bases of NT011520 is not relevant to the general dynamical
behavior we intend to explore, as long as the bases used for the
calculation comprise each base (G, C, A, and T ) to provide
mass disorder. The mass distribution mn will be the masses of
the four distinct bases, considering all masses in units of the
cytosine mass (MC), i.e.: mA = MA/MC = 135.13/111.10,
mG = MG/MC = 151.13/111.10, mT = MT /MC =
126.11/111.10, and mC = 1.

The interaction between the electron and the vibrational
modes in our model relates the electronic hopping term Vn+1,n

2
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with the displacement coordinates of the sites from their
equilibrium positions [26–29]:

Vn+1,n = − exp[−αQ+]. (3)

The coefficient α defines how the electronic hopping term
Vn+1,n depends on the relative displacement of the lattice
units, i.e. it determines the electron–phonon coupling
strength. Accordingly to [27–29], the exponential form of the
hopping term Vn+1,n stands for both small and large relative
displacement, thus going beyond the range of interactions
considered in the SSH (Su–Schrieffer–Heeger) theory [30–
33]. For small relative displacements, we recover the SSH
approximation

Vn+1,n ≈ −[1 − α(Qn+1 − Qn)]. (4)

We will follow the time evolution of an initially localized
one-electron wave-packet. The time-dependent wave-function
|�(t)〉 can be obtained by the numerical solution of the
time-dependent Schrödinger equation in which the electron
is initially localized at site N/2, i.e.:

|�(t = 0)〉 =
∑

n

cn(t = 0)|n〉, (5)

where
cn(t = 0) = δn,N/2. (6)

The Wannier amplitudes evolve in time according to the time-
dependent Schrödinger equation as (h̄ = 1)

i
dcn(t)

dt
= εncn(t)−exp(−αQ+)cn+1(t)−exp(−αQ−)cn−1(t).

(7)
In this system of units, time is given in units of h̄/eV =
4.13×10−15 s. Moreover, the lattice equation can be written as

mn

d2Qn(t)

dt2
=

[
βnQ+ − βn−1Q−

]
− α

[
exp(−αQ+)(c

∗
n+1cn

+cn+1c
∗
n) − exp(−αQ−)(c∗

ncn−1 + cnc
∗
n−1)

]
(8)

In what follows the elastic constant will be in units of
mC eV2/h̄2 = 1.06 × 104 N m−1, the lattice displacement in
Å, and α in units of Å−1. Our numerical formalism is based
on the precise numerical solution of the previous equations (7)
and (8). Both dynamic equations will be solved by using a
standard Dormand–Prince eighth-order Runge–Kutta method
monitoring the local truncation error [34, 35], with time step
dt ≈ 10−3. Aiming to characterize the dynamic behavior
of the wave-packet, we compute typical quantities that can
bring information about the electronic transport on this model,
namely the participation function ξ(t) and the wave-function
spread σ(t).

The participation function is defined by [36, 37]

ξ(t) = 1/
∑

n

|cn(t)|4, (9)

giving an estimation of the number of sites over which
the wave-packet is spread at time t . In particular, the

asymptotic participation function becomes size-independent
for a localized wave-packet. On the other hand, ξ(t →
∞) ∝ N corresponds to the regime where the wave-packet
is distributed over the lattice [25, 36, 37].

The wave-packet mean-square displacement σ(t) is
defined by [38]

σ(t) =
√∑

n

(n − n0)2|cn(t)|2. (10)

Note that σ(t) varies from 0, for a wave-function confined to
a site, to a term proportional to the number of sites, for a wave
extended over the whole system.

We will also study the temporal auto-correlation function
C(t) defined by [38, 39]:

C(t) = 1

t

t∫
0

R(t ′)dt ′, (11)

where R(t ′) = |cN/2(t
′)|2 denotes the return probability. In

the asymptotic limit t → ∞, the temporal auto-correlation
function vanishes as C(t) ∝ 1/tθ , where θ represents, for
d = 1, the exponent governing the size scaling of the
time-independent participation function for low energies, i.e.
ξ(E ≈ 0) ∝ Nθ [38, 39]. This scaling relation is a direct
consequence of the fractal character of the eigenfunctions
fluctuations [40, 41]. In the long time regime, the return
probability saturates at a finite value whenever the wave-packet
remains trapped in a finite region around the starting point.
Otherwise, it vanishes as the wave-packet continuously spreads
over the lattice [42]. Whenever the system presents a phase of
truly extended states, the auto-correlation function vanishes
linearly with 1/t . A slower non-linear decay is usually a
signature of an intermediate dynamical regime.

3. Results and discussions

Let us now present and discuss our main achievements. In
order to avoid border effects when the wavepacket reaches
the borders of a finite DNA segment, we performed our
numerical calculations on a self-expanding chain. As a result,
we measured the temporal evolution of a wavepacket initially
located at the center of the self-expanding chain, i.e. cn(t =
0) = δn,N/2. When the probability of finding the electron at
one of the ends of the chain exceeds 10−40, fifteen new sites
are added to them. In this way, one avoids eventual finite-
size effects on the wavepacket dynamics. This technique has
been successfully employed in previous studies of one-electron
wavepacket dynamics and provides reliable results concerning
the asymptotic spread of diffusing wavepackets [21, 33, 37,
44, 46]. The lattice equations were solved by considering an
initial impulse excitation (Pn = δn,N/2; Qn = 0) according
to [43]. We kept the wave-function norm within the limit
|1 − ∑

n |cn(t)|2| < 10−10 for all times considered, using 50
disorder configurations.

Initially, we plot in figures 1(a)–(h), the mean squared
displacement σ(t) and the participation number ξ(t) for the
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Figure 1. (a)–(d) Mean-square displacement σ(t) and (e)–(h) participation function ξ(t) (in units of the lattice spacing) versus time for
several values of the off-diagonal electron–phonon coupling strength α, and spring constant β (all units are given in the text). Our numerical
results indicate that off-diagonal nonlinearity (α > 0) induces the sub-diffusive spreading of the wavepacket, leading to σ(t) ∝ t0.25(2) and
ξ(t) ∝ t0.20(3) (the numbers in parenthesis stand for the fitting error bars).

following values of the electron–phonon coupling strength α:
0, 0.05, 0.1, 0.2, 0.3. We consider the spring constant β varying
from 0.1 up to 0.4. In the absence of the non-linearity (α = 0)
we observe the well-known Anderson localization regime in
which the wave-packet does not expand [37]. This behavior
was stressed in details in [22, 23], including several kinds of
diagonal DNA-like disorder. Moreover, figure 1 also shows
the sub-diffusive regime that exists for α > 0. By analyzing
these data, we found that the mean-square displacement σ(t)

behaves like t0.25(3), while the participation function ξ(t) has a
temporal dependence t0.20(3). We emphasize that these results
are in agreement with those found in [21], where it was verified
a sub-diffusive behavior related to the nonlinear Schrödinger
DNA equation for a twisted ladder geometry with an adiabatic

electron–phonon interaction. However, in this previous work,
the electron–phonon coupling was taken into account in the
time-dependent Schrödinger equation through a cubic non-
linearity (in the absence of any lattice equations), in such a way
that the lattice vibrations and its coupling with the electronic
dynamics were treated effectively by using a discrete nonlinear
Schrödinger equation. Furthermore, a sub-diffusive regime
was also found in discrete nonlinear Schrödinger models with
off-diagonal non-linearity [44].

Our model considers two distinct sources of static
disorder, namely: a disorder within the on-site energy
distribution of DNA’s bases (equation (7)), and also a disorder
within the mass distribution of the bases (equation (8)).
Therefore, both the tight-binding electron Hamiltonian and

4
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Figure 2. Temporal auto-correlation function C(t) versus t for the
electron–phonon coupling strength α = 0 up to 0.3.

the classical Hamiltonian describing the lattice harmonic
vibrations contain static disorder. Besides these sources
of static disorder, the electron hopping amplitudes also
dynamically change due to the coupling with the lattice
vibrations. This feature adds a dynamical source of disorder to
the electron propagation. Similarly, the electron propagation
couples to the lattice displacements resulting in an effective
dynamical disorder affecting the lattice vibrations. Our
results suggest that even in the presence of these two
static disorder distributions the electron–phonon term can
promote electronic transport. We stress that this result
evidences the consistence of the two formalisms, namely,
the nonlinear discrete Schrödinger equation used in [21, 44]
and the quantum-classical treatment considered in the present
work.

In figure 2 we investigate the electronic dynamics within
our DNA model by using the temporal auto-correlation
function. Our calculations were done for the spring constant
β = 0.4, with the electron–phonon coupling strengthα varying
from 0 up to 0.3. In the absence of the electron–phonon
coupling (α = 0) we observe that the auto-correlation function
saturates at large time t . In this region, the static disorder of the
DNA model, due to the two distinct sources described above,
promotes the localization of the electronic wave-function.
Therefore, the return probability at the large time t saturates at a
finite value, meaning that the auto-correlations remain constant
in time. For α > 0 we observe a slow non-linear decay of the
temporal auto-correlation function C(t). For α > 0.1 and for
long times, we can estimate C(t) ≈ t−0.40(1).

Formally, whenever the system presents a phase of truly
extended states, the auto-correlation function vanishes linearly
with 1/t . In the present DNA model, our result showing a non-
linear decay of C(t) suggests that the eigenfunctions exhibit
an intermediate nature between the fully localized and the
extended states. In [38] it was investigated an electronic model
with correlated disorder in which an intermediate dynamical
regime non-ballistic was associated with the presence of

weakly localized eigenfunctions. We emphasize that in our
model we are unable to calculate directly these eigenfunctions
due to the time-dependence of the hopping amplitudes. As
a consequence, a comparison of the auto-correlation function
exponent and the size scaling of the static participation number
can not be drawn.

Next, we would like to stress the classical harmonic
approximation imposed on the lattice harmonic vibrations
depicted in equation (2), which was also considered in
several previous works [21, 30, 44]. In a vibrating system,
the harmonic approximation takes into account only those
with small amplitude. Therefore, some thermal effects can
promote strong vibrations and an anharmonic treatment could
be important. In view of that, let us analyze briefly the effect of
nonlinear atomic forces on our results. We rewrite the lattice
Hamiltonian (equation (2)) in order to include an anharmonic
cubic force yields:

H ∗
lattice = Hlattice + (η/6)

∑
n

(
Q3

+ + Q3
−
)
, (12)

where η represents the strength of the cubic non-linearity
considered in the model. The quantum Schrödinger
equation (7) remains unchanged, and the lattice equation
needs to be rewritten in order to include the anharmonic term,
yielding:

mn

d2Qn(t)

dt2
=

[
βnQ+ − βn−1Q−

]
+ η

[
Q2

+ − Q2
−
]

−α
[

exp(−αQ+)(c
∗
n+1cn + cn+1c

∗
n)

− exp(−αQ−)(c∗
ncn−1 + cnc

∗
n−1)

]
. (13)

In what follows, η will be given in units of mc eV2/h̄2 Å =
1.06 × 10−6 N m−2. Figures 3(a) and (b) summarize our
calculations in the presence of the anharmonicity. We consider
the spring constant β = 0.4, and the electron–phonon
coupling α = 0.3 (this value was the highest intensity we
were able to proceed with our numerical calculations within
the desired accuracy). We observe that the wave-packet
width σ(t) diverges in a sub-diffusive way (σ ∝ t0.25(2))
similar to that observed in the absence of anharmonicity
(η = 0). Moreover, the temporal auto-correlation function
(see figure 3(b)) vanishes in a similar way to our calculations
for η = 0, suggesting that even in the presence of a weak
cubic anharmonicity for the electron–phonon coupling, a sub-
diffusive dynamic takes place in the present DNA single strand
model.

Before concluding, we perform now a scaling analysis
similar to that used in [45]. To do that, we considered that the
complete electronic wave-packet can be divided in two parts:

(a) a small fraction around the initial position, i.e. with the
return probability behaving as cn<n0(t) ∝ t−nu, where n0

represents few sites;
(b) a power-law tail up to a cutoff distance xm from the initial

position (after this cutoff distance, an exponential decay
takes place).
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Figure 3. (a) Mean-square displacement σ(t) and (b) temporal
auto-correlation function C(t) versus t for several values of the
anharmonicity η = 0.05 up to 0.2 (unit is given in the main text).
The off-diagonal electron–phonon coupling strength α was
considered equal to 0.3, the highest intensity value at which we were
able to get accurate numerical calculations. We observe that, even in
the presence of weak cubic anharmonicity, the electron–phonon
coupling promotes a sub-diffusive dynamics in a DNA single strand
chain.

Therefore, xm actually delimits the wave-packet front and
evolves in time as xm ∝ tγ , leading to [45]:

|c(t, n)|2 ∝ A1t
−ν for n < n0 (14)

|c(t, n)|2 ∝ A2t
−γφn−φ for n0 < n < xm (15)

For a power-law tail x−φ with φ > 1, equation (15) does
not contribute to the normalization of the wave-function.
Hence equation (14) dominates, implying that we should have
ν = 0 in order to keep the complete electronic wave-packet
normalized. This case with φ > 1 was investigated in [45] and
is completely distinct from the present case in which ν > 0.

On the other hand, for φ < 1 equation (15) will contribute
to the normalization and hence we need to treat it as follows:

n0∫
0

A1t
−νdn = A1t

−νn0 = constant. (16)

To keep the wave-function normalized, n0 should be
proportional to tν . As a consequence, the electronic wave-
packet can be summarized as:

|c(t, n)|2 =
{

A1t
−ν for 0 < n < n0 ∝ tν,

A2t
−γφn−φ for n0 < n < xm.

(17)

By using the scaling hypothesis of the previous equation, we
can estimate analytically the time dependent behavior of the
electronic wave-packet spread and the participation number.
The participation number ξ(t) can be written, in the continuous
limit as:

ξ−1(t) =
n0∫

0

A2
1t

−2νdn +

xm∫
n0

A2
2t

−2γφn−2φdn, (18)

leading to the following approximate expression:

ξ−1(t) ∝ C1t
−2νn0 + C2t

−2γφn
1−2φ

0 . (19)

Using (16) we have:

ξ−1(t) ∝ C1t
−ν + C2t

−2γφ−2φν+ν . (20)

Therefore, the first term will dominate the dynamics, and
the time-dependent behavior of the participation number is
characterized by ξ(t) ∝ tν .

The electronic spread σ(t) can be obtained in a similar
way. In the continuous limit σ 2(t) is given by :

σ 2(t) =
n0∫

0

A1t
−νn2dn +

xm∫
n0

A2t
−γφn2−φdn. (21)

The second integration is dominated by the limit n = xm

yielding
σ 2(t) ∝ A1t

−νn3
0 + B2t

−γφx3−φ
m . (22)

Using (16) again together with the expression xm ∝ tγ we
have:

σ 2(t) ∝ A1t
2ν + B2t

γ (3−2φ) (23)

The second term will dominate the time-dependence of the
wave-packet spread leading to σ(t) ∝ tγ (3−2φ)/2.

The next step is to check our scaling procedure by using
our numerical calculations. In figure 4(a) we estimate the
cutoff position xm for times t = 30 000 up to 180 000. Our
best fit shows that xm ∝ tγ , with γ = 0.25(2). In figure 4(b)
we plot the return probability (R(t) = |cN/2(t)|2) versus time.
Our best fit shows that R(t) ∝ t−ν with ν = 0.20(2). Finally,
in figure 4(c) we check our scaling hypothesis by collapsing the
wave-function profile for distinct times in a single curve using
φ = 0.5, γ = 0.25, and ν = 0.2, recovering the exponents of
ξ(t) and σ(t) with good accuracy.
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Figure 4. (a) Cutoff position xm versus time for t = 30 000 up to 180 000. Our best fit shows that xm ∝ tγ with γ = 0.25(2). (b) The return
probability (R(t) = |cN/2(t)|2) versus time. Our best fit shows that R(t) ∝ t−ν with ν = 0.20(2). (c) The data collapse of the wave-function
profile for distinct times in a single curve with φ = 0.5.

4. Summary and conclusions

In summary, we investigated the dynamics of a one-electron
state moving in a finite DNA single-strand chain containing
N bases considering, beyond the intrinsic DNA disorder
distribution, the effect of the DNA’s vibrations.

We treated the electronic dynamics by using a tight-
binding one-electron Hamiltonian, and a classical harmonic
Hamiltonian to describe the DNA’s vibrations. The electron-
lattice term was considered by assuming the electronic hopping
energy dependent on the effective distance between the nearest-
neighboring DNA’s bases. Our analysis was done by tuning the
electron–phonon coupling strength α as well as the harmonic
spring constant β.

Our calculations revealed that the electron–phonon
coupling can break down the Anderson localization, promoting
the appearance of a sub-diffusive dynamics for long times.

Furthermore, the effect of anharmonic corrections to the
nearest-neighboring bases interaction was also taken into
account by means of a cubic force similar to those considered
in the Fermi–Pasta–Ulam model. The numerical result in the
limit of weak anharmonicity corroborates that the electron–
phonon coupling strength α indeed promotes a sub-diffusive
wavepacket spread.
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