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Abstract. In this work we study the one-electron dynamics in a one-dimension alloy

in which atoms are coupled by a Morse potential. In our model, we consider the

presence of a static electric field parallel to chain. Our formalism consists of a quantum

mechanics treatment for the electron transport and a classical Hamiltonian model of

lattice vibrations. We also introduce an electron-lattice interaction by considering

electron hop between neighboring atoms as a function of its effective distance. We solve

numerically the dynamic equations for the electron and lattice performing calculations

for the spreading of an initially localized electronic wave-packet. We report numerical

evidences of the existence of a pair soliton-electron even at the presence of electric field.

We offer a detailed analysis of the dependence of this electron-soliton pair according

to the magnitude of the electric field and the electron-phonon interaction.
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1. Introduction

The problem concerning the time-dependent behavior of an initially localized electronic

wave-packet has a direct connection with the electrical properties of materials [1, 2, 3,

4, 5, 6]. The seminal works of Anderson and several co-workers have shown that the

presence of disorder is a key factor governing the extension of the wave function [7]. It

was demonstrated that in a disordered system with dimensions below two, all eigenstates

are localized in a finite fraction of the system, even in the case of weak disorder degree.

The Anderson localization has been developed in the electronic context, however such

prediction is still valid for every field described by a wave equation. In fact, the Anderson

localization of electromagnetic fields [8], water waves [9] and Bose-Einstein Condensates

(BEC) [10] has been reported in the literature. Within the context of BEC, we emphasize

that its dynamics is well described by the Gross-Pitaevskii equation [11] and the

nonlinearity present in this equation reveals exciting new physical properties [12, 13, 14].

It is instructive to point out that, even within the electronic context, nonlinearity
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can also be present. It was shown that the interaction between electrons and optical

phonons is well described by a nonlinear Schrödinger equation [14, 15]. One of the

most interesting phenomenon associated to nonlinearity is the self trapping (ST),

which occurs when the nonlinearity strength exceeds a critical value of order of the

bandwidth [15, 16, 17, 18, 19, 20, 21]. When ST takes place, an initially localized

wave-packet does not spread over the system, remaining localized around its initial

position. In a wider sense, transport properties in nonlinear lattices acquired a

expressive interest by the solid state community as well as within the nonlinear science

field [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. Davydov [41, 42, 43, 44, 45]

came up with the idea that the electron-lattice nonlinear term can promote charge

transport. The Davidov mechanism is a consequence of nonlinear interaction between a

linear electronic model and a linear lattice dynamically described by a soliton-bearing

equation. Moreover, in refs. [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57] M.G.

Velarde and co-workers demonstrated the existence of a polaron-soliton ”quasi-particle”

in nonlinear lattices and also have emphasized its importance to the carry charge.

The coupling of self-trapped states (polaron states) with the lattice solitons has been

generally termed as a solectron [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. We

emphasize that the solectron theory represents a interesting generalization of the original

polaron concept that can mediate non-Ohmic supersonic electric conduction [54]. The

electronic transport mediated by nonlinear effects was investigated in several two-

dimensional anharmonic lattices, particularly in a square lattice similar to the cuprate

lattice [57]. It was found numerical evidence of the electron-soliton transfer along

crystallographic axes.

From an experimental point of view, a very interesting advance within the context

of electron transport mediated by lattice effect was achieved by R.McNeil and co-workers

in ref. [62]. Roughly, the researchers have moved a single electron along a wire, batting

it back and forth, rather like the ball in a game of ping-pong [62]. The authors pointed

out the possibility of use this ”controlled motion” within the framework of quantum

computing, for example, moving a quantum ’bit’ between two far from places [62]. The

above experiment consisted in trapping a single electron in a quantum dot and move this

electron around a channel using a surface acoustic wave (SAW). The authors obtained

up to 60 shots with a good quality. The possibility of use SAW to move electrons and

construct quantum bits has attracted a intense interest [63, 64, 65, 66].

Besides of the fundamental framework about the electronic transport under effect

of nonlinearity, the interaction with a static electric field has also attracted the interest

of scientific community. It is well known that, at the absence of nonlinearity, a static

electric field applied parallel to a periodic lattice promotes the dynamic localization of a

given initial wave-packet. Furthermore, the presence of static electric field gives rise to

an oscillatory behavior of the electron wave packet (also called ” Bloch oscillations”) [67].

The size of the region over which the electron oscillates and the period of these

oscillations are inversely proportional to the magnitude of the static electric field.



Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field3

In this work we will make a contribution by going forward on the understanding of

electronic transport in low-dimensional nonlinear systems under effect of uniform electric

field. We study numerically the one-electron dynamics in a one-dimension alloy in

which that the atoms are coupled by a Morse potential. In addition, we consider

a static electric field parallel to chain. Within our model, the electron transport is

treated quantum-mechanically over the alloy in tight-binding approximation and the

longitudinal vibrations of the lattice are described by using classical formalism. The

electron-phonon interaction was introduced by considering the electron hopping as a

function of the effective distance between neighboring atoms. By solving numerically

dynamic equations for electron and lattice we can compute the spreading of an initially

localized electronic wave-packet. We report numerical evidences of the existence of an

electron-soliton pair even at the presence of electric field. We offer a detailed analysis

of the dependence of this electron-soliton pair with the magnitude of the electric field

and the electron-phonon interaction.

2. Model and Numerical Calculation

In our work, we consider a one-electron moving in a 1d anharmonic lattice of N masses

under effect of a static electric field. The complete Hamiltonian for the electron and

lattice can be written as H = Hlattice +He where He is the one electron Hamiltonian

defined as [46, 47, 48, 49, 50, 51, 52, 53, 54]:

He =
∑

n

[eE(n−N/2)(D†
nDn)] +

∑

n

Vn+1,n(D
†
n+1Dn). (1)

and Hlattice represent the classical Hamiltonian considering the nearest neighbor sites

coupled by the Morse Potential:

Hlattice =
∑

n

p2n
2mn

+
{

1− exp [−(qn − qn−1)]
}2

. (2)

Here, D†
n and Dn are the creation and annihilation operators for the electron at site

n. eE represent the electric force. Vn is the hopping amplitude. pn and qn define the

momentum and displacement of the mass at site (n). In our work we will consider all

masses identical with mn = 1. Here we will follow refs. [46, 47, 48, 49, 50, 51, 52, 53, 54]

on the interaction between the electron and the vibrational modes. It will be

considered in our model by relating the electronic parameters Vn+1,n with displacements

of molecular masses from their equilibrium positions. The hopping elements Vn+1,n

will depend on the relative distance between two consecutive molecules on the chain

as : Vn+1,n = −V exp [−α(qn+1 − qn)]. The quantity α will represent the degree

of relationship of relative displacement of lattice units on the hopping term Vn+1,n,

or in other words, it determines the electron-lattice coupling strength. For small

relative displacement we recover the Su, Schrieffer, Heeger approximation Vn+1,n ≈

−V [1 − α(qn+1 − qn)]. The time-dependent wave-function |Φ(t) >=
∑

n fn(t)|n〉

is obtained by numerical solution of the time-dependent Schrödinger equation. We
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consider the electron initially localized at site N/2, i.e. |Φ(t = 0)〉 =
∑

n fn(t = 0)|n〉,

where fn(t = 0) = δn,N/2. The Wannier amplitudes evolve in time according to the

time-dependent Schrödinger equation as (~ = 1)

i
dfn(t)

dt
=[F (n−N/2)]fn(t)− τ exp [−α(qn+1 − qn)]fn+1(t)

− τ exp [−α(qn − qn−1)]fn−1(t)

(3)

Lattice equation can be written as

d2qn(t)

dt2
= {1− exp[−(qn+1 − qn)]}exp[−(qn+1 − qn)]

− {1− exp[−(qn − qn−1)]}exp[−(qn − qn−1)]

− αV {(f ∗
n+1fn + fn+1f

∗
n)exp[−(qn+1 − qn)]

− (f ∗
nfn−1 + fnf

∗
n−1)exp[−(qn − qn−1)]} (4)

We have used the formalism defined in ref. [46]. Here τ = V/(~Ω), where Ω is the

frequency of harmonic oscillations around the minimum of the Morse potential. The

generalized hopping τ determines the time scale difference between the fast electronic

dynamics and the slow lattice vibrations. F is a generalized electric field in dimensionless

scale (electric charge, lattice parameter and ~ all quantities equal to one). Our

calculations are made by using precise numerical solution of the previous eqs. 3 and 4.

The equations of electron motion (eq. 3) will be solved numerically employing a high-

order method based on the Taylor expansion of time evolution operator U(δt) [60, 68]:

U(δt) = exp (−iH̃eδt) = 1 +
no
∑

l=1

(−iH̃eδt)
l

l!
(5)

where H̃e is exactly the same one electron Hamiltonian (eq. 1) with normalized

hopping Ṽn+1,n = −τ exp [−α(qn+1 − qn)]. The wave-function at time δt is given by

|Φ(δt)〉 = U(δt)|Φ(t = 0)〉. The method can be used recursively to get the wave-

function at time t. To obtain H̃ l
e|Φ(t = 0)〉, we used a recursive formula derived as

follows. Let H̃ l
e|Φ(t = 0)〉 =

∑

n D
l
n|n〉. Using the Hamiltonian formula (eq. 1) we

compute H̃1
e |Φ(t = 0)〉 and we have D1

n as

D1

n= [F (n−N/2)]fn(t = 0) (6)

−{τ exp [−α(qn+1 − qn)]}fn+1(t = 0)

−{τ exp [−α(qn − qn−1)]}fn−1(t = 0)

Therefore, using H̃ l
e|Φ(t = 0)〉 = H̃e

∑

n D
l−1
n |n〉, Dl

n can be obtained recursively as

Dl
n= [F (n−N/2)]Dl−1

n (t = 0) (7)

−{τ exp [−α(qn+1 − qn)]}D
l−1

n+1(t = 0)

−{τ exp [−α(qn − qn−1)]}D
l−1

n−1(t = 0),
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Figure 1. a) Electron mean position (centroid) (a) and participation number (b) for

long time versus electric field magnitude F .

The classical equations (eq. 4) will be solved by using a second order Euler method [69]:

The procedure starts by using a standard Euler method in order to find a prediction

qn(δt)
∗ at the time δt:

qn(δt)
∗ ≈ qn(t = 0) + δt

dqn
dt

∣

∣

∣

t=0

(8)

The next step consists of applying a correction formula to find a better approximation

to qn(t+ δt)

qn(δt) ≈ qn(t = 0) +
δt

2

[

dqn
dt

∣

∣

∣

t=0

+
dq∗n
dt

∣

∣

∣

δt

]

(9)

The above method (eq.8 and 9) can be used recursively to reach qn(t). The following

results were taken by using δt = 10−3 and the sum of eq. 5 was truncated about

no = 15. We could keep the wave-function norm within the following numerical

tolerance: |1 −
∑

n |fn(t)|
2| < 10−7 along the entire time interval. Also, we computed

some typical quantities which describes electronic transport on this nonlinear model,

namely, mean position (centroid) and participation function. Centroid and participation

function are defined as [60, 70]

< n(t) >=
∑

n

(n−N/2)|fn(t)|
2 (10)

and

ξ(t) = 1/
∑

n

|fn(t)|
4. (11)

respectively.

The centroid for a given time t represents the mean position of the electron using

the center of a self-expanded chain as the origin. The participation function gives an

estimate of the number of sites under which the wave packet is spread at time t.

3. Results and Discussions

We initially emphasize that in our calculations the time evolution of a initially

localized wave-packet was obtained by using numerical solution of quantum and classical
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Figure 2. (a) Square wave-function component |fn|
2 versus t and n for α = 1.75,τ =

10,V = 0.1 and F = 0. (b) Lattice deformation An for the same case in (a).
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(d)  τ=10 α=1.75 V=0.1 F=1.0
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Figure 3. (a,c) Square wave-function component |fn|
2 versus t and n for α = 1.75,τ =

10,V = 0.1 and F = 0.5, 1. (b,d) Lattice deformation An for the same cases respectively

in (a,c).

equations. We considered the electron fully localized at the center of a self-expanding

chain (i.e.
{

fn(t = 0) = δn,N/2

}

). The self-expanding chain was used to minimize border

effects; whenever the probability of finding the electron or the atomic vibration at the

ends of the chain exceeded 10−30, ten new sites were added to each edge. The lattice was

initialized by using the following initial excitation : pn = δn,N/2, an = 0. The numerical

convergence of our calculations was ensured by checking the conservation of the norm

of the wave-packet at every time step; our results provide |1 −
∑

n |fn(t)|
2| < 10−7 for
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(b) τ = 10 α = 1.75 V = 0.1 F=1.8
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(c) τ = 10 α = 1.75 V = 0.1 F=2
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Figure 4. (a,c) Square wave-function component |fn|
2 versus t and n for α = 1.75,τ =

10,V = 0.1 and F = 1.8, 2. (b,d) Lattice deformation An for the same cases respectively

in (a,c).
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Figure 5. Left panel: the electron centroid for α = 0.1 and F = 0.2, 0.4, 0.6 . Right

panel: The Fourier transform < n(ω) > of the centroid for the same cases showed

in left panel. We observe that for all electric field considered, the electron position

exhibits a Bloch-like oscillatory behavior with frequency (ω ≈ F ).

all times considered. In our work we will considered exactly the same case which was

studied in refs. [46, 47]: τ = 10, α = 1.75 and V = 0.1. In figure 1(a) we show the long

time behavior of the mean position (< n >) versus the magnitude of electric field F .

We emphasize that < n > was computed as the average of < n(t) > at long time limit

: < n >= (
∑tmax

t=0.8tmax

< n(t) >)/Ntimes (here tmax = 2 × 103). For the electric field



Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field8

0 500 1000 1500 2000
t

0

100

200

300

400

<
n(

t)
>

F=0.2

α=1

α=0.8

α=0.6α=0.4α=0.2

a)

0 500 1000 1500 2000
t

0

50

100

150

200

250

<
n(

t)
>

F=0.4

α=1

α=0.8α=0.6α=0.4α=0.2

α=1.2

b)

0 500 1000 1500 2000
t

0

50

100

150
<

n(
t)

>
F=0.6

α=1

α=0.8

α=1.2

c)

Figure 6. Electronic centroid < n(t) > versus time for F = 0.2, 0.4, 0.6 and several

values of electron-phonon coupling α. We observe that for each electric field considered

there is a specific value of α that separates the phase in which that the electron exhibit

a Bloch-like oscillation behavior and the phase with the electron-soliton pair formation.
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Figure 7. The phase diagram αc × F in order to characterize the (Bloch-like

oscillation)/(electron-solliton pair) transition.

within the interval (F < 2.), we observe that < n > is large thus suggesting that the

electron still moves along the chain. However, outside this interval, the electron remains

trapped around the initial position. Although this result seem simple, there is a more

complicated phenomenology behind this calculations. Formally, when a static electric

field is applied parallel to chain, the electron should remain trapped around the initial

position performing an oscillatory behavior with frequency equal to magnitude of electric
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field (Bloch-Oscillation). In our case we observe that the competition between the static

electric field and the electron-soliton term seem to break down the phenomenology of the

Bloch-Oscillations. For F > 2 the electron becomes trapped around the initial position

even at the presence of electron-soliton term. The fig. 1(b) shows the long term mean

participation number < ξ >= (
∑tmax

t=0.8tmax

< ξ(t) >)/Ntimes versus the electric field

F . We observe that for all electric fields values considered the participation number

is small, thus signaling the trapped character of the electron wave-packet. We will

return to discuss particularly the behavior of the participation number at the end of

paper. For now, we are able to comment that for F ≤ 2 the electron is trapped by

the solitonic modes that exists within the chain. For F > 2, the electric field effect is

dominant and keeps the electron trapped around the initial position. For the electric

field within the interval (1.5 < F < 2) we found a crossover region in which that a finite

fraction of the wave-function remains trapped around the initial position and an another

small part participate in the electron-soliton dynamics. This crossover effect increases

the participation number (as we can observe for example in figure 1(b) for F ≈ 1.8).

We get a major comprehension of electronic behavior for (F ≤ 2) by analyzing the

wave-packet profile and lattice deformation.

In figure 2(a) we plot the electronic wave-function at the n×t×|fn|
2 plane as well as

in (b) the lattice deformation in the n×t×An plane where An = exp−[qn − qn−1] at the

absence of electric field (F = 0). We observe that the wave-function remains trapped

in a finite fraction of lattice. In addition, we notice that the localized electronic wave-

packet is moving along the chain in good agreement with the centroid results showed in

Fig. 1(a)). The results for the deformation An reveals that the initial energy propagates

along the classical chain in a solitonic state. Our calculations for F = 0 are in accordance

with the previous works of M.G. Velarde [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]

where this kind of electron-soliton pair was reported at the first time. For F 6= 0 the

results of wave-packet and the lattice deformation can be found in fig. 3 and 4. We

observe in fig.3 for F = 0.5, 1 that the wave function is divided in two parts: one

moves along the chain and the other (the smallest part) remains trapped around initial

position. Therefore, for weak electric field, the solitonic mode can still trap a finite

fraction of wave-packet and drag it along the chain. We can also observe that the lattice

deformation An still exhibit a solitonic behavior. However, this soliton also exhibits some

losses in its magnitude and we can see a initial spread of the deforming wave along the

chain. In fig.4 we plot our results for F = 1.8 and 2. For F = 1.8, the most part of the

wave-function remains trapped around the initial position. However, a small part of the

initial wave-packet seems to be still captured by the solitonic modes. The configuration

found for 1.5 < F < 2 is just the opposite of the behavior for F = 0.5,1. (see figure. 3)

where the majoritary part of the wave-packet remains trapped by the solitonic mode.

This behavior is the key ingredient behind the increasing of the participation number

for F = 1.8 (see fig. 1(b)). Our results suggests that for F . 1.5, there is the possibility

of electron-soliton pair due to the Morse interaction and the electron-phonon coupling.

For F > 2 the electron become localized around the initial position for this degree
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of electron-phonon coupling. We emphasize that the electron-phonon term α = 1.75

considered in the previous results is a reasonable amount of electron-lattice interaction

as was pointed out in ref. [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. Moreover,

this value is quite close of the higher values of α we have considered. We will discuss

more about the electron-phonon interaction values at the end of this work. The region

with 1.5 < F < 2 represents an anomalous crossover region in which that the electron-

phonon term is not sufficient to promotes the capture of the electron by the solitonic

mode, remaining a largest fraction of the wave-packet around lattice center.

The main conclusion of the previous figures is that, within the framework of a

one-electron subjected to a static electric field and the electron-phonon coupling, the

interaction with the nonlinear lattice vibrations plays the dominant rules. We will

analyze in more detail this competition between the electric field and the electron-

phonon coupling following a systematic procedure. We will analyze critical value

of electron-phonon interaction (αc) necessary to promote the electron-soliton pair

formation under the effect of a static electric field. In fig. 5 (left panel) we plot the

electron position for α = 0.1 and F = 0.2, 0.4, 0.6 . We can observe that for all electric

field considered, the electron exhibits a oscillatory behavior quite compatible with the

well know Bloch oscillations phenomenon. In fig. 5 (right panel), we plot the Fourier

transform < n(ω) > of the mean centroid. In good agreement with the semi-classical

approach, the main frequency value is around the generalized electric field magnitude

(ω ≈ F ). It is a clear signature that for a weak electron-phonon interaction, the electric

field can trap the electron wave-function and promotes a coherent (or quasi-coherent)

Bloch-like oscillatory mainframe. We emphasize that, in our model, the electronic

hopping, even for weak electron-phonon coupling, changes slightly along the chain thus

promoting a weak absence of periodicity that can ”destroy” the Bloch oscillations for

sufficient long-times. We will analyze now the electron-phonon threshold necessary to

promotes the electron-soliton pair formation. In figures 6(a-c) we plot the electronic

centroid < n(t) > versus times for F = 0.2, 0.4, 0.6 and several values of electron-phonon

coupling α. We observe that for each electric field value there is a specific values of α that

separates the Bloch-like oscillation phase and the electron-soliton pair phase. Therefore,

we will provide in figure 7 a phase diagram αc×F in order to characterize the (Bloch-like

oscillation)/(electron-solliton pair) transition. Our calculations suggest that, even for a

zero electric field there is a minimum value of the nonlinearity (αc ≈ 0.65) necessary to

bind the electron to the solitonic modes of the chain. We also observe that, as the electric

field value F is increased, the critical electron-phonon value αc also increases. In spite

of we do not have any formal demonstration for this phase diagram, it is quite intuitive.

At the absence of electric field, the electron becomes free to move in a crystalline chain,

thus, we did not expect that values of α slightly larger than zero would be enough to

promote pair formation. For F 6= 0 the dynamics localization in general takes place.

The interaction of the electron with the static electric field promotes the appearance

of linear potential energy that trap the electron around the initial position and induce

the Bloch-oscillations. As the electric field increases, it becomes more difficult to the
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electron-phonon term capture a large fraction of electron wave, thus αc should increase

also (as we can observe in fig. 7). For F > 2 the electron becomes roughly trapped and

the electron-phonon coupling, within our numerical accuracy, can not promotes the pair

formation. For the electric field within the interval (1.5 < F < 2), as it was described

previously, we found a crossover region in which a larger fraction of the wave-function

remains trapped around the initial position and a small part join the electron-soliton

dynamics. In our calculations we have found good accuracy until α ≈ 2.. Maybe, it

is possible that, for the electron-phonon couplings larger than α = 2, electron-soliton

pair formation could happen also for F > 1.5. However, it is complicated to solve

with good accuracy the set of quantum/classical equations for large electric field and

electron-phonon interaction.

4. Conclusions

In this work we studied the one-electron dynamics in a one-dimension Morse model

considering a static electric field applied parallel to chain. Besides, we have considered

electron dynamics by using a quantum-mechanical formalism and longitudinal vibrations

of the lattice were described by using standard classical theory. The electron-phonon

interaction was introduced by considering the hopping between neighboring sites

dependent on their effective distance. By solving numerically the equations for electron

and lattice we compute the dynamics of an initially localized electronic wave-packet. Our

results can be summarized as follows: For weak electric field our calculations reveals

evidence of existence of a electron-soliton pair . We also found, for numerical means,

that the electron-phonon coupling dominates the dynamics, thus destroying the Bloch-

Oscillation phenomenon. For strong electric field, the wave-packet remains trapped

around the initial position. The solitonic lattice deformations exhibits small losses and

remains trapped due to the electric field competitive effect. We also have analyzed in

more detail the competition between the electric field and the electron-phonon coupling

by examining the critical value of electron-phonon interaction necessary to promote the

electron-soliton pair formation under the effect of a static electric field. By following a

systematic and accuracy procedure we provide a phase diagram in order to characterize

the dependence of the critical electron-phonon interaction values with the electric field

intensity. We hope our work stimulates further investigations along these lines.
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