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PACS. 78.30.Ly – Disordered solids.

PACS. 71.30.+h – Metal-insulator transitions and other electronic transitions.

PACS. 73.20.Jc – Delocalization processes.

Abstract. – We study the nature of one-electron eigenstates in a two-dimensional (2d)
Anderson model with long-range correlated disorder. Long-range correlations are introduced
by using a 2d discrete Fourier method which generates an appropriated disorder distribution
with spectral density S(k) ∝ 1/kα2d . Our numerical data suggest that the exponents governing
the collapse of the participation function for low energies (ξ ∝ ND2) and the long time decay of
the autocorrelation function (C(t) ∝ t−β) satisfy the scaling relation D2 = βd. They also imply
that the system exhibits a crossover from a diffusive spread for weakly correlated disorder to a
ballistic dynamics associated with the emergence of extended states in the strongly correlated
disorder regime (α2d > 2).

Introduction. – The Anderson localization theory describes some relevant aspects con-
cerning the properties of one-electron states and collective excitations in random media [1–3].
In one-dimensional (1d) and two-dimensional (2d) electronic systems, the scaling theory [2]
predicts the absence of a disorder-driven metal-insulator transition (MIT) for any degree of
uncorrelated disorder. For 1d systems, it is generally accepted that all eigenstates are expo-
nentially localized for any amount of disorder and, therefore, an initially localized wave packet
remains localized in a finite segment. In 2d systems, the overall picture is quite distinct. An
extensive numerical analysis of the 2d Anderson model with dimerized disorder reported that
distinct dynamical regimes can be observed according to the disorder strength [4]. The wave
packet was shown to remain localized only in the regime of strong disorder. For weak disor-
der, a ballistic spread takes place. These regimes are separated by a phase with intermediate
diffusive-like dynamics. This result points towards an anomalous scaling of the eigenfunctions
c© EDP Sciences
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momenta in the 2d Anderson model with intermediate disorder, since it has been demon-
strated that the asymptotic scaling of a spreading wave packet is determined by multifractal
dimensions characterizing the energy spectrum and eigenfunctions [5].

Recently, it has been reported that the presence of short- [6–12] or long-range correla-
tions [13–15] is a possible mechanism to promote the appearance of truly delocalized states in
the one-dimensional Anderson model. The absence of Anderson localization for some specific
energy modes was put forward to account for transport properties of semiconductor superlat-
tices with intentional short-range correlated disorder [16]. Further, much attention has been
driven to the delocalization problem in 1d systems with long-range correlated disorder. It has
been reported by several authors [13–15] that these systems display an Anderson transition
with mobility edges separating localized and extended states in the limit of strong correlations.
This theoretical prediction was confirmed by microwave transmission spectra of single-mode
waveguides with inserted correlated scatters [17].

A first study of the effects of long-range correlations in the localization properties of 2d
electronic systems was performed in ref. [18]. The authors considered a two-dimensional
striped media in the x-y plane with on-site disorder. The on-site energies were generated by a
superposition of an uncorrelated term and a long-range correlated one along the y-direction. It
was predicted that this system displays a disorder-driven Kosterlitz-Thouless metal-insulator
transition in the regime of strong correlations. More recently, the influence of long-range
correlated disorder in the electron motion in a two-dimensional lattice was investigated [19]
and relevant corrections to the conductivity were identified.

In this letter, we focus on the influence of isotropic scale-free long-range correlated dis-
order on the one-electron eigenstates of the Anderson model defined on a square lattice. In
order to introduce long-range correlations in both x and y directions, the site energies of the
Anderson Hamiltonian are distributed in such a way to have a power law spectral density
S(k) ∝ 1/kα2d , where k is the magnitude of the typical wave vector characterizing the energy
landscape roughness. In what follows, we use an exact diagonalization formalism to compute
the participation function which can be used as a measure of the localized/delocalized nature
of all eigenstates. In addition, the dynamics associated with the spread of an initially localized
wave packet is investigated by numerically solving the 2d time-dependent Schrödinger equa-
tion. Our results suggest that this 2d Anderson model with isotropically long-range correlated
disorder can support extended states in the strongly correlated regime.
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Fig. 1 – Spectrum S(k) vs. k for α = 0, 1.5, and 3 computed on a lattice with N2 = 1002. Notice
that the power law scaling imposed by eq. (2) is fully satisfied.
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Model and formalism. – We consider the 2d Anderson Hamiltonian with disordered
on-site energies εim on a regular N ×N lattice [3, 18],

H =
∑
i,m

εim|i,m〉〈i,m|+ t
∑

〈im,jn〉

(|i,m〉〈j, n|+ |j, n〉〈i,m|), (1)

where |i,m〉 is a Wannier state localized at site (i,m) and
∑

〈im,jn〉 represents a sum over
nearest-neighbor pairs. In our calculations, we fix the energy scale by setting the hopping
energy t = 1. In order to generate a long-range correlated on-site energy landscape, we apply
a 2d discrete Fourier transform method defined by

εi,m =
N/2∑
kx=1

N/2∑
ky=1

ζ(α2d)(
k2

x + k2
y

)α2d/4
cos

(
2πikx

N
+

2πmky

N
+ φi,m

)
, (2)

where φi,m are N2/4 independent random phases uniformly distributed in the interval [0, 2π]
and ζ(α2d) is a normalization constant which is chosen to have the energy variance 〈ε2i,m〉 = 1.
We also shift the on-site energies in order to have 〈εi,m〉 = 0. Typically, this sequence is
the trace of a 2d fractional Brownian motion [20] with a well-defined power law spectrum
S(k) ∝ 1/kα2d , where k =

√
k2

x + k2
y. In fig. 1 we show the power law spectrum S(k) for

several values of α2d computed from a sample energy landscape on a lattice with N2 = 1002

using the 2d Fourier transform of eq. (2). In order to investigate the physical properties
associated with the nature of one-electron eigenstates (|Φ(E)〉), we numerically diagonalize
the Hamiltonian and then calculate the participation function ξ(E) defined by [3]

ξ(E) =

∑
i,m

∣∣c(E)
i,m

∣∣2
∑

i,m

∣∣c(E)
i,m

∣∣4 , (3)

where c(E)
i,m are the amplitudes of the eigenstate |Φ(E)〉 in the Wannier representation (|Φ(E)〉 =∑

i,m c
(E)
i,m |i,m〉). In general, the participation number is a good estimate of the spatial

extension of exponentially localized electronic states. For extended states, ξ is proportional
to the total number of sites (ξ ∝ N2 for a square lattice). On the other hand, wave functions
presenting power law decaying tails may display an anomalous scaling of the participation
number ξ ∝ ND2 , with D2 < d [21].

We also study some dynamical aspects by examining the time evolution of an initially lo-
calized wave packet. The Wannier amplitudes evolve in time according to the time-dependent
Schrödinger equation as (h̄ = 1) [3, 4]

i
dci,m(t)

dt
=εi,mci,m(t)+t[ci,m−1(t)+ci,m+1(t)+ci−1,m(t)+ci+1,m(t)], i,m = 1, 2, . . . , N. (4)

We consider a wave packet initially localized at site i0 = N/2, m0 = N/2, i.e. ci,m(t =
0) = δi,i0δm,m0 . A fourth-order Runge-Kutta method is used to solve the above set of cou-
pled equations. We are particularly interested in calculating the wave packet mean-square
displacement σ2(t) defined by [11,21,22]

σ2(t) =
N∑

i=1

N∑
m=1

[
(i− i0)2 + (m−m0)2

]|ci,m(t)|2 , (5)
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Fig. 2 – Scaled participation number, ξ/ND2 , vs. energy E for (a) α2d = 0, (b) α2d = 1.5, (c) α2d =
2.25, and (d) α2d = 3. In (a) and (b), a low-energy phase with power law decaying wave functions
is characterized the collapse of data with D2 < d. In (c) and (d) D2 = d, suggesting a phase of
low-energy extended states.

as well as the temporal autocorrelation function C(t) [21]:

C(t) =
1
t

∫ t

0

R(t)dt , (6)

where R(t) = |ci0,m0(t)|2 denotes the return probability. In the asymptotic limit t → ∞, the
temporal autocorrelation function vanishes as C(t) ∝ 1/tβ , with β = D2/d. This scaling rela-
tion is a direct consequence of the fractal character of the eigenfunctions fluctuations [23,24].
In the large-t limit, the return probability saturates at a finite value whenever the wave packet
remains trapped in a finite region around the starting point. Otherwise, it vanishes as the
wave packet continuously spread over the lattice [3]. Whenever the system presents a phase
of truly extended states, the autocorrelation function vanishes linearly with 1/t. A slower
non-linear decay is usually a signature of an intermediate dynamical regime.

The above scaling relation β = D2/d has been shown to hold for several models exhibiting
multifractal eigenfunctions, in particular for models with power law decaying uncorrelated off-
diagonal disorder [25,26]. Although models with power law hopping and power law correlated
on-site disorder present some similarities, delocalization is induced in these models by distinct
mechanisms. In models with 1/rµ decaying random hopping amplitudes, delocalization is
achieved by an increase of the effective dimensionality of the system as longer-ranged couplings
are considered and extended states appears for µ < d. For models with short-range couplings
and disorder spectral density decaying as 1/kα, delocalization is induced by the smoothing of
the potential landscape and is achieved above a critical value of α. This feature makes the
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Fig. 3 – (a) Scaled mean-square displacement, σ2(t)/t, vs. t for α2d = 0 (dotted line) and α2d = 1.5
(dashed line), with N2 = 8002 sites. After a short transient, a diffusive spread, σ2 ∝ t, is observed
for α2d < 2. (b) Scaled mean-square displacement, σ2(t)/N2, vs. scaled time, t/N , for α = 3 and
N2 = 502, 1002, 2002, 4002 sites. The data collapse suggests a ballistic dynamics (σ2 ∝ t2) for
α2d > 2.

d = 2 case particularly interesting. Once this is the lower critical dimension for the Anderson
transition, a regime of anomalous scaling behavior can emerge even for weak correlations
(small α), as we are indeed going to report in the following section.

Results. – In figs. 2(a)-(b) we show the scaled participation number ξ/ND2 vs. energy
E for (a) α2d = 0 and (b) α2d = 1.5, with N2 = 302, 402, 502, 602 sites, averaged over
100 samples. One can observe a well-defined data collapse for low energies: D2 = 1.65(2)
and 1.71(2) for α2d = 0 and 1.5, respectively. Since D2 < d, this phase is composed of
wave functions with power law decaying tails. The participation number exponent remains
smaller than the space dimension for any α2d < 2. Therefore, there are no truly delocalized
states for this regime of weakly correlated disorder. Figures 2(c)-(d) display ξ/ND2 vs. E
for (c) α2d = 2.25 and (d) α2d = 3.0, with N2 = 302, 402, 502, 602 sites, averaged over
100 samples, and N2 = 802 sites averaged over 50 samples. We see that, in both cases, a
well-defined data collapse in a wide region of low energies is obtained with D2 = 2.00(2). This
result suggests the possibility of a phase of low-energy extended states for strongly correlated
disorder, i.e., D2 = d. A direct study of the wave packet dynamics can be employed on much
larger lattices and, therefore, allows for a finer control of finite-size effects. The long-time
behavior of σ2(t) is obtained by numerical integration until the package arrives at one of the
lattice boundary sites. In fig. 3(a), we show data for the scaled mean-square displacement,
σ2/t, for α2d = 0 and 1.5, with N2 = 8002 sites, displaying a diffusive behavior [σ2(t) ∝ t].
These results are compatible with a previous report on the dynamics of a two-dimensional
binary alloy with dimerized uncorrelated diagonal disorder [4], where it was numerically shown
that localization is only observed for strong disorder. For an intermediate disorder strength, as
we simulated here, a diffusive-like dynamics was obtained. Therefore, our results for α2d < 2
suggest that a weak degree of correlations does not affect the time dependence of the wave
packet mean-square displacement.

We further collected in fig. 3(b) results for the wave packet mean-square displacement
σ2(t), computed from lattices with N2 = 502, 1002, 2002, 4002 sites and α2d = 3, representing
a strongly correlated energy landscape (similar results are also found for α2d = 2.25, 2.5 and
2.75). In this case, we numerically integrate the wave equation until a stationary state can
be reached after multiple reflections of the wave packet on the lattice boundaries. Therefore,
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Fig. 4 – Temporal autocorrelation function C(t) vs. t for α2d = 0 (dotted line) and 3 (dashed line)
and N2 = 8002 sites. In the asymptotic limit t → ∞, C(t) vanishes as C(t) ∝ t−β with β ≈ 0.83(1)
and 1.0, respectively. These results agree with the reported scaling exponents for the participation
number (see figs. 1(a) and (d)).

the mean-square displacement saturates at a value ∝ N2 due to finite-size effects. A fine data
collapse is found by using the scaling variables σ2(t)/N2 and t/N , implying that, for α2d > 2,
σ2 ∝ t2, i.e., the wave packet presents a ballistic spread before reaching the lattice boundaries.

Another signature of the occurrence of extended states in the strong correlated regime can
be obtained by monitoring the temporal autocorrelation function C(t). In fig. 4, we show data
for C(t) vs. t for α2d = 0 and 3, with N2 = 8002 sites averaged over 20 samples. C(t) vanishes
for long times as C(t) ∝ t−β , where β ≈ 0.83(1) and 1.0 (within our numerical accuracy),
respectively. For α2d = 1.5, we find β � 0.86(2). Thus, the dynamic behavior of σ2(t) and
C(t) agrees remarkably well with the results of the participation number calculations, with
β = D2/d [21,24]. Therefore, our results support the conclusion that this 2d Anderson model
displays a phase of extended states induced by long-range on-site correlations.

Conclusions. – In this work we considered the 2d Anderson model with long-range
correlations in both x and y directions. To introduce long-range correlations in this system
we applied a 2d Fourier method to construct an on-site energy sequence with spectral density
S(k) ∝ 1/kα2d . Using an exact diagonalization formalism, we investigated the participation
function ξ of all energy eigenstates. For α2d > 2, we reported a data collapse indicating a
phase of extended states in the low-energy regime, in agreement with a previous analytical
prediction [19]. Further, by solving the time-dependent 2d Schrödinger equation for an initially
localized wave packet, we determined the time-dependent mean-square displacement σ2(t) and
the temporal autocorrelation function C(t). Our data suggest that the exponents governing
the collapse of the participation function for low energies (ξ ∝ ND2) and the long time decay
of the autocorrelation function (C(t) ∝ t−β) satisfy the scaling relation D2 = βd. Also,
in the weakly correlated regime (α2d < 2) a diffusive behavior (σ2 ∝ t) was found. In the
strongly correlated case (α2d > 2) the system displays ballistic dynamics (σ2 ∝ t2), with a
linear vanishing of the autocorrelation function. This result further characterizes the extended
nature of the low-energy states in the strongly correlated regime. We hope that the present
work will stimulate further studies on semiconductors and superlattices with intentional long-
range correlated disorder.
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