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Abstract. In this work, a one-dimensional quantum Heisenberg ferromagnet with aperiodic exchange cou-
plings is considered. To produce an aperiodic distribution of exchange couplings, it is used a sinusoidal
function whose phase φ varies as a power-law, φ ∝ nν , where n labels the positions along the chain. By
using exact diagonalization, the spin-wave participation number and the local density of states are com-
puted. The numerical calculations indicate that for 0 < ν < 1, this ferromagnetic system displays a phase
of extended spin waves in the low-energy region. For ν > 1 all spin waves are localized except for the
zero energy mode. By integrating the time-dependent Schrödinger equation, the temporal evolution of the
mean-square displacement of the wave-packet was followed. Associated with the emergence of extended
spin waves, it was observed that the wave-packet mean-square displacement displays a ballistic spread.

PACS. 75.30.Ds Spin waves – 73.23.Ad Ballistic transport – 73.20.Jc Delocalization processes – 72.15.Rn
Localization effects (Anderson or weak localization)

1 Introduction

The dynamics of quantum noninteracting particles in dis-
ordered systems is one of the most intensively studied
problems in condensed matter physics [1–6]. Within the
point of view of noninteracting electrons in disordered
solids, the Anderson’s localization theory describes the
overall behavior of the main pertinent physical quanti-
ties. In general lines, the Anderson theory predicts an
electronic localization-delocalization transition (LDT) for
weak disorder in three dimensional geometries. For low-
dimensional systems with time-reversal symmetry, the lo-
calization of all one-electron eigenstates is anticipated
at any disorder strength [1]. The localization of collec-
tive excitations by an uncorrelated random potential is a
rather general phenomenon. It also applies to the study of
magnon localization in random ferromagnets [7–9]. In fact,
it is possible to map the Heisenberg Hamiltonian asso-
ciated with one-magnon excitations onto an one-electron
tight-binding model [7–9]. In general, it was demonstrated
that the finite energy states are exponentially localized
at any degree of disorder. However the typical localiza-
tion length grows as one approaches the bottom of the
band [7–9]. Moreover, it was shown that an initially local-
ized spin excitation may exhibit a super-diffusive spread
in the presence of disorder in contrast to the random os-
cillations on a finite segment displayed by an electronic
wave-packet [9].

The above picture holds for systems with uncorrelated
disorder distributions. Some years ago, it was reported
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that the presence of short [10–13] or long-range correla-
tions [14–23] in disorder may induce the appearance of
truly delocalized states in low-dimensional Anderson mod-
els. Within the context of noninteracting magnons, the
one-dimensional quantum Heisenberg ferromagnet with
exchange couplings exhibiting correlated long-range dis-
order was also studied in reference [24]. It was shown
that extended states appear for sufficient strong correla-
tions using a renormalization group approach, integration
of the motion equations, as well as exact diagonalization.
Another class of 1D models that can exhibit an Anderson-
like localization-delocalization transition, involves a non-
random, deterministic potential which is incommensurate
with the underlying lattice [25]. This class of models de-
picts features that are in between those of the random
Anderson model and the periodic Bloch model. The lo-
calized or extended nature of the eigenstates has been ex-
tensively investigated in the physics literature [26–29] and
has been related to general characteristics of the aperiodic
on-site distributions. However, the role played by aperi-
odic structures concerning the localization properties of
magnons in quantum ferromagnetic chains have not been
studied in detail. In reference [30], the authors studied the
nature of noninteracting spin waves in a Thue-Morse fer-
romagntic chain. By using exact diagonalization, extended
states for some specific high energies were found. This re-
sult, in contrast to what was found in the disordered case,
suggests that Thue-Morse ferromagnetic chains can sup-
port resonances.

In fact, the role of disorder or aperiodicity on the elec-
tron, phonon, polariton and magnon modes, is still under
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some debate [31]. More recently, a very instructive paper
by Macia [32] has shown the importance of aperiodicity
in different domains of science. In this work, we report
further progress along this line. We consider the one-
dimensional quantum Heisenberg ferromagnet with ape-
riodic exchange couplings. In order to produce an aperi-
odic sequence of exchange couplings, the formalism used
in reference [25] was considered. It consists in use a si-
nusoidal function whose phase φ varies as a power-law,
φ ∝ nν , where n labels the positions along the chain.
The exponent ν controls the degree of aperiodicity in the
sequence of exchange couplings. By using an exact diag-
onalization of finite sequences, we compute the spin-wave
participation number and the local density of states. For
0 < ν < 1, the numerical calculations suggest that this
system displays a phase of extended spin waves in the low-
energy region. However, for ν > 1 all spin waves are lo-
calized except for the zero energy mode. By integration of
the time-dependent Schödinger equation, the mean-square
displacement of the wave packet will be computed. A bal-
listic wave-packet spread will be shown to emerge associ-
ated with the presence of extended spin waves.

2 Model and formalism

We consider a Hamiltonian model describing a spin-1/2
quantum ferromagnetic Heisenberg chain of N sites with
nearest-neighbors isotropic exchange interaction:

H = −
∑

n

Jn,n+1Sn.Sn+1. (1)

The couplings Jn,n+1 = Jn will be considered to follow a
deterministic rule given by

Jn = J0 + W cos(αnν), (2)

with α being an arbitrary rational number and ν and W
being tunable parameters [25]. From this sinusoidal form,
one can control the degree of aperiodicity in the sequence
of exchange couplings. In what follows, J0 > W will be
taken in order to avoid negative or null exchange interac-
tions. The ground state of the system contains all spins
pointing in the same direction. If a spin deviation occurs
at a site n, this excited state is described by:

φn = S+
n |0〉 (3)

where the operator S+
n creates a spin deviation at site n

and |0〉 denotes the ground state. The eigenstates of the
Hamiltonian belonging to the sub-space of single flip ex-
citations are, therefore, composed of a linear combination
of φn, i.e., Φ(E) =

∑
n fnφn. The coefficients fn satisfy

the equation [24]

(Jn + Jn−1)fn − Jnfn+1 − Jn−1fn−1 = 2Efn (4)

where E is the excitation energy. The above equa-
tion for the eigenstate coefficients is similar to that for

one-electron states in a tight-binding model with cor-
related hopping integrals. It is worth to mention here
that the above procedure can not be extended to anti-
ferromagnetic chains because the ground state does not
correspond to a saturated anti-ferromagnetic order. In
what follows, one can access the localization properties of
all spin waves using exact diagonalization of finite chains
to compute the participation number P (E) and the local
Density of states (LDOS). P (E) is given by [19]

P (E) =
1

∑N
n=1 f4

n(E)
(5)

and depends linearly of the chain size for extended states
while being roughly size independent for exponentially
localized states. We compute the average participation
number defined by ξ(E) = 1

NE

∑E=E+δE
E=E−∆E P (E), where

∆E = 0.05 and NE is the number of eigenmodes within
each interval [E−∆E, E+∆E]. LDOS is defined by [33,34]

ρi(E) =
∑

n

|fi(En)|2δ(E − En). (6)

For a given energy, the LDOS directly measures the lo-
cal amplitude of the wave-function at site i. Averaging
ρi(E) arithmetically over N sites, we obtain the averaged
density of states ρav(E) = (1/N)

∑N
i=1 ρi(E). The geo-

metric mean define the typical density of states ρty(E) =
exp [(1/N)

∑N
i=1 log ρi(E)]. For extended states, ρav(E)

and ρty(E) are almost equal, whereas for localized states
ρty(E) vanishes and ρav(E) remains finite [33,34]. This
implies that the ratio of these two quantities,

R(E) =
ρty(E)
ρav(E)

, (7)

can serve to monitor extended states (R(E) > 0) and
localized ones (R(E) = 0). In addition, we will investi-
gate the time evolution of a wave-packet initially localized
at site n0. Using numerical methods to solve the time-
dependent Schrödinger equation, we compute the second
moment of the corresponding spatial probability distribu-
tion given by

σ =
√∑

n

(n− < n(t) >)2|fn(t)|2 (8)

where 〈n(t)〉 =
∑

n n|fn(t)|2 is the centroid of the wave-
packet. From the mean-square displacement σ, we can es-
timate the wave-packet spread in space at time t.

3 Results

The numerical diagonalization was performed using lat-
tices up to N = 16 000 sites. Integrations of the time-
dependent Schrödinger equation were performed using
fourth-order Runge-Kutta method with time step 10−3

and systems up to 16 000 sites. The norm conservation
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Fig. 1. The normalized spin-wave density of states (DOS) for
chains with N = 106 sites using Dean’s method. The DOS is
smooth for aperiodic exchange couplings with ν = 0.5 (dotted
line at left panel). For ν < 1, the nonfluctuating DOS can
be compared with the one of the pure chain, Jn = J0 (solid
line at left panel). For ν > 1 the DOS displays a roughness
comparable to those obtained for uncorrelated random chains
(solid and dotted lines at right panel).

was checked at every time step to ensure the numerical
convergence. In addition, the density of states (DOS) was
calculated by using the numerical Dean’s method [12,24].
The normalized DOS for chains with N = 106 sites is
shown in Figure 1. One can see at the left panel of Figure 1
that the DOS is smooth for aperiodic exchange couplings
with ν = 0.5 (see dotted line). For ν < 1, the nonfluctuat-
ing DOS can be compared with the one of the pure chain,
Jn = J0 (solid line at left panel). Previous studies have
pointed out that the smoothing of the DOS is usually con-
nected with the emergence of delocalized states [24]. For
ν > 1 the DOS displays a roughness compared to those
obtained for a chain with uncorrelated random exchanges
(solid and dotted lines at right panel of Fig. 1). The re-
sults for an uncorrelated random case were obtained using
exchange couplings uniformly distributed in the interval
range [J0 − W/2, J0 + W/2] with J0 = 2 and W = 2.

In Figure 2, one shows the scaled average participation
number ξ/N as a function of N for E = 0.00, 0.05, and
0.25, with ν = 2 and W = 1. For E = 0, the participa-
tion number scales with the system size (the dotted line
in Fig. 2 represents a power-law fitting ξ ∝ N0.99(1)). This
feature is a clear signature of extended spin waves. For fi-
nite energies, ξ/N → 0 as N goes to infinity. Therefore, all
magnon states with E > 0 are localized. The ratio R(E)
(see Eq. (7)) versus energy E for N = 16 000 sites is shown
in the inset of Figure 2. The delta function in equation (6)
was computed as δ(∆E) ≈ 1/∆E with ∆E = 0.005. The
ratio vanishes for E > 0 and approaches 1 at the bottom
of the band. Therefore, for ν > 1, we obtain a behavior
similar to that found in an uncorrelated random ferro-
magnetic chain: extended states only at the bottom of the
band. In fact, the limit ν > 1 was called the “pseudoran-
dom limit” at reference [27]. The authors have shown that
one-electron states becomes localized at the presence of an
aperiodic potential at this limit [27]. The ratio R(E) ver-
sus energy E is plotted in Figure 3, with N = 16 000 sites
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Fig. 2. Scaled average participation number ξ/N as a function
of N for ν = 2. For E = 0, the participation number scales
proportional to the system size (the dotted line represents a
power-law fitting ξ ∝ N0.99(1)). For E > 0, ξ/N → 0 as N goes
to infinity. Therefore, all magnon states with finite energy are
localized. The ratio R(E) vanishes for E > 0 and approaches
1 at the bottom of the band (see inset).
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Fig. 3. Ratio R(E) versus energy E with N = 16 000 sites and
ν = 0.5, W = 1 (solid line), ν = 0.75, W = 1 (dotted-line) and
ν = 0.5, W = 1.5 (dashed-line). R(E) becomes larger than zero
within a low-energy region [E < Ec]. The mean participation
number for this low-energy region ξ =

∑
E<Ec

P (E)/NE dis-

plays a linear dependence with the system size [ξ ∝ N0.99(1)]
(inset).

and ν = 0.5, W = 1 (solid line), ν = 0.75, W = 1 (dotted-
line) and ν = 0.5, W = 1.5 (dashed-line). One can see from
these calculations that the function R(E) becomes larger
than zero within a low-energy region [R(E < Ec) > 0].
This is a signature of extended states in this region. In
fact, analyzing the mean participation number for this
low-energy region ξ =

∑
E<Ec

P (E)/NE we can see a
linear dependence with system size [ξ ∝ N0.99(1)] (see
inset in Fig. 3). For fixed W , the critical energy sepa-
rating extended from localized modes does not depend on
the exponent ν (see solid and dotted-line in Fig. 3). In
fact, the critical energy depends only on the width W
of the exchange distribution (see dashed-line in Fig. 3).
We have also investigated the dependence of the mobility
edge on the width W . In Figure 4, the complete phase
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Fig. 4. Phase diagram for ν < 1 on the (Ec, (J0 − W )) plane.
Calculations were performed for (J0 − W ) > 0. The width of
the extended band Ec was found to be proportional to (J0−W )
within our numerical precision.

diagram on the (Ec, J0 − W ) plane is shown. The width
of the extended band Ec was found to be proportional to
J0 − W within our numerical precision. We can under-
stand this behavior following simple heuristic arguments
similar to those used in reference [25]. For large n, Jn is
very slowly varying and can be regarded as a constant
J� locally. Therefore, the spin wave equation becomes
fn−1 + fn+1 = (2 − 2E/J�)fn = Cnfn, where Cn ≈ C
is a constant locally. The condition for a complex solution
to this equation is |Cn| < 2. Since (J�)min = J0 − W , we
found that extended states exist for 0 < E < 2(J0 − W ).
This result agrees with our numerical calculations of the
mobility edge (see Fig. 4 ). We further collected in Fig-
ure 5 results for the wave-packet scaled mean-square dis-
placement σ(t)/N versus scaled time t/N computed from
lattices with N = 2000, 4000, 8000, 16 000 and ν = 0.5.
We numerically integrate the wave-equation until a sta-
tionary state can be reached after multiple reflections of
the wave-packet on the chain boundaries. Therefore, the
mean-square displacement saturates at a value ∝ N due
to finite size effects. A fine data collapse for long time
is found implying that, for ν = 0.5, σ ∝ t, i.e. the wave-
packet presents a ballistic spread before reaching the chain
boundaries. Similar results are also found in the range of
exponents 0 < ν < 1. For ν > 1, due to the pseudo-
random character of the exchange interaction distribution,
we obtain the well known super-diffusive spread in perfect
agreement with reference [9] σ ∝ t0.75 (see inset in Fig. 5).
The initial site n0 was varied around the center of the
chain and no qualitative change in the physical properties
was found.

4 Summary

A key question in solid state physics is the relationship
between the atomic topological order and the physical
properties stemming from their structure. In this pa-
per, we addressed the problem of spin waves in aperi-
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Fig. 5. Scaled mean-square displacement σ(t)/N ver-
sus scaled time t/N computed from lattices with N =
2000, 4000, 8000, 16 000 and ν = 0.5. A fine data collapse for
long times is found thus implying that, for ν = 0.5, σ ∝ t, i.e.
the wave-packet presents a ballistic spread before reaching the
chain boundaries. For ν > 1 (see inset), σ ∝ t0.75 in perfect
agreement with reference [9].

odic ferromagnetic chains. We considered finite chains of
S = 1/2 spins coupled via a nearest neighbor isotropic
Heisenberg exchange interaction. To introduce aperiodic-
ity the couplings were distributed according a determin-
istic rule Jn = J0 + W cos(αnν), where α is an arbitrary
rational number and ν and W are tunable parameters [25].
The exponent ν controls the degree of aperiodicity in the
exchange couplings sequence. The density of states (DOS)
was calculated by using the Dean’s method. The DOS
was found to be smooth for aperiodic exchange couplings
sequences with ν < 1. For ν > 1 the DOS displays a
roughness comparable to those obtained for uncorrelated
random chains. The smoothing of the DOS is usually con-
nected with the emergence of delocalized states. Using ex-
act diagonalization on finite chains, we computed the par-
ticipation number and the ratio R(E) between the typical
local density of states ρty and the averaged local density
of states ρav within the band of allowed energies. We ob-
serve that, for ν < 1, the ratio R(E) approaches 1 and
the participation number diverges linearly with N in the
low-energy region. Therefore, there is a new phase of ex-
tended spin waves in this aperiodic ferromagnetic model.
The phase diagram showing the dependence of the mobil-
ity edge on the width of the exchange coupling distribu-
tion W was also obtained. For ν < 1, we have also shown
that the wave-packet mean-square displacement displays
a ballistic behavior. For ν > 1 the pseudo-random char-
acter of the exchange interaction distribution induces a
behavior similar to that found in a disordered quantum
Heisenberg model. Therefore, we reported the existence of
an Anderson transition in aperiodic Heisenberg ferromag-
netic chains. In contrast with the results of reference [30]
where few extended states were found for some energy val-
ues, the model studied here has showed the existence of a
phase of extended spin waves. We expect that the present
work will stimulate further theoretical and experimental
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investigations of spin-wave dynamics on nonperiodic fer-
romagnetic models or superlattices.
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