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a b s t r a c t

We study the one-electron wavepacket dynamics in a C60 buckyball topology with a relaxing

nonlinearity. The electron dynamics is considered to be governed by a discrete Schrödinger

equation on which the nonlinear contribution obeys a Debye-like relaxation process. We fol-

low the temporal evolution of the wavepacket and use the associated participation number

to probe its spatial extension. By considering distinct initial conditions, we characterize the

delocalization/self-trapping transition as a function of the nonlinear strength and relaxation

time. We show that the phase-diagram exhibits a complex pattern of tongues signaling a re-

entrant behavior of the transition which is strongly sensitive to the initial wavepacket dis-

tribution. The re-entrances become less prominent for initial conditions which are spatially

distributed over opposite clusters.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Wave propagation in low-dimensional nonlinear models is a timely subject with several connections with basic and ap-

plied solid state physics, optics, acoustics, and Bose–Einstein condensation, among others [1–22,24–29]. Within the context of

electronic transport in low-dimensional nonlinear discrete lattices, one of the most known properties is the self-trapping (ST)

phenomena. In general lines, ST occurs when the strength of the nonlinearity surpasses a threshold which is of the order the

bandwidth for initially fully localized wavepackets [2–6]. In this case, the electron wavepacket remains trapped around the

initial position with the probability of finding the electron at its initial position remaining finite in the long-time limit. Some

specificities of the ST transition in square and honeycomb lattices were reported in [7] showing that the ST threshold contin-

uously grows as a function of the initial wavepacket width. Recent experiments have probed the electron–phonon interaction

in graphene [30,31] and mapped the wavefunction in graphene quantum dots [32–34]. Low-temperature scanning tunneling

microscopy experiments can thus be explored to directly observe theoretical predictions concerning the wavepacket dynamics

in carbon-based structures.

A question that has attracted recent interest concerns the role played by the finite nonlinear response time on the wavepacket

dynamics in discrete lattices. In Ref. [6] the problem of electronic ST in a chain with a non-adiabatic delayed electron–phonon

coupling was investigated. It was shown that, in the regime of short delay times, a weaker nonlinearity is required to promote the

ST transition when compared with the case of an instantaneous response. It was also demonstrated that for slowly responding
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media, ST only takes place for very strong nonlinearities. By using a Debye-like law for the relaxation of the nonlinearity, it

was shown that the slow relaxation of the nonlinearity is responsible for the reduction of the delocalized regime and for the

emergence of a complex wavepacket self-focusing regime [22]. The competition between disorder and a finite nonlinear response

time was investigated in Ref. [23]. It was numerically demonstrated that no sub-diffusive spreading of the second moment of the

wavepacket distribution takes place when the finite response time of the nonlinearity is taken into account. Such re-localization

was latter explained as resulting from the energy drift towards the band edge [24]. More recently, it has been evidenced that the

relaxation process of the nonlinearity has a profound impact in the wavepacket dynamics and in the formation of self-trapped

stationary states in C60 buckyballs [27]. In this structure, finite-size effects play a major role in the wavepacket dynamics.

In the present work, we will unveil the influence of the initial wavepacket distribution on the self-trapping transition in the C60

topology in the presence of a non-instantaneous nonlinearity. By considering a discrete nonlinear Schrödinger equation within a

non-adiabatic approximation, we will analyze the dynamics of a one-electron wavepacket having distinct initial distributions. We

will present the phase diagram as a function of the nonlinear coupling and the relaxation time of the nonlinearity. In particular,

we will show that the wavepacket dynamics depicts re-entrant behaviors both as a function of the strength of the nonlinear

coupling and as a function of the relaxation time. This leads to a complex structure of tongues in the phase-diagram that becomes

less prominent when wider initial wavepackets distributed in disconnected clusters are considered.

2. Model and formalism

In the following, we will analyze the one-electron wavepacket dynamics on a C60 buckyball topology. We will consider that

the intrinsic vibrations of the lattice do not reach equilibrium as compared with the time-evolution of the electron wavepacket.

Under this condition, a non-adiabatic framework has to be employed to account for the relaxation of the effective nonlinear term

resulting from the underlying electron–lattice coupling.

The discrete nonlinear Schrödinger equation appears within the electron–lattice interaction picture in an Einstein-like model

of the lattice vibrations [35] whose Hamiltonian can be written as

H =
∑

n

[
p2

n

2M
+ Mω2

0u2
n

2

]
+

∑
(n,m)

Vn,ma†
nam + U

∑
n

una†
nan, (1)

where the first term is associated with local harmonic oscillators with mass M and Einstein frequency ω0 (un and pn stand for

the vibrational displacement and its conjugated momentum, respectively). The on-site electron energy is set to zero without loss

of generality. The second sum corresponds to the electron hopping integral between first neighbor sites (n, m). The C60 bucky-

ball has 60 sites distributed in 20 hexagons and 12 pentagons. Each site has three bonds, two of them between a hexagon and

a pentagon (single bonds) and the other between two hexagons (π bonds). Although these two types of bonds have slightly

different lengths, we will consider that the hopping amplitude Vnm is the same irrespective to the bond type. It will be taken as

unitary hereafter. The third term accounts for the electron–lattice coupling of strength U. a
†
n and an are creation and annihilation

fermion operators. In the absence of electron–phonon coupling, the one-electron eigen-energies and the structure of the eigen-

states were investigated in the previous literature [36]. An exact diagonalization of the Hamiltonian matrix shows that, although

most of the eigenstates are not uniformly distributed over the buckyball, they are spread over a significant fraction of the sites. By

decomposing the electronic quantum state in the local Wannier basis set (|�〉 = ∑
n �n|n〉), the time-evolution of the electronic

wavefunction amplitudes is given by

i�̇n(t) =
∑

m

Vnm�m(t) − Xn(t)�n(t), (2)

in units of h̄ = 1. A variational treatment provides that the minimal eigen-energies are achieved for the stationary value

Xn = U2

Mω2
0

|�n|2 [37], thus resulting in an effective discrete nonlinear Schrödinger equation, with the nonlinear parameter

χ = U2

Mω2
0

accounting for the underlying electron–lattice coupling. Here, we will consider the relaxation process of the nonlinear-

ity assuming that the lattice oscillations are over-damped. In this way, its relaxation towards the stationary value is governed by

a single time scale τ characterizing a Debye-like process described by

Ẋn(t) = − 1

τ
[Xn(t) + χ |�n(t)|2]. (3)

To probe the wavepacket dynamics, we will follow the time-evolution of the participation number P(t) defined as

P(t) =
[∑

j

|� j|4

]−1

. (4)

In general, the participation number is used as an estimate of the number of sites that effectively contribute to the electronic

probability distribution. For uniformly extended states, P(t) equals the total number of sites N. For strongly localized states, the

participation number becomes much smaller than N.



A.F.G. Silva et al. / Commun Nonlinear Sci Numer Simulat 30 (2016) 101–107 103

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

t

0
10
20
30
40
50
60

P
(t

)

τ = 0.7
τ = 0.8
τ = 0.9

0

10

20

30

40

50

60

P
(t

)

χ = 6.7
χ = 6.8
χ = 6.9

χ = 6.6

τ = 0.42

(b)

(c)

(a)

Fig. 1. (a) Illustration of the initial wavepacket uniformly distributed over the sites of a pentagon. (b–c) Some representative time-dependent participation

function for (b) τ = 0.42 and χ = 6.7, 6.8, 6.9; (c) χ = 6.6 and τ = 0.7, 0.8, 0.9. There appears an alternate sequence of localization and self-trapping as a

function of both χ and τ .

Fig. 2. The phase diagram within the two-dimensional parameter space τ , χ . Black region indicates the self-trapped regime and the white region accounts for

fully delocalized states. The transition between these two regimes is discontinuous. Calculations were done for the case in which the wavepacket is initially

uniformly distributed over the sites of a pentagon.
3. Results and discussions

We numerically solved the model equations by considering several distinct kinds of initial conditions using a standard eight-

order Runge–Kutta algorithm [38] with time step dt = 0.005. We did not find any significant quantitative or qualitative difference

for time discretizations dt � 0.005 or by solving the nonlinear equations using alternative numerical methods. The numerical

convergence and stability were checked at each time step. We verified that the norm conservation, e.g. (|1 − ∑
n |�n|2| < 10−7)

was satisfied during the entire simulation time.

We followed the time evolution of the wavepacket until it has reached a stationary regime. We start by showing our results

for the case in which the wavepacket is initially distributed uniformly over the sites of a pentagon, as illustrated in Fig. 1a. The

temporal evolution of the participation function is reported for some typical sets of model parameters (namely the strength of

the nonlinearity χ and the relaxation time τ ) (see Fig. 1b–c). In all cases, the initial wavepacket has a participation number

P(t = 0) = 5, according to the initial wavepacket distribution over the pentagon. In Fig. 1b, we fixed the relaxation time and

varied the nonlinear strength over values close to the transition from delocalized to self-trapped states. Notice that the oscilla-

tions taking place at intermediate times, which signal the emergence of irregular breathings, are weakly sensitive to the precise

value of the nonlinear strength. However, the convergence to the ultimate stationary state strongly depends on χ . For small

nonlinearities, the stationary state is uniformly distributed over all sites of the buckyball, while it focuses over very few sites for

strong nonlinearities. It is worth to call attention to the fact that the transition from delocalized to self-trapped states that takes

place with increasing strengths of the nonlinearity depicts a re-entrant behavior, characterized by an alternate sequence of self-

trapped and delocalized asymptotic wavepackets. In Fig. 1c we explore the dependence of the wavepacket time-evolution on the

relaxation time τ . Here we fixed the nonlinear coupling at a value close to the delocalization/self-trapped transition and report

results for some representative values of the relaxation time. We also observe that the initial transient oscillations are weakly

sensitive to the actual precise value of τ , in contrast to the participation number of the asymptotic wavepacket. The re-entrant

behavior of the transition as a function of τ is also evidenced. In Fig. 2 we provide the full phase diagram in the parameter space

χ × τ . The region in white corresponds to asymptotic participation P/N = 1 (fully extended wavepacket) while the region in

black to P/N near zero (well localized wavepacket). Intermediate values would appear in gray scale between these two limiting

values. The absence of asymptotic intermediate values of the participation number signals that the transition from localized to

extended asymptotic states is discontinuous. The re-entrant behavior of the transition is reflected by the emergence of several

tongues, which become quite fragmented in the regime of short relaxation times. In this regime, there is a strong sensitivity of

the asymptotic state on the precise values of the model parameters.
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Fig. 3. (a) Illustration of the initial wavepacket distributed uniformly over the sites of an hexagon. (b–c) Some representative time-dependent participation

function for (b) τ = 0.38 and χ = 7.20, 7.23, 7.25; (c) χ = 7.2 and τ = 0.7, 0.8, 0.9. Notice the alternate sequence of localization and self-trapping as a function

of both χ and τ .

Fig. 4. The phase diagram regarding the self-trapped (black region) and the delocalized (white region) regimes in the two-dimensional parameter space (τ , χ ).

Calculations were done for the case in which the wavepacket is initially uniformly distributed over the sites of an hexagon.
In order to explore the sensitivity on the initial condition of the delocalization/self-trapping transition, we now consider

the case on which the wavepacket is initially distributed uniformly over the sites of an hexagon, as illustrated in Fig. 3a. We

also show some representative time evolution series of the participation number (see Fig. 3b–c). The transition also depicts

a re-entrant behavior, either as a function of the nonlinear strength (Fig. 3b) or as a function of the relaxation time (Fig. 3c).

The corresponding phase diagram is shown in Fig. 4. Although it has a similar structure as the one attained for the pentagonal

initial condition, there are a few characteristics that deserve to be stressed. Firstly, the re-entrances are less pronounced for

the hexagonal initial condition. However, the sequence of tongues is more clearly defined, pointing for a weaker sensitivity on

the model parameters in the regime of short relaxation times. Further, the critical nonlinear strength in the regime of slowly

responding nonlinearity ((large τ ) is somewhat larger than the one obtained for the pentagonal initial condition. This feature

is in agreement with previous results concerning the self-trapping transition which showed a monotonic increase of the self-

trapping threshold when the width of the initial wavepacket distribution is increased [7].

Before concluding, we consider other kinds of initial conditions (see Fig. 5): (a) extended pentagon, (b) two opposite pen-

tagons, (c) extended hexagon, and (d) two opposite hexagons. The extended pentagon initial condition consists of the wavepacket

initially distributed uniformly over 10 sites: those of a pentagon and its five nearest neighboring sites, as illustrated in Fig. 5a. The

two opposite pentagons initial condition also consists of the wavepacket distributed uniformly over 10 sites, but distributed in

opposite clusters (see Fig. 5b). In the extended hexagon initial condition, the wavepacket is initially distributed over 12 sites occu-

pying an hexagon and its nearest neighbors, as shown in Fig. 5c, while in the two opposite hexagons initial condition the 12 sites

occupy diametrically opposite hexagonal clusters (see Fig. 5d). Representative plots of the participation number time-evolution

for each one of these initial conditions are shown in Fig. 6. In all cases, the participation depicts a direct transition between well

localized and fully extended asymptotic states. The location of the asymptotically localized state is strongly dependent on the

initial condition and model parameters, especially near the localization–delocalization transition.

In Fig. 7, we report the phase diagrams resulting from each one of the above initial conditions. For the extended pentagon

(Fig. 6a) and hexagon (Fig. 6c) initial conditions, the phase diagrams are quite similar to those obtained for wavepackets dis-

tributed initially over the corresponding closed clusters. The main difference is that the re-entrant tongues are slightly less

pronounced. On the other hand, the phase diagrams related to the initial conditions with the wavepacket distributed in opposite

clusters are quite distinct, even though they have the same initial participation number as their extended cluster counterpart. In

these cases (see Fig. 6b and d) the re-entrant tongues are absent. The threshold nonlinear coupling separating delocalized from

self-trapped asymptotic wavepackets are roughly independent of the relaxation time, except in the regime of very fast nonlinear

responses on which the self-trapping threshold displays a small decrease (visible in Fig. 6b). This feature is due to the fact that,

for these initial conditions the wavepacket spreads over the entire buckyball in a shorter time than in the case of an initially con-

nected single cluster. In this case, the transition from delocalization to self-trapping is triggered by the modulational instability
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Fig. 5. Illustrative representations of 4 distinct initial conditions with the wavepacket distributed uniformly over the sites of (a) an extended pentagon, (b) two

opposite pentagons, (c) an extended hexagon, and (d) two opposite hexagons. .
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Fig. 6. Some representative time-dependent participation functions for distinct initial conditions: (a) Extended pentagon; (b) Extended hexagon; (c) Opposite

pentagons; and (d) Opposite hexagons. In all cases, the transition from well localized to fully extended asymptotic states is direct.

Fig. 7. The phase diagrams within the two-dimensional parameter space τ , χ . Calculations were done by considering four distinct types of initial conditions: (a)

extended pentagon (b) two opposite pentagons (c) extended hexagon and (d) two opposite hexagons. Notice that the re-entrances are absent when the initial

wavepacket is distributed in opposite clusters. .
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of the uniform solution. The asymptotic threshold is also larger than in the cases of single connected clusters, corroborating its

expected dependence on the initial participation number [7].

4. Summary and conclusions

In summary, we investigated the time-evolution of one-electron wavepackets restricted to evolve on the sites of a C60 bucky-

ball under the influence of a third-order nonlinearity with a finite relaxation time τ . Within a tight-binding approach including

a Debye-like relaxation process of the nonlinear contribution, we provided a detailed study of the transition from delocalized

to self-trapped asymptotically stationary states. In the regime of weak nonlinear couplings, the asymptotic state becomes de-

localized irrespective to the nonlinear relaxation time and initial condition. On the other hand, the wavepacket evolves to a

self-trapped stationary state for strong nonlinearities. However, we unveiled that the actual location of the transition is strongly

dependent on the initial condition as well on the relaxation time of the nonlinearity.

We provided the full phase-diagram for six distinct initial conditions. In four of them, we considered that the wavepacket

was initially uniformly distributed over the sites of a connected cluster (pentagon, hexagon, extended pentagon, and extended

hexagon). In all of these cases, the phase diagram presents re-entrant tongues reflecting the presence of a sequence of transi-

tions when increasing the nonlinear strength, before the ultimate self-trapping. These re-entrances are more prominent in the

short relaxation time regime, as well as in the smallest initial cluster. Such re-entrant phase-diagram indicates that the border

between the dynamical attractors related to localized and extended states is complex, as usual in high-dimensional nonlinear

dynamical systems (120 dynamical variables in the present model). Further, in the range of nonlinear strengths corresponding to

this re-entrant behavior, a sequence of self-trapping to delocalization transitions can also take place with increasing relaxation

times. For the initial conditions on which the wavepacket is distributed in disconnected opposite clusters (opposite pentagons

and hexagons) the re-entrant behavior of the transition is suppressed and the nonlinear threshold signaling the self-trapping

transition becomes roughly independent of the nonlinear relaxation time. In this case, the self-trapping transition occurs after

the initial spread of the wavepacket over the entire buckyball and is triggered by the modulational instability of the uniform

solution.

The above phenomenology shall also appear in general nonlinear physical systems where the wavepacket dynamics is in-

fluenced by a relaxing nonlinearity. Extensions of the present study to other nanosized clusters with strong electron–phonon

coupling, BEC in optical lattices, as well as of light propagation in nonlinear photonic crystals would be in order to provide a

more complete scenario regarding the physical mechanisms behind the self-trapping transition in slowly responding nonlinear

lattices.
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