
APS/123-QED

Spontaneous emission in a coupled cavity array featuring

random-dimer disorder

Mariana O. Monteiro,1 Guilherme M. A. Almeida,1 and Francisco A. B. F. de Moura1

1Instituto de F́ısica, Universidade Federal de Alagoas, 57072-900 Maceió, AL, Brazil
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Abstract

We study the emission dynamics of a two-level atom interacting with a large array of coupled

cavities via the central site. The local frequencies of the cavities follow a random dimer model,

where two distinct frequency values are sorted across the array, with one value occurring only

between pairs of adjacent sites. This configuration results in the coexistence of localized and quasi-

extended field modes, which we exploit to measure the Markovian character of the amplitude-

damping channel. By tuning the correlation length of the disorder, we observe a transition from

non-Markovian to Markovian decay at specific values of the atomic frequency. In this setup, the

atom serves as a probe for the localization properties of the array, establishing a connection between

the theory of open quantum systems and quantum transport in low-dimensional systems.

I. INTRODUCTION

The development of large-scale fault-tolerant quantum computers is challenging due to

the detrimental effects of decoherence [1, 2]. Qubits are susceptible to interactions with

their surrounding environment, making it crucial to devise effective strategies for controlling

quantum dynamics. One approach is to tailor the environment to achieve the desired open

system dynamics in a more controlled setting [3–6]. These so-called structured environments

– possessing nontrivial spectral densities – have proven to be powerful tools in advancing

quantum technologies, such as enabling the creation of exotic quantum states [7, 8], aiding

quantum simulation of open quantum systems [9–11], and more [12, 13].

Considering the problem of spontaneous emission of a two-level atom, a variety of struc-

tured environments inspired by photonic crystals have been explored [14]. The emission

dynamics obeys the mode structure of the electromagnetic field with which the atom inter-

acts. Two paradigmatic dynamical regimes are: (i) the memoryless and irreversible decay

of the atomic population, when such environment is characterized by a flat spectral density

(as the decay in open space) and (ii) vacuum Rabi oscillations when the atomic frequency

is in resonance with a field mode having an extremely narrow lineshape. Often, when the

environment is assumed to be described by a smooth spectral density (say, a flat one), a

Lindblad master equation can be derived under the Born-Markov approximations. From the

broader perspective of quantum dissipation theory, this means the local action of the envi-

ronment is given by a quantum dynamical semigroup of complete positive trace-preserving
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maps [15]. The underlying geometry of photonic crystals along with the likely occurrence

of defects and disorder [16, 17] will, in contrast, lead to singularities and band gaps in the

density of states, thereby rendering non-Markovian dynamics [14]. Physically, this means

that information can flow back into the system [4, 10, 11, 18–32] as the emitted field retains

memory.

The phenomenon addressed above raises the idea of exploring distinct non-Markovian

behavior arising from the transport properties of low-dimensional systems [4, 33–36]. An

important result in this direction was obtained by Lorenzo et al. [4], who reported emergent

non-Markovian behavior in the emission of an atom weakly interacting with a coupled-

cavity array (CCA) undergoing Anderson localization of the field modes. A homogeneous

CCA, in contrast, lead to Markovian (memoryless) exponential decay of the excitation due

to the flat spectral density structure in the center of the band. Recently, in the same

setting, a localization-delocalization transition driven by long-range correlated disorder was

investigated, revealing a transition from non-Markovian to Markovian behavior [37]. This

connection between quantum optics and condensed-matter physics is appealing, especially

in the context of the Noisy Intermediate-Scale Quantum era [38]. On one hand, non-trivial

lattice configurations can be used to control non-Markovian dynamics. On the other, the

dynamics of a small subsystem (the atom) can be analyzed to probe the spectral properties

of the environment [39–42]. Quantum probing schemes based on dissipative dynamics can

thus be used to access complex many-body phenomena such as quantum phase transitions

[4, 43–46], as well as anomalous transport properties supported by correlated disorder [37].

Unlike standard Anderson localization theory, which predicts that any amount of disorder in

1D and 2D lattices leads to exponential localization of all modes [47], statistical correlations

embedded in the disorder provide a route to evade it [48].

In this work, we further explore the relationship between non-Markovianity and quantum

transport by exploring the emission dynamics of a single atom embedded in a CCA whose

local frequencies feature short-range correlated defects. Our configuration is rooted in the

idea of random-dimer disorder [49], which allows the occurrence of extended states within

the allowed energy band despite the lack of homogeneity. This was first experimentally

confirmed in [50], where the authors reported that short-range spatial correlations in GaAs-

AlGaAs superlattices inhibited localization. In Ref. [51], a transition between ballistic and

superdiffusive expansion was observed in a 1D array of weakly coupled waveguides directly
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FIG. 1. Sketch of an array of single-mode optical cavities coupled at tunneling rate J . A single

two-level atom (a qubit) is confined at the center cavity and coupled with its field mode at rate

g undergoing a Jaynes-Cummings type interaction. Short-range correlated disorder is introduced

as random defects in the field frequency distribution occurring in adjacent pairs assuming ε1. The

remaining cavities are set to frequency ε0 ≡ 0.

written in fused silica. This setup consisted of two types of propagation constants, one

of which appeared in pairs. More recently, a metal-insulator transition was observed in a

topological Si3N4 waveguide array [52]. These results illustrate that random-dimer disorder

remains a relevant tool to explore non-trivial aspects of quantum transport properties in

low-dimensional systems [53] and is within current experimental capabilities.

Our CCA featuring random-dimer disorder is shown in Fig. 1. This disorder introduces

spatial correlations in the cavity frequencies through defects of the same frequency ε1 ran-

domly assigned to pairs of adjacent cavities along the CCA, leaving ε0 otherwise. Here,

we revisit key localization properties of the random-dimer model in association with the

memory effects occurring during the dissipation dynamics of the atom. By means of a non-

Markovinanity measure that tracks the amount of excitation backflow into the atom [4, 37],

we observe a transition from non-Markovian to Markovian (memoryless) decay regimes aris-

ing from the resonance between the atomic frequency and the defect frequency ε1. At this

level, the emission dynamics becomes strongly influenced by extended field normal modes,

effectively rendering a flat spectral density [14]. Our findings highlight the use of correlated

disorder profiles, such as those based on the random dimer model, as a versatile platform

for controlling quantum dissipation.
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II. MODEL

Let us consider a CCA described by the Hamiltonian Ĥ = Ĥ0 + ĤI , where (~ = 1)

Ĥ0 =

N/2∑
i=−N/2

[
εiâ
†
i âi + J(âiâ

†
i+1 + â†i ân+1)

]
, (1)

ĤI = ωaσ̂+σ̂− + g(σ̂+â0 + σ̂−â
†
0), (2)

with âi (â†i ) being the annihilation (creation) operator acting at the ith cavity, εi the local

cavity frequency, ωa the atomic transition frequency, and σ+ (σ−) the atomic raising (lower-

ing) operator. The first term Ĥ0 accounts for the free-field part of the Hamiltonian, which

describes photon tunneling at rate J through the N + 1 cavities (we take N even without

loss of generality). As this hopping parameter is homogeneous across the array, hereafter we

set J ≡ 1 as the standard frequency unit. The interaction part ĤI represents the Jaynes-

Cummings interaction between the atom and the central cavity at rate g, which we will fix

to g = 0.1 throughout. This embodies the weak-coupling regime that, in a homogeneous

CCA, leads to exponential (Markovian) decay of the atomic population ∼ e−g
2t/J [4, 34].

Indeed, to grasp how the CCA functions as an environment, let us rewrite the full Hamilto-

nian in terms of the interaction between the atom and the field normal modes φ̂k

†
= |φk〉〈vac|,

where Ĥ0|φk〉 = Ek|φk〉 and Ek are the corresponding eigenvalues (frequencies). We then

obtain

Ĥ = ωaσ̂+σ̂− +
∑
k

Ekφ̂k

†
φ̂k +

∑
k

gk(φ̂kσ̂+ + φ̂k

†
σ̂−), (3)

with the effective coupling gk ≡ g〈0|φk〉 being the component of the field normal mode at the

cavity that contains the atom. The Hamiltonian above represents the standard framework

for dealing with open two-level quantum systems, where the environment is made up by a

collection of bosonic modes. [15].

The spontaneous emission of the atom is investigated by means of the time evolution of

the state |ψ(t = 0)〉 = |e〉|vac〉, that is the excited atom with the field vacuum. As the CCA

Hamiltonian commutes with the total number of excitations, the dynamics takes place in the

single-excitation manifold {|e〉|vac〉, {|g〉|φk〉}}, where |g〉 denotes the atomic ground state.

The evolved state is obtained via |ψ(t)〉 = Û |ψ(t = 0)〉, where Û = e−iĤt is the unitary
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quantum time evolution operator. At an arbitrary time t, the state reads

|ψ(t)〉 = fe(t)|e〉|vac〉+
∑
k

fk(t)|g〉|φk〉, (4)

where fe(t) and fk(t) are the corresponding time-dependent amplitudes, which obey:

ḟe(t) = −iωafe(t)− i
∑
k

gkfk(t), (5)

ḟk(t) = −iEkfk(t)− igkfa(t). (6)

Manipulating both equations above, an integro-differential equation for fe(t) is obtained in

the form

ḟe(t) = −iωafe(t)−
∫ t

0

∑
k

g2
ke
−iEk(t−t′)fe(t

′)dt′. (7)

Note that for a continuum spectrum, one can proceed by replacing
∑

k g
2
k →

∫
G(E)dE,

with G(E) being the spectral density of the CCA environment, which encapsulates all the

essential details about its interaction with the atom.

In the absence of any kind of disorder, the CCA embodies a flat spectral density, G(E) =

const, assuming a weak atom-field interaction g � J and given the smooth dispersion profile

in the center of the Bloch band. As such, the CCA effectively behaves as a Markovian

environment leading to the exponential decay of the atom [34] as if it were in open space

[14]. A non-homogeneous CCA, on the other hand, renders non-trivial spectral densities

and therefore non-Markovian behavior is obtained as reported in [4, 37] for uncorrelated

and long-range correlated disorder distributions.

We now introduce short-range correlated disorder in the frequencies εi of the CCA (di-

agonal disorder) based on the random dimer model [49, 51, 53]. Each cavity can take one

of two values: εi = ε0 or εi = ε1. In a given disordered sample (see scheme in Fig. 1),

these values are randomly distributed, with a 1/2 probability that an adjacent pair (dimer)

of cavities is assigned the frequency ε1, with ε0 being assigned to a single cavity otherwise.

This procedure continues for each subsequent non-correlated site, and so on. Our results

are qualitatively independent of the values of ε1, the only restriction being that the effec-

tive disorder width |ε1 − ε0| must not exceed the typical bandwidth (given by J ≡ 1). For

convenience, we set ε0 = 0, with ε1 = 0.5 or ε1 = 1 throughout.
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III. RESULTS

A. Localization properties

Before discussing the properties of the atomic decay, it deems convenient to address the

localization properties of the random dimer model, embedded in the free-field Hamiltonian

alone, Ĥ0 [Eq. 1]. This will provides us insights about the non-Markovianity of the emission

against the correlated disorder later. For this, we carry out exact numerical diagonalizations

over an ensemble of Ĥ0 to obtain the eigenstates |φk〉 =
∑

i ck,i|i〉 alongside their correspond-

ing eigenvalues Ek. The components ck,i represent the individual elements of the mode k at

the i-th cavity.

The localization properties will be quantified through the function

Z
(A)
k =

(∑N
i=1 |ck,i|A/2

)2

∑N
i=1 |ck,i|A

, (8)

which accounts for the relative magnitudes and the spatial distribution of the components

ck,i throughout the CCA. Depending on the value of A, the function behaves differently:

(i) for large values of A, Z
(A)
k will be dominated by the largest values of |ck,i|, reflecting

the fact that those components contribute to more significantly to the eigenstate; (ii) small

values of A imply that the contributions from smaller |ck,i| become more balanced and the

function Z
(A)
k less sensitive to outliers. Also, note that Z

(A)
k depends on N . As it increases,

the number of components contributing to the sum grows, affecting the outcome. For a

strongly localized eigenstate, where the components are concentrated in a small number of

|i〉, the sums in Eq. (8) may not grow significantly with N . In contrast, for a delocalized

wavefunction Z
(A)
k will grow linearly with N . As a rule of thumb, larger (smaller) values of

Z
(A)
k /N indicate more (less) localized states.

Figure 2 displays the results for the averaged function 〈Z(A)〉 versus the eigenvalues E

considering A = 1.5 and defect frequencies ε1 = 1/2 and ε1 = 1, which will be used hence-

forth. For each disorder realization, the numerical procedure involves selecting eigenstates

whose frequencies fall within a narrow interval centered around E and defining the average

〈Z(A)〉 over that interval. The quantity is further averaged over the ensemble of disorder

realizations and scaled by N , as shown in Fig. 2. Note that the function becomes larger and

of N at the resonance point E = ε1, meaning that extended states are to be found around
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(a) (b)

FIG. 2. Localization-measure function 〈Z(A)〉/N plotted as a function of the normal mode fre-

quency E for different system sizes N , A = 1.5, and considering (a) ε1 = 1/2 and (b) ε1 = 1. All

the curves are represent the function averaged over 100 independent realizations of the random-

dimer disorder. The results show that 〈Z(A)〉/N becomes large and independent of N at E = ε1

that corresponds to the resonances supported by random-dimer disorder configuration, indicating

the presence of delocalized states.

that region, as predicted [49, 53]. These resonance regions become narrower for large ε1,

this parameter effectively establishing the degree of the disorder.

B. Emission dynamics

We now turn our attention to the relationship between the non-Markovianity of the

atomic emission and the transport properties of the random dimer model with respect to

the full CCA Hamiltonian Ĥ = Ĥ0 + ĤI . Although a universal definition of quantum

non-Markovianity remains elusive, several witnesses and metrics have been proposed typi-

cally based on trace distances, divisibility criterion, volume of dynamically accessible states,

quantum coherence, and so forth [54–58]. The choice of criterion is often made based on

the kind of dissipation channel the system is going through. In our case, considering the

initial state |ψ(0)〉 = |e〉|vac〉, the reduced density matrix for the atomic state is given by

ρe(t) = Trfield{|ψ(t)〉〈ψ(t)|} = diag(r(t), 1 − r(t)), with r(t) = |fe(t)|2 being the atomic

occupation probability. That is, the atom is going through an amplitude damping channel.
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Note that we are implicitly assuming T = 0K.

The non-Markovianity quantifier we will use is based upon a geometrical description of

the volume of accessible states [56]. In our case, this translates into tracking the positive

slopes of the square of the return probability, ∂tr(t), given the it can never increase in

the case of Markovian dynamics, r2(t) being the effective volume. A proper normalized

quantifier can be defined as [4]:

N =

∫
∂tr(t)>0

dr2(t)
dt

dt

|
∫
∂tr(t)<0

dr2(t)
dt

dt|
. (9)

Note that the denominator tracks the negative slopes instead. This is to prevent divergence

of the numerator in the case of persistent oscillations of r(t).

If the atom decays monotonically, then N = 0, indicating full Markovian dynamics.

In contrast, undamped Rabi oscillations yield N = 1, representing the maximum non-

Markovianity. Note that this case would correspond to an atom interacting with a single

field mode, which can be envisaged in the case of extreme disorder, i.e., the spectral density

G(E) shares some resemblance to that of a high-Q cavity, possessing an extremely narrow

lineshape. Note, however, that the typical G(E) of a high-Q cavity, e.g. a Lorentzian, does

not have a cutoff. Hence, in the long-time limit the atom population will be fully found in

the lower state. In disordered systems, as in photonic band-gap materials, the atom still

decay but a fraction of the population remains trapped [37] due to the non-trivial form of

G(E) featuring gaps [14]. Trapping also occurs in homogenous chains due to the formation

of bound states inside the structured continuum [33, 34]. We mention that the occurrence of

a oscillating steady state accompanying the decay is associated to a certain non-Markovian

complexity class with respect to quantum-to-classical transition [24]. It is true, however,

that the lattice that interacts the atom also have losses on its own but this is taken as a

secondary source of dissipation in most studies.

As we are about to see, the character of the non-Markovianity N provided by the CCA

featuring short-range correlated disorder is governed to the localization strength of the modes

more resonant with the atom. These modes effectively define the width of the lineshape

around the atomic frequency. To evaluate N , we run the unitary dynamics of the whole

(atom plus CCA bath) system tracking the slopes of r2(t) in each realization of the disorder.

We are interested in the dynamics in the long-time regime, with the CCA set large enough

so as to avoid field excitation at the boundaries. To achieve this, we numerically evaluate
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(a) (b)

FIG. 3. Non-Markovianity measure N as a function of the atomic frequency ωa for (a) ε1 = 1/2

and (b) ε1 = 1. System size is N = 14001 and the maximum evolution time is t ∼ 103, assuring no

reflections at the boundaries of the CCA. The results are averaged over 100 independent realizations

of the random-dimer disorder.

|ψ(t)〉 by performing a high-order Taylor expansion for the evolution operator

Û(∆t) = e−iĤ∆t ≈ 1 +
lo∑
l=1

(−iĤ∆t)l

l!
, (10)

where lo is the truncation order. We will set lo = 10 and ∆t = 0.1. The evaluation of high

powers of Ĥ acting on the initial state is be obtained through a recursive formalism described

in Ref. [59]. This approach ensures norm conservation over extended time intervals, making

it robust for analyzing the desired asymptotic time evolution in large CCAs.

The results for the averaged non-Markovianity measure N are shown in Fig. 3 as a

function of the atomic frequency ωa. We observe thatN drops to nearly zero as ωa crosses the

frequency corresponding to the dimerized defects, ε1. This behavior highlights a transition

between partial non-Markovian behavior to Markovian transition as soon as ωa becomes

resonant with the frequency that support extended states in the random dimer model. Recall

that we set g = 0.1, which has been shown to be sufficient for the atom to sense the CCA

environment as possessing a flat spectral density in the vicinity of ε1. Additionally, the

asymmetrical profile of N can be conceived through close inspection of Fig. 2. The fact

that N is sensitive to subtle changes in the localization strength of the modes is remarkable,

even for ε1 = 1/2 [Fig. 3(a)], where the values of N are typically lower.
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FIG. 4. (a) Return probability r(t) (in log-linear scale) of the atomic excitation versus time for

distinct atomic frequencies ωa, with fixed parameters ε1 = 1, N = 14001, and g = 0.1. The dashed

line is given by r(t) = e−g
2t/J , which represents the decay dynamics in a homogeneous CCA [34].

(b) Corresponding photon dynamics along the CCA given by the local mode probability amplitude

pi(t) = | (〈g|〈vac|âi) |ψ(t)〉|2. All plotted quantities are averaged over 500 independent realizations

of the random dimer disorder.

Earlier we mentioned that the atomic excitation undergoes partial trapping in the pres-

ence of disorder. Here, this effect should become more pronounced as ωa moves away from

the Markovian resonance point ε1. To confirm this, Fig. 4(a) shows the averaged return

probability r(t) for selected values of the atomic frequency ωa and ε1 = 1 [cf. Fig. 3(b)].

We see that when ωa = ε1 the decay indeed follows an exponential function (displayed

as a straight line in log-lin scale). The decay corresponding to the homogeneous CCA,

r(t) = e−g
2t/J (with g = 0.1J) [34], is also plotted (dashed line) for comparison. As ωa 6= ε1

the trapping takes place after an initial transient decay. Intuitively, we expect that the pho-

ton becomes localized in a finite region surrounding the emitter in response. For the sake

of argument, we show in Fig. 4(b) the corresponding photon propagation dynamics away

from the central cavity, given by the local probabilities pi(t) = | (〈g|〈vac|âi) |ψ(t)〉|2. In the

11



(a) (b)

FIG. 5. Logarithm of the autocorrelation function C(t) versus ln(t) for (a) ε1 = 1/2 and (b)

ε1 = 1, with N = 14001 and g = 0.1. Various atomic frequencies ωa are considered and the curves

represent the average over 100 realizations of the disorder. The slope ∼ t−1 is included for guiding

the eye. This corresponds to the asymptotic limit of C(t) when ωa = ε1.

Markovian regime [top panel of Fig. 4(b)], the exponential decay of the atom is followed

by ballistic dispersion of the photon through the CCA. Partial photon localization is seen

for ωa = 1.5 (middle panel), where a relatively significant portion of the wavefunction still

propagates. Strong localization is observed for ωa = 2 (bottom panel), which corresponds

to N ≈ 0.4 (cf. Fig. 3).

Finally, we take a complementary point of view to track the memory effects at play during

the atomic emission. Let us define the autocorrelation function:

C(t) =
1

t

∫ t

0

r(τ)dτ, (11)

which effectively characterizes the information flow into the environment. Slow dynamics for

C(t) generally indicate the trapping of the atomic excitation around the initial site. If C(t)

converges to 1/t in the long-time regime, this implies that the atom releases its amplitude

to the point where the wave packet state becomes evenly distributed across the array. This

latter behavior is a fingerprint of Markovian dynamics. In Fig. 5 we show ln(C(t)) versus

ln(t) for different values of ωa, again considering ε1 = 1/2 and ε1 = 1. As suggested and

evidenced by the linear slopes in both plots, C(t) indeed assumes ∼ 1/t asymptotically when

ωa = ε1 (cf. Fig. 3). Otherwise, the decay is slower than 1/t, amounting to partial trapping
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of the atomic excitation and thereby some degree of non-Markovianity.

IV. CONCLUSIONS

A single two-level atom interacting with structured environments inspired by low-

dimensional condensed-matter models exhibits rich dynamics. In this study, we explored

the interplay between short-range correlated disorder and non-Markovianity in the process

of spontaneous emission of a two-level atom into a CCA. The disorder was introduced in the

form of dimerized defects [49] with frequency ε1. We found that when the atomic frequency

ωa is in resonance with ε1, the atom undergoes Markovian (memoryless) exponential decay

due to the contribution of delocalized field modes, entailing an effective flat spectral density

[4]. In contrast, when ωa deviates from resonance, the amplitude damping channel retains

memory, leading to information backflow originating from the partial localization of the

photon. Here, the degree of non-Markovianity was captured by the quantity N , rooted

on change of the volume of accessible physical states [56]. We stress that there are many

other non-Markovian criteria in the literature [54, 55, 57] and relying on just one may be

misleading. However, in view of the type of amplitude channel considered in this work,

ρe(t) = diag(r(t), 1− r(t)), non-Markovianity was manifested whenever the slope of r(t) was

positive [4, 37]. Another quantifier that falls into the same class is the one introduced in Ref.

[55], which relies on the evolution of entanglement between the system of interest and an

ancilla protected from the bath. Non-Markovianity in this case is detected by any increase

in the bipartite entanglement over time and quantified accordingly. This arises because the

local action of complete positive trace-preserving maps cannot increase entanglement and

therefore the Markovian regime is characterized by a monotonic decay. A complementary

tool, namely the autocorrelation funcion C(t), was employed here instead as a dynamical

measure of the memory effects.

By studying the interplay between the transport properties of low-dimensional systems

and information flow we seek to provide tools for tailored quantum dissipation, hence con-

tributing to the design of, e.g,. analog simulators of open quantum systems [9, 11]. Fur-

thermore, the atom (or any other small subset a larger system) could act as a probe of

many-body properties [4, 43–46]. Here, the resonance between the frequencies ωa and ε1

acted as the control parameter for non-Markovianity and localization. We mention that
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random-dimer chains can be manufactured in state-of-the-art photonics [51, 52] and thus

experimental realization of our findings could be sought by proper interfacing with a qubit

[60].
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