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Received 7 July 2003
Published online 19 November 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We study the nature of one-electron eigen-states in a one-dimensional diluted Anderson model
where every Anderson impurity is diluted by a periodic function f(l). Using renormalization group and
transfer matrix techniques, we provide accurate estimates of the extended states which appear in this
model, whose number depends on the symmetry of the diluting function f(l). The density of states (DOS)
for this model is also numerically obtained and its main features are related to the symmetries of the
diluting function f(l). Further, we show that the emergence of extended states promotes a sub-diffusive
spread of an initially localized wave-packet.

PACS. 63.50.+x Vibrational states in disordered systems – 63.22.+m Phonons or vibrational states in
low-dimensional structures and nanoscale materials – 62.30.+d Mechanical and elastic waves; vibrations

1 Introduction

The nature of electronic states in disordered tight-binding
models with site-diagonal uncorrelated disorder was firstly
studied by Anderson [1] when the localization of quan-
tum states was discussed in connection with the trans-
port properties of a random lattice. One of the most re-
markable effects of disorder, which has been demonstrated
by several authors, is the exponential localization of all
one-electron eigen-states in the one-dimensional Ander-
son model, irrespective to the strength of disorder [2].
The electron localization in random lattices is a result
of destructive quantum interference due to incoherent
backscattering. Therefore, the localization phenomenon
occurs in general model systems involving wave propa-
gation in random media.

Recently, the existence of delocalized states in several
variants of the low-dimensional Anderson models has been
reported [3–19]. In these works, the presence of short or
long-range correlations appears as the fundamental mech-
anism responsible for the emergence of extended states.
This theoretical prediction about suppression of local-
ization was recently confirmed experimentally in doped
polyaniline [20], semiconductor superlattices with inten-
tional correlated disorder [21] as well as microwave trans-
mission spectra of single-mode waveguides with inserted
correlated scatterers [22]. Among these models, the di-
luted Anderson chain has attracted a renewed inter-
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est [23–27]. Hilke [23] introduced an Anderson model with
diagonal disorder diluted by an underlying periodicity.
The model consisted of two interpenetrating sub-lattices,
one composed of random potentials (Anderson lattice) and
the other composed of non-random segments of constant
potentials. Due to the periodicity, special resonance en-
ergies appear which are related to the lattice constant of
the non-random lattice. The number of resonance energies
is independent of the system size and, therefore, it was
conjectured that these states shouldn’t have any influence
on the transport properties in the infinite size limit. In
reference [25] the authors presented a simple model for
alloys of compound semiconductors by introducing a one-
dimensional binary random system where impurities are
placed in one sublattice while host atoms lie on the other
sublattice. The existence of an extended state at the band
center was demonstrated, both analytic and numerically.
The diluted Anderson model was recently extended to in-
clude a general diluting function which defines the on-site
energies within each non-random segment [24]. Using a
block decimation approach, it was demonstrated that this
model displays a set of extended states, the number of
which strongly depends on the length of the diluting seg-
ments and the symmetries of the diluting function.

In this work we will use the matrix decimation method
and the transfer matrix technique to provide accurate es-
timates of the set of extended states in general 1D diluted
Anderson models. The density of states (DOS) will be
shown to display a set of gaps whose number and width
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depend on the set of impurities used to dilute the disor-
dered lattice. Further, we will investigate the influence of
such resonant extended states on the wave-packet dynam-
ics. Our results suggest that, in spite of the number of res-
onance energies being independent of the system size [23],
these extended states induce a sub-diffusive spread of an
initially localized wave-packet.

2 Model and formalism

The standard one-dimensional Anderson model is de-
scribed by a tridiagonal Hamiltonian

H =
∑

j

εj|j〉〈j| + t
∑

j

[|j〉〈j + 1| + |j〉〈j − 1|] (1)

where disorder is introduced on the site energies εj which
are uncorrelated random numbers chosen from a previ-
ously defined distribution. In our calculations, we will use
energy units such that the hopping term t = 1 and the
random site energies will be taken uniformly from the
interval [−0.5, 0.5]. The diluted Anderson model is con-
structed by introducing a sequence of k new sites between
each original pair of neighboring sites. These sequences are
all identical and the on-site energies within such sequences
are given by f(l), l = 1, 2, ..., k.

To study the properties of the one-electron eigen-
states, we employ a transfer matrix calculation (TM) in
order to obtain the Lyapunov exponent defined as the in-
verse of the localization length Lc. The Schrödinger equa-
tion for the present tight-binding model is:

εncn + cn−1 + cn+1 = Ecn, (2)

where Φ =
∑

n cn|n〉 is an eigenstate with energy E. The
above equation can be rewritten as a transfer matrix equa-
tion(

cn+1

cn

)
=

(
E − εn −1

1 0

) (
cn

cn−1

)
, n = 0, 1, 2, ..., N.

(3)
Based on the asymptotic behavior of the matrix product∏N

n=1 Qn, where Qn are 2 × 2 transfer matrices, the Lya-
punov exponent γ can be defined as:

γ = lim
N→∞

1
N

log
|∏N

n=1 Qnz(0)|
|z(0)| , (4)

where z(0) =
(
u1
u0

)
is a generic initial condition. In addi-

tion, the Lyapunov exponent can be obtained using a dec-
imation renormalization-group (DRG) technique which
is based on the particular form of the equation of mo-
tion satisfied by the Green’s operator matrix elements
[G(E)]i,j = 〈i|1/(E − H)|j〉 [12]:

(E − ε0n+µ)[G(E)]n+µ,n = δn+µ,n

+ t0n+µ,n+µ−1[G(E)]n+µ−1,n

+ t0n+µ,n+µ+1[G(E)]n+µ+1,n, (5)

where ε0n = εn and t0n,n+1 = t0n−1,n = t. After elimi-
nating the matrix elements associated with a given site,
the remaining set of equations can be expressed in the
same form as the original one, but with energies and hop-
ping amplitudes renormalized. Therefore, the decimation-
renormalization technique consists in removing iteratively
the sites 1, 2, ..., N−1 of the system obtaining in that way
the effective energies of the external sites and the effective
hopping between them by using the iterative equations

ε
(N−1)
N (E) = εN + tN−1,N

1

E − ε
(N−2)
N−1 (E)

tN−1,N , (6)

t
(eff )
0,N (E) = t

(eff )
0,N−1

1

E − ε
(N−2)
N−1 (E)

tN−1,N , (7)

where, after N − 1 decimations, εN−1
N denotes the renor-

malized diagonal element at site N and t
(eff )
0,N indicates

the effective renormalized hopping connecting the sites
0 and N . The behavior of the effective interaction t

(eff )
0,N

during the decimation procedure can be used as another
evidence of the localized/delocalized nature of the one-
electron states. An oscillatory behavior of t

(eff )
0,N , as a func-

tion of N , signals an extended state. On the contrary, an
exponentially localized state results in an exponential de-
crease of t

(eff )
0,N as the decimation process proceeds. After a

large number of decimation steps, the Lyapunov exponent
is asymptotically related to the effective hopping t

(eff )
0,N in

the following way:

γ(E) = − lim
N→∞

[
1
N

ln
∣∣∣t(eff)

0,N (E)
∣∣∣
]

.

3 Results and discussion

In the present study, we use chains with 107 sites in or-
der to calculate the Lyapunov exponent within the entire
energy band. We start our analysis investigating the main
features of a diluted 1D Anderson model with segments
consisting of two sites with identical on-site energies ε0.
The emergence of extended states for this particular dilu-
tion was analytically demonstrated in [23,24]. The density
of states (DOS) for general 1D tight-binding models can
be obtained by using the negative eigenvalue theorem [35].
In Figure 1a we show typical plots of the DOS of chains
with N = 105 sites and several ε0 values. In this diluted
chain, the density of states displays two pseudo-gaps for
ε0 > 0. The widths of these pseudo-gaps increase as a
function of ε0. These pseudo-gaps are reminiscent of the
gaps present in the absence of disorder and their width
is proportional to ε0 for any length of the diluting seg-
ment (see Fig. 1b), thus following a similar trend of the
gap found in the two band model [37]. The presence of
disorder rounds one of the band edges which displays an
exponentially decaying tail. On the other hand, the oppo-
site band edge remains as a singularity of the DOS. The
surviving of this singularity in the presence of disorder
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Fig. 1. (a) Dashed lines represent the normalized density of
states (DOS) as a function of energy E obtained using the
Dean’s method for a chain with N = 105 sites of the diluted 1D
Anderson model with dimer segments of identical on-site ener-
gies ε0. The DOS displays two pseudo-gaps for ε0 > 0, which
are reminiscent of the gaps present in the DOS of the corre-
sponding pure models (shown as solid lines). (b) The width of
the gap (∆) for a diluted chain without disorder versus ε0. The
width ∆ displays a linear behavior ∆ ∝ ε10 for any length of
the diluting segment.

will be shown to influence the wave-packet dynamics of
the diluted Anderson model.

In Figure 2a we depict the Lyapunov exponent γ versus
E for chains with N = 107 sites and ε0 = 1.0. We calculate
γ using both transfer matrix and decimation renormaliza-
tion group approaches. The results were identical within
our numerical accuracy. We found that γ(E) is finite for
all energies except at the two resonance energies (E = 0.0
and E = 2.0) where the Lyapunov exponent is of the
order 1

N . Therefore, all states are exponentially localized
except at these two resonance energies where γ vanishes in
the thermodynamic limit. This result coincides with the
analytical prediction of extended states at E = ε0±1 [24].
In Figures 2b and c, we point out the linear vanishing
of γ around E = 0 and E = 2.0 (see full lines in Figs. 2b
and 2c). For ε0 = 0.0, we found a slower non-linear van-
ishing of γ ∝ (E −Ec)(2/3) (see dashed line in Fig. 2b), in
perfect agreement with reference [23]. The larger exponent
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Fig. 2. a) Lyapunov exponent γ versus E for a chain with
N = 107 sites diluted by dimers with ε0 = 1.0. We found that
γ is finite for all energies except at the two resonance energies
where γ vanishes linearly (see b) and c)). For ε0 = 0.0, one has
a slower non-linear vanishing of γ ∝ (E − Ec)

(2/3) (see long-

dashed line in Fig. b). (d) The effective hopping t
(eff)
0,N displays

an oscillating behavior as a function of N for E = 0.0 (extended
state) and an exponentially decaying behavior for E = 0.1
(localized state).

found for ε0 �= 0 can be attributed to fact that the reso-
nance energies for ε0 �= 0 are precisely at the DOS band
edge singularities, which are absent for ε0 = 0. To further
characterize the extended nature of these resonant states,
we plot in Figure 2d the effective interaction t

(eff )
0,N versus

N . For the resonant state at E = 0.0 the Lyapunov expo-
nent γ vanishes due to the oscillating behavior of t

(eff)
0,N . The

extended character of this state is, therefore, reflected by
a finite effective hopping amplitude between the sites lo-
cated at the chain ends. For E = 0.1 the effective hopping
decreases exponentially, indicating the localized charac-
ter of non-resonant states. We have also considered longer
diluting sequences with constant on-site energy. The num-
ber of extended states always corresponds to the number
of sites in the sequence, as expected [23,24].

From the theoretical point of view, the basic condition
to find delocalized states in diluted disordered systems is
the existence of some symmetries in the periodic function
f(l) which defines the site energies εl = f(l) within the
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Fig. 3. a) The Lyapunov exponent γ versus E for an Anderson
chain diluted by segments with k = 3 sites exhibiting specular
symmetry f(l) = {ε2, ε3, ε2} where ε2 = 0.8 and ε3 = 1.0. All
calculations were performed for a chain with N = 107 sites.

(b) The effective hopping t
(eff )
0,N as a function of N for the reso-

nance energies Ec = {0.8, 2.31774, −0.51774} corresponding to
extended states.

diluting segment. The relevant symmetries are [24]:
a) Specular reflection symmetry with respect to center of
the diluting segment, namely, f(l) = f(k + 1 − l), with
l = 1, 2, ...k.
b) Distance to the center symmetry, namely, |f(l0)−f(l0−
j)| = |f(l0) − f(l0 + j)|, with j ranging from j = 1 to
j = (k − 1) /2 and l0 being the position of the central
segment site. This kind of symmetry can be present only
in segments with an odd number of sites.

Delocalized states emerge whenever the diluting func-
tion exhibits one of the above symmetries. In the following,
we consider two examples using diluting segments with ei-
ther one of the above symmetries present.

To observe the emergence of extended states in the
diluted Anderson model with specular reflection symme-
try, we considered a diluting segment with k = 3 sites:
f(l) = {ε2, ε3, ε2}, where the site energies are ε2 = 0.8
and ε3 = 1.0, respectively. In Figure 3a we show the Lya-
punov exponent γ versus E. All calculations were per-
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Fig. 4. (a) The Lyapunov exponent γ versus E for an An-
derson chain with N = 107 sites diluted by segments with
k = 3 sites exhibiting the distance to center symmetry f(l) =
εl = {0.8, 0.7, 0.6}. In this case, there is a single extended state
located at the resonance energy E = 0.7. (b) The effective hop-

ping t
(eff )
0,N as a function of N for E = 0.7 shows the oscillating

behavior characteristic of extended states.

formed for N = 107 sites. After executing the renormaliza-
tion process, we found that the Lyapunov exponent van-
ishes for Ec ≈ {0.8, 2.31774,−0.51774}, in agreement with
the block decimation result [24]. In addition, we show in
Figure 3b the oscillating pattern exhibited by the effective
hopping t

(eff )
0,N as a function of N for the same critical ener-

gies, thus confirming the extended nature of these states.
A similar analysis can be made to investigate a diluted

Anderson chain with the distance to the center symme-
try. We considered, for this case, the following diluting
function: f(l) = εl = {0.8, 0.7, 0.6}. From the theoretical
calculation of [24], one can anticipate that this chain will
have only one extended state with energy Ec = 0.7. Fig-
ures 4a and b clearly show that the Lyapunov exponent
vanishes only for Ec = 0.7 and the effective hopping t

(eff )
0,N

displays an oscillating behavior at this critical energy.
In order to investigate the influence of the above res-

onant extended states on the transport properties of the
diluted Anderson model, we calculate the time dependence
of the mean-square displacement of an initially localized
wave-packet. Starting with one electron fully localized at
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Fig. 5. The scaled mean-square displacement σ2(t)/t0.5 versus
times t for the 1D diluted Anderson model with 7 × 104 sites
for: a) Constant diluting function ε0 = f(l1) = ε0 = 1
with l1 = 2, 20. (b) Diluting function with specular reflec-
tion symmetry f(l) = {ε2, ε3, ε2} with ε2 = 0.8 and ε3 = 1.0
(c) Diluting function with the distance to center symmetry
f(l) = {0.8, 0.7, 0.6}. A sub-diffusive behavior σ2 ∝ t0.5 takes
place for any symmetry supporting extended states.

the Anderson site closer to the chain center, the wave-
function amplitudes bn(t) were obtained from the follow-
ing equations of motion:

iḃn(t) = εnbn(t) + (bn−1(t) + bn+1(t)) n = 1, 2, ..., N.
(8)

Using a Runge-Kutta algorithm, we solve the above set
of coupled equations and calculate the mean-square dis-
placement

σ2(t) =
∑

n

(n − n0)2|bn(t)|2. (9)

To minimize end effect, our numerical calculation was per-
formed in a very large chain with N = 7 × 104 sites.
As a consequence, the site amplitudes at the ends of the
chain (b1(t) and bN(t)) are always negligible. The numer-
ical integration of equations (8) was performed using the
Runge-Kutta algorithm with precision ∆t smaller than
10−2. In Figures 5a–c, we exhibit our main results for the
time evolution of the mean-square displacement σ2(t) on
diluted chains considering all relevant symmetries of the
diluting function. In all cases, we obtained a clear sub-
diffusive behavior: σ2 ∝ t0.5. This sub-diffusive spread of
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Fig. 6. Dashed lines represent the normalized density of states
(DOS) for the diluted chain with a) specular reflection symme-
try f(l) = {0.8, 1.0, 0.8} and b) distance to the center symme-
try f(l) = {0.8, 0.7, 0.6}. In both cases, the resonance energies
associated with extended states are coincident with DOS sin-
gularities.The DOS displays pseudo-gaps for ε0 > 0, which are
reminiscent of the gaps present in the DOS of the correspond-
ing pure models (shown as solid lines).

the wave-packet is related to the fact that the resonance
energies supporting extended states occur at band edge
singularities of the DOS, as depicted in Figure 6. A sim-
ilar diffusive-like spread of the wave-packet has also been
observed to occur with collective excitations in other dis-
ordered systems with the Lyapunov exponent vanishing
at DOS singularities as, for example, in random harmonic
chains [34] and disordered ferromagnetic chains [7,29].

4 Summary and conclusions

In summary, we investigated the 1D diluted Anderson
model where every Anderson impurity is diluted by a set
of site energies given by a diluting function f(l). Using the
renormalization group approach and the transfer matrix
technique, we obtained the Lyapunov exponent γ in sev-
eral diluting cases exploring distinct symmetries support-
ing extended states, such as constant diluting function, di-
luting function with either specular reflection or distance
to the center symmetry. In all cases, we identified the
resonance energies at which the model exhibit extended
states, in full agreement with previous results [23,24]. We
also studied the temporal spread of an initially localized
electron wave-function in these diluted chains by follow-
ing the time dependence of the wave-packet mean-square
displacement. We found that, associated with the pres-
ence of extended states at resonance energies located at
DOS band edge singularities, the electron wave-packet dis-
plays a sub-diffusive spread (σ2(t) ∝ t0.5). This result is
consistent with the general picture that the wave-packet
dynamics depends on the relative location of resonance
energies and DOS singularities [36].
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