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1. Introduction

The energy dynamics in classical nonlinear random lattices is a general interesting issue with direct connections with
Anderson Localization [1-12]. With respect to disordered harmonic chains, it was shown that there are about VN low-
frequency non-localized modes, where N is the number of masses in the chain [1,2]. In Refs. [6-9,11] it was shown
that high-frequency extended modes can be attained whenever the disorder distribution contains short or long-range
correlations. Regarding thermal conductivity in classical lattices, the presence of nonlinearity also plays an important role
on the energy flux [3,4,13-25]. In fact, the heat propagation in low dimensional classical nonlinear systems has been
targeted by recent intense inquiry [14-19]. It is well known that nonlinear chains can, in general, exhibit kink-soliton
solutions. However, the solitonic dynamics is damped by the presence of disorder. In fact, the scattering of solitons
by disorder is measured by the reduction of localized energy within the localization region, by the time dependent
acceleration of energy flux and by long-time behavior of the diffusion coefficient. The interplay between uncorrelated
disorder and anharmonicity was studied in detail in Ref. [22]. It was numerically demonstrated that, while anharmonicity
promotes energy transport through ultrasonic solitons, disorder decreases the propagation due to the well known
Anderson localization [22]. The soliton dynamics in a Toda lattice with randomly distributed masses was studied in
Ref. [23]. The disordered Toda’s model consists of a one-dimensional chain of disordered masses where each one interacts
with the others through a nearest-neighbor exponential potential. By using the inverse scattering transform, it was shown
that the soliton energy decays as o« N*? for small-amplitude solitons and o exp(2N) for large-amplitude solitons [23]. In
Ref. [24] the authors investigated the interplay between uncorrelated disorder and nonlinearity within the framework of
the Fermi-Pasta-Ulam (FPU) model. It was demonstrated that at low temperatures, small system-size transport properties
are dominated by disorder but the asymptotic system size dependence of current is given by the nonlinear interaction.
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In this work, we investigated the effect of a cubic nonlinearity on non-periodic classical lattices performing an
numerical evaluation of the competition between correlated masses distribution and nonlinear cubic potentials. Long-
range correlations within the masses distribution were imposed applying on them a Fractionary Brownian motion
sequence with power law spectrum proportional to k~“. In the absence of anharmonic couplings, we employed numerical
computation (finding solutions of Hamilton’s equations) to demonstrate the existence of ballistic energy propagation at
the limit of strong correlations (« > 2). Taking into account the presence of cubic interaction, our results indicated that
for strong correlations the ballistic dynamics is still achieved. Within this limit, although, our results reveals the presence
of a solitonic like excitation.

2. Model and formalism

We consider a 1d anharmonic lattice of N masses, for which the classical Hamiltonian can be written as H = ), E,(t),
where the energy E,(t) of the mass at site (n) is given by [24-26]

P2 1
Eit) = 52 + 2[(@uit = Q) 4+ (@ = Qoo P
+ 2@~ Q) + (@ — QY| ()

Here P, and Q, define the momentum and displacement of the mass at site (n). In our model, m, represents a quaternary
correlated disorder distribution. We are using open boundary condition. We construct this sequence by mapping a
continuous correlated series {V,} in a discrete group of four values (M;, M, M3, My). The continuous series {V,} is obtained
by the trace of a fractional Brownian motion defined as [27-30]:

N2
1 2mnk
V":ZWCOS( N +¢k). (2)
k=1

Here, ¢y represent random phases distributed within the interval [0, 27r]. The above series have a power-law spectral
density of the form S(k) o< 1/k* derived from the Fourier transform of the two-point correlation function. The widespread
occurrence in nature of sequences with power-law noise is related to the general tendency of large dynamical systems to
evolve to a self-organized critical state [31]. For « = 0, the sequence is completely uncorrelated. Long-range correlated
sequences are obtained in the regime o > 0. According to the approach used in [27], we also performed a normalization
process such that: (V,) = 0 and /(V?) — (V;)> = 1. Once the correlated sequence {V,} was built, we proceed to the
mapping in order to generate the quaternary correlated sequence m,. The mapping is defined by the equation below:

M] if V,, < —nN
_ M, if—r1<V,,<r2
Mn = M3 if I < Vn <TI3 (3)
M4 if V" > I3.

The parameters rq, 1, and r3 introduced into this expression controls the type of mapping we use. In general, rq, 1, and r3
controls the probability of each of the four values (M;, M, M3, M4) appearing on the quaternary distribution. We choose
0 <r, < 1.5with k =1, 2, 3, because 1.5 is close to the largest value of the V,, sequence after the normalization process.
Moreover, we set the following values for the masses: M; = 0.5, M, = 1, M3 = 1.5, My = 2. We emphasize that
the transformation presented in Eq. (3) does not change drastically the statistical properties and correlations within the
series {Vy}. In Fig. 1, we plot the autocorrelations C,(x) versus x for both series m, and V,,. Such statistics are defined by
Ca(x) = ((@nan4x) — (an)(@nix))/+/(a2) — (an)?, with a = m and V, respectively, for the m, and V, sequences. We observe
that the correlations into m, and V, are roughly the same. In our calculations, we assume there is no disorder in the
anharmonic contribution. By considering an initial excitation at the site no at t = 0, we solve the differential equations
for P,(t) and Q,(t) and compute the fraction of the total energy H(t = 0) at the site n (f, = E,(t)/H(t = 0)). Therefore,
we define the mean square displacement defined as: o(t) = /[ _,(n — no)?fy]. The time evolution of the width of the
vibrational wave-packet (i.e o o t*) can be used to characterize the energy dynamics. If A & 0, then we have a fully
localized wave-packet. If A = 1, the energy propagates ballistically along the lattice. If A = 0.5, the energy dynamics is
diffusive. If 0 < A < 0.5 the dynamics is sub-diffusive. The regime 0.5 < A < 1 is called super-diffusive. In addition,
we investigated the quantity defined as Z(t) = (Z,';' f?), where the inverse of Z measures the number of masses that
participate of the energy transport. For localized states, Z(t) is a constant along time and for extended states Z(t) vanishes
as 1/t.

Within the Harmonic approximation (n = 0), it is possible to calculate the degree of localization by using the transfer
matrix method (TMM). By considering n = 0 the Eq. (1) represents a harmonic chain of N masses in which that the
equation of motion for the displacements Q, = u, exp iwt with vibrational frequency w is [8,10]

(2- wzmn)un = Up—1 + Upt1 - (4)
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Fig. 1. The autocorrelations versus distance x for both series {m,} and {V,}. We stress that autocorrelations are defined by Cu(x) = ({ananix) —
(ap)(ansx))/v/(a2) — (a,)? with a = m and V respectively for the m, and V, sequences. We observe that the autocorrelations into m, and V,
are roughly the same. Therefore, the discretization of the series {V,} in a Quaternary sequence does not change drastically the intrinsic statistical
properties.

The TMM is obtained by using a matrix recursive reformulation of the scaled displacement equation Eq. (4)

Up o 2—-me? -1 Up
()= ) () 2

For a specific frequency w, a 2 x 2 transfer matrix T, connects the displacements at the sites n — 1 and n to those at the
site n + 1. Once the initial values for uy and u; are known, the value of u, can be obtained by repeated iterations along
the chain, as described by the product of transfer matrices

N
=[] (6)
n=1
The Lyapunov exponent y (the inverse of the localization length) of each vibrational mode is defined by [8,10]
Ync(0
Y= lim ~ glN()l’ )
N-co N |c(0)]

where ¢(0) = (z;) is a generic initial condition. Typically, 107 matrix products were used to calculate the localization
length. For localized eigenmodes we have y > 0 and for extended ones the Lyapunov exponent trends to zero.

3. Results

We initially analyzed the harmonic case i.e n = 0 considering a system size of N = 25000 and an initial impulse
excitation at the center of chain (i.e. Q, = 0 and P, = vod,n,2). The Hamilton equations were solved using a standard
Fourth order Runge-Kutta [32] with dt = 5 x 10~%. The total energy H(t) = >, En(t) was analyzed over time in order to
check the accuracy of our numerical solution. In our calculations, the quantity R(t) = |1 — H(t = 0)/H(t)| was less than
10~19 along the entire time interval. In Fig. 2, we plot the mean square displacement o (t) versus time for n = 0, « = 0, 1
and3andry = 1,r, = 0.1and r3 = 1.2. Our results showed that for « = 0 and 1 the energy propagates in a super-diffusive
way (o (t) o t3/4). These results were consistent with the previous one for the vibrational energy dynamics in disordered
classical harmonic chains [8]. For « = 3, the calculations pointed to the ballistic energy propagation along the chain (i.e
o(t) o t'). We stress that this result was obtained using a quaternary sequence with strong long-range correlations.
However, ballistic propagation in classical chains with long-range correlations was previously reported in Ref. [8]. The
main difference between our results and those reported in [8] is the type of masses distribution (the disordered masses
distribution considered in [8] was a sequence chosen in an interval [m,, my]). In Figs. 3, 4 we plot a wide collection of
results for 0 = o(t - o0) and Z = Z(t — o) versus « for several values of rq, r; and rs. In order to calculate o (t — o0)
and Z(t — oo) we solved the Hamilton equations for a very long time (t.x &~ 4N) and then calculate the both quantities
as: o(Z)(t - o0) = ﬁ";"["l o(Z)(t)/N, where t; was about 0.75t,,4, and N, is the number of times between t; and t,q.
To perform a finite size analysis, we plot /N and ZN as both quantities, for extended states, become approximately
independent of N. In Figs. 3, 4, we note that for « > 2, the data for both ¢ and Z indicate the presence of extended states
regardless ry, 3, 3 values.

In order to verify the existence of extended eigenmodes for « > 2 at the limit of large size, we applied the transfer
matrix formalism (TMM). In Fig. 5(a) we show computation of the Lyapunov exponent versus square frequency for
a =0,1,3and N = 107. Our calculations indicate that, for « = 3, there is a range of frequencies ([0, w.] with w; > 0)
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Fig. 2. o(t) versus time t for n =0, « =0, 1 and 3 and r; = 1, r, = 0.1 and r3 = 1.2. Our results showed that, for « = 0 and 1, the energy
propagates in a super-diffusive way (o(t) o t*4). For @ = 3, the calculations indicate that the energy propagates ballistically along the chain (i.e
o(t) o t!).
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Fig. 3. Scaled mean square displacement for t > 0(c /N = o(t — 00)/N versus « for several values of ry, r; and r3. Calculations indicated that, for
« > 2, the mean square displacement diverges linearly with N thus pointing to extended states.

in which the Lyapunov exponent is vanishing. For « < 2, the Lyapunov is zero only for w = 0 (see inset of Fig. 5(a)). In
Fig. 5(b), we plot mean Lyapunov exponent () versus « for N = 107. The expression for the mean Lyapunov exponent
is (¥) = Y2020z ¥(@”) With of = 0.2 and w3 = 0.5. Our calculation indicate that, for & > 2, a phase of extended
eigenmodes has occurred with non-zero frequencies (in good agreement with the results showed in Figs. 3 and 4).
When including the nonlinear interaction to the system, our results were interesting and completely counter-intuitive.
In Fig. 6 we plot both quantities (o(t) and Z(t) versus time for « = 3 and n = 0.5 and 1.0. Assessing mean square
displacement we observed that, no matter values n may assume, the energy propagation seems to keep its ballistic
dynamics (o(t) o t!). Therefore, after computation, energy flux in both harmonic or unharmonic chain with correlated
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Fig. 4. Scaled Z function for long time (ZN = Z(t — oo)N) versus « for several values of ry, r, and rs. In accordance with the calculations showed
in Fig. 3, we found that, for « > 2, the Z function scales as 1/N, a clear signal of metallic states.
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Fig. 5. (a) Lyapunov exponent versus w? for @ = 0, 1, 3 and N = 10”. Our calculations indicate that, for @ = 3, there is a phase of extended vibration
modes within the interval [0, w.] with @, > 0; the cases with « < 2 indicate that the Lyapunov is zero only for @ = 0 (see inset). (b) The mean
Lyapunov (y) within the interval [w? = 0.2, w? = 0.5] versus « for N = 10”. Calculations indicate that for @ > 0 there are extended states within
this model (in good agreement with the results showed in Figs. 3 and 4).

disorder exhibits a fast propagation. However, by analyzing the time evolution of the Z function we found a curious result:
the Z function behaves roughly as constant. We stress that for « = 3 and n = 0 we dealt with the limit that metallic
states are present, and, for « = 3 and n > 0, we note a ballistic regime, based on the results of o(t). However, the
strange behavior of Z(t) is inconsistent with existence of extended states. In order to understand asymmetric behavior
of Z function better, an evaluation of energy spacial profile using a 3d-plot (n, t, E,) (see Fig. 7(a-d)) was carried. We
highlight that, within these figures of the energy profile, we considered n = 0 as the center of chain. Computation was
done in a chain with N = 2000, « = 3,y = 1,5, = 0.1 and r3 = 1.2 and the initial condition was Q,(t = 0) = 0
and P,(t = 0) = vgdn. For « = 3 and n = 0 (see Fig. 7(a) with vy = 1), we found that the energy profile was in good
correspondence with previous works (see [8,21,22]). The initial energy impulse spreads ballistically in both directions.
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Fig. 6. The time evolution of o(t) and Z(t) for « = 3 and n = 0.5 and 1.0. The results of the mean square displacement show that, regardless the
value of 5 considered, the energy propagates ballistically (o(t) o t'). However, in contrast to the results obtained for mean square displacement,
the Z function behaves roughly as constant.
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Fig. 7. Energy spacial profile using a 3d-plot (n, t,E,) for several valuers of n (here n = 0 as the center of chain). The initial condition was an
impulse excitation at the center of chain i.e. Q,(t = 0)= 0 and P,(t = 0) = vod,.o-

Nevertheless, when n > 0 (Fig. 7(b,c) with vy = 1), the energy exhibits a solitonic like profile similar to the one found
in periodic nonlinear chains [21,22]. Therefore, the nonlinearity, even at the presence of correlated disorder, promotes
the appearance of stable solitonic-like excitation. It is instructive, for example, to check the dependence of this solitonic
mode with the signal of initial impulse. In Fig. 7(c), we have the energy profile imputing « = 3, n = 1 and vp = —1; the
observed direction of solitonic dynamics is inverted (a) standard property associated with solitonic like excitation [21,22]).
The asymmetric behavior of Z function can be now explained using some additional tools namely Z, _) = Znﬂ, fn2. n,
represents the region with n > N/2 and n_, the region with n < N/2. Therefore, Z, represents the image set of Z function
for n > 0 (i.e the positive side of the energy profile). The explanation of Z_ is symmetric: Z_ is the image of Z function
for n < 0 (i.e the negative side of the energy profile). The results for Z, ) versus time can be found in Fig. 8. The initial
condition used here was Q,(t = 0) = 0 and P,(t = 0) = voén, 0 with vy = 1. For n = 0, both quantities (Z, and Z_)
exhibit a linear decay (Z;(-) « 1/t) in agreement with the existence of extended states and the ballistic spread obtained
in o(t). However, for > 0 the asymmetric solitonic energy profile imposes distinct dynamics for Z, and Z_. On the
positive side, the energy spreads ballistically, therefore Z, behaves as 1/t. On the other hand, on the negative side we
have a solitonic mode thus a finite fraction of the initial energy remains trapped along the time (see Z_ distribution over
time).

When « < 2, energy dynamics should be analyzed. In Fig. 9(a-d) we plot the energy spatial profile for « = 0 and 1
and n = 0 and 1. Calculations were done in a chain with N = 2000, r; = 1, = 0.1 and r3 = 1.2 and the initial condition
was Q,(t = 0) = 0 and P,(t = 0) = §,. For n = 0 we note that a portion of the initial energy remains trapped around
the initial position while the other fraction spreads along the chain. For n = 1, we see that in both cases (¢« = 0 and 1) we
have a merge of both dynamics: there is a portion of the initial energy trapped around the initial site and also an apparent
solitonic like excitation propagating within the negative side (moreover, there is some small radiations spreading in both
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Fig. 8. The Z function calculated separately on the positive and negative sides of Fig. 7(a) (i.e Z,(_(t) = Znﬂ, fnz)
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Fig. 9. (a-d) The energy spatial profile for « = 0 and 1 and » = 0 and 1. Calculations were done in a chain with N = 2000, r; = 1, r, = 0.1 and
r3 = 1.2 and the initial condition was Q,(t = 0) = 0 and P,(t = 0) = 8,,0. (e) Z function within the negative side.

directions of the chain). For @« = 1 the solitonic like mode is more visible that in the case with @ = 0. However, the lifetime
of this solitonic mode is too short. Even within this 3d plot, the magnitude of the apparent soliton decreases as the time
is increased. In order to clarify this point we calculate the Z function within the negative side considering ry = 1,, = 0.1
and r; = 1.2 and n = 1 (i.e Z_, see Fig. 9(e)). For « < 2 and n = 1, the Z_ decreases with time — consistent with the
damped of the solitonic intensity observed in Fig. 9(c,d). For « > 2, we observed that Z_ remains constant thus suggesting
the stability of the solitonic mode found within this limit. The main explanation for this phenomenon is the existence of
extended states within the band of allowed states. The presence of states that propagate ballistically associated with the
cubic interaction promote the occurrence of a solitonic mode without any damping. Conversely, because the case with
o < 2 does not contain extended states, nonlinear excitation is destroyed.

Lastly, we show a short analysis about the dependence of the soliton formation with the initial velocity vo. In Fig. 10 we
plot the participation function at the negative side of the energy profile (i.e Z_) computed considering Q,(t = 0) = 0 and
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Fig. 10. Participation function computed for n < N/2 (i.e Z_). Calculations were done considering Qu(t = 0) = 0, Py(t = 0) = vodunp2, 11 = 1,
rp=01andr; =1 n=1 a=3and N = 25000 sites. Our calculations indicate that as the velocity is decreased the intensity of soliton peak also
decreases.

Py(t = 0) = vodpns2, 71 = 1,12 =0.1and r3 = 1,7 = 1 and o = 3. Calculations were done in large chain with N = 20000
sites resulting that, for vy > 0, the solitonic model is observed. However, as the velocity is decreased, the amount of energy
within the soliton also decreases. Analogously, as the initial velocity is decreased, the initial energy into the chain also
decreases thus lowering the amount of initial energy captured by nonlinear excitation. Consequently, intensity of the
solitonic peak diminishes. We emphasize that we found no dependence of the velocity of soliton propagation with the
initial velocity vo.

4. Summary

We have investigated the competition between correlated disorder and cubic nonlinearity in a classical chain. Our
model was a FPU model with correlated disorder at the masses distribution. For the construction of a long-range correlated
masses sequence, we use a random series with a power law spectrum. In the absence of anharmonic couplings, we
numerically demonstrated the existence of ballistic energy propagation at the limit of strong correlations. The inclusion
of cubic interaction did not destroy the ballistic propagation. However, the energy profile exhibits a solitonic like mode
that propagates without any damping.
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